1
|
Risinger WB, Matheson PJ, Franklin ME, Lakshmanan J, Li Y, Harbrecht BG, Smith JW. Plasma resuscitation restores glomerular hyaluronic acid and mitigates hemorrhage-induced glomerular dysfunction. J Trauma Acute Care Surg 2025:01586154-990000000-00962. [PMID: 40205640 DOI: 10.1097/ta.0000000000004623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
BACKGROUND Acute renal dysfunction following hemorrhagic shock and resuscitation carries significant morbidity and mortality. While shock-induced shedding of the glycocalyx is well described within the pulmonary and splanchnic vasculature, less is known regarding early alterations to the glycocalyx of the renal microcirculation, particularly the glomerulus. We sought to evaluate the impact of hemorrhagic shock and resuscitation modalities on glomerular glycocalyx metabolism and function. We hypothesized that fresh frozen plasma resuscitation would attenuate glomerular glycocalyx shedding and reduce glomerular barrier dysfunction. METHODS Male Sprague-Dawley rats were subjected to 60 minutes of hemorrhagic shock to 40% of baseline mean arterial pressure, followed by resuscitation with shed whole blood and either lactated Ringer's or fresh frozen plasma. Experimental groups included the following: (a) baseline, (b) post-hemorrhagic shock, (c) post-lactated Ringer's resuscitation, and (d) post-plasma resuscitation. Enzyme-linked immunosorbent assays and immunohistochemistry were used to evaluate alterations of syndecan-1 and hyaluronic acid within the glomerular glycocalyx. Urine protein concentration was measured as a surrogate for glomerular function, and expression of cubilin and megalin was quantified to evaluate renal tubule protein reabsorptive capacity. RESULTS Despite evidence of systemic glycocalyx shedding, hemorrhagic shock and resuscitation did not alter glomerular synedcan-1 expression. However, shock induced shedding of hyaluronic acid from the glomerular glycocalyx. While hyaluronic acid breakdown was exacerbated by crystalloid resuscitation, plasma utilization restored levels back to baseline. Urine protein concentration drastically increased following hemorrhagic shock and resuscitation with lactated Ringer's. By contrast, plasma administration reduced urine protein levels back to normal. Renal cortex cubilin and megalin expression did not differ among the experimental groups, suggesting that alterations in urine protein were driven by changes in glomerular function. CONCLUSION Plasma-based resuscitation appears to reverse shock-induced shedding of glomerular hyaluronic acid and attenuates glomerular barrier dysfunction. Differential shedding of the glomerular glycocalyx may represent a novel pathway in acute kidney injury pathophysiology.
Collapse
Affiliation(s)
- William B Risinger
- From the Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky
| | | | | | | | | | | | | |
Collapse
|
2
|
Chu C, Wang X, Yang C, Chen F, Shi L, Xu W, Wang K, Liu B, Wang C, Sun D, Ding W. Neutrophil extracellular traps drive intestinal microvascular endothelial ferroptosis by impairing Fundc1-dependent mitophagy. Redox Biol 2023; 67:102906. [PMID: 37812880 PMCID: PMC10579540 DOI: 10.1016/j.redox.2023.102906] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023] Open
Abstract
Microvascular endothelial damage caused by intestinal ischemia‒reperfusion (II/R) is a primary catalyst for microcirculation dysfunction and enterogenous infection. Previous studies have mainly focused on how neutrophil extracellular traps (NETs) and ferroptosis cause intestinal epithelial injury, and little attention has been given to how NETs, mainly from circulatory neutrophils, affect intestinal endothelial cells during II/R. This study aimed to unravel the mechanisms through which NETs cause intestinal microvascular dysfunction. We first detected heightened local NET infiltration around the intestinal microvasculature, accompanied by increased endothelial cell ferroptosis, resulting in microcirculation dysfunction in both human and animal II/R models. However, the administration of the ferroptosis inhibitor ferrostatin-1 or the inhibition of NETs via neutrophil-specific peptidylarginine deiminase 4 (Pad4) deficiency led to positive outcomes, with reduced intestinal endothelial ferroptosis and microvascular function recovery. Moreover, RNA-seq analysis revealed a significant enrichment of mitophagy- and ferroptosis-related signaling pathways in HUVECs incubated with NETs. Mechanistically, elevated NET formation induced Fundc1 phosphorylation at Tyr18 in intestinal endothelial cells, which led to mitophagy inhibition, mitochondrial quality control imbalance, and excessive mitochondrial ROS generation and lipid peroxidation, resulting in endothelial ferroptosis and microvascular dysfunction. Nevertheless, using the mitophagy activator urolithin A or AAV-Fundc1 transfection could reverse this process and ameliorate microvascular damage. We first demonstrate that increased NETosis could result in intestinal microcirculatory dysfunction and conclude that suppressed NET formation can mitigate intestinal endothelial ferroptosis by improving Fundc1-dependent mitophagy. Targeting NETs could be a promising approach for treating II/R-induced intestinal microcirculatory dysfunction.
Collapse
Affiliation(s)
- Chengnan Chu
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xinyu Wang
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Chao Yang
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Fang Chen
- School of Medicine, Southeast University, Nanjing, 210002, Jiangsu Province, China
| | - Lin Shi
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, Jiangsu Province, China
| | - Weiqi Xu
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Kai Wang
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Baochen Liu
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Chenyang Wang
- Key Laboratory of Intestinal Injury, Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, PR China
| | - Dongping Sun
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, Jiangsu Province, China
| | - Weiwei Ding
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
3
|
Schucht JE, Harbrecht BG, Bond LM, Risinger WB, Matheson PJ, Smith JW. Plasma resuscitation improves and restores intestinal microcirculatory physiology following haemorrhagic shock. Vox Sang 2023; 118:863-872. [PMID: 37563931 DOI: 10.1111/vox.13504] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/14/2023] [Accepted: 07/11/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND AND OBJECTIVES Intestinal ischaemia-reperfusion injury following resuscitated haemorrhagic shock (HS) leads to endothelial and microcirculatory dysfunction and intestinal barrier breakdown. Although vascular smooth muscle machinery remains intact, microvascular vasoconstriction occurs secondary to endothelial cell dysfunction, resulting in further ischaemia and organ injury. Resuscitation with fresh frozen plasma (FFP) improves blood flow, stabilizes the endothelial glycocalyx and alleviates organ injury. We postulate these improvements correlate with decreased tissue CO2 concentrations, improved microvascular oxygenation and attenuation of intestinal microvascular endothelial dysfunction. MATERIALS AND METHODS Male Sprague-Dawley rats were randomly assigned to groups (n = 8/group): (1) sham, (2) HS (40% mean arterial blood pressure [MAP], 60 min) + crystalloid resuscitation (CR) (shed blood saline) and (3) HS + FFP (shed blood + FFP). MAP, heart rate (HR), ileal perfusion, pO2 and pCO2 were measured at intervals until 4 h post-resuscitation (post-RES). At 4 h post-RES, the ileum was rinsed in situ with Krebs solution. Topical acetylcholine and then nitroprusside were applied for 10 min each. Serum was obtained, and after euthanasia, tissues were harvested and snap-frozen in liquid N2 and stored at -80°C. RESULTS FFP resuscitation resulted in sustained ileal perfusion as well as rapid sustained return to baseline microvascular pO2 and pCO2 values when compared to CR (p < 0.05). Endothelial function was preserved relative to sham in the FFP group but not in the CR group (p < 0.05). CONCLUSION FFP-based resuscitation improves intestinal perfusion immediately following resuscitation, which correlates with improved tissue oxygenation and decreased tissue CO2 levels. CR resulted in significant damage to endothelial vasodilation response to acetylcholine, while FFP preserved this function.
Collapse
Affiliation(s)
- Jessica E Schucht
- Louisville Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky, USA
- Department of Surgery, University of Louisville, Louisville, Kentucky, USA
| | - Brian G Harbrecht
- Louisville Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky, USA
- Department of Surgery, University of Louisville, Louisville, Kentucky, USA
| | - Logan M Bond
- Department of Surgery, University of Louisville, Louisville, Kentucky, USA
| | - William B Risinger
- Department of Surgery, University of Louisville, Louisville, Kentucky, USA
| | - Paul J Matheson
- Louisville Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky, USA
- Department of Surgery, University of Louisville, Louisville, Kentucky, USA
| | - Jason W Smith
- Department of Surgery, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
4
|
Xu J, Sun X, Qin F, Wang X, Chen Q, Yan R. Protective effects of salvianolic acid B on intestinal ischemia/reperfusion injury in rats by regulating the AhR/IL-22/STAT6 axis. J Recept Signal Transduct Res 2023; 43:73-82. [PMID: 37387514 DOI: 10.1080/10799893.2023.2204949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 03/13/2023] [Indexed: 07/01/2023]
Abstract
PURPOSE Intestinal ischemia/reperfusion (I/R) injury (IIRI) is associated with high morbidity and mortality. Salvianolic acid B (Sal-B) could exert neuroprotective effects on reperfusion injury after cerebral vascular occlusion, but its effect on IIRI remains unclear. This study set out to investigate the protective effects of Sal-B on IIRI in rats. METHODS The rat IIRI model was established by occluding the superior mesenteric artery and reperfusion, and they were pretreated with Sal-B and aryl hydrocarbon receptor (AhR) antagonist CH-223191 before surgery. Pathological changes in rat ileum, IIRI degree, and intestinal cell apoptosis were evaluated through hematoxylin-eosin staining, Chiu's score scale, and TUNEL staining, together with the determination of caspase-3, AhR protein level in the nucleus, and STAT6 phosphorylation by Western blotting. The levels of inflammatory cytokines (IL-1β/IL-6/TNF-α) and IL-22 were determined by ELISA and RT-qPCR. The contents of superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) in intestinal tissues were determined by spectrophotometry. RESULTS Sal-B alleviated IIRI in rats, evidenced by slight villi shedding and villi edema, reduced Chiu's score, and diminished the number of TUNEL-positive cells and caspase-3 expression. SAL-B alleviated inflammation and oxidative stress (OS) responses induced by IIRI. Sal-B promoted IL-22 secretion by activating AhR in intestinal tissue after IIRI. Inhibition of AhR activation partially reversed the protective effect of Sal-B on IIRI. Sal-B promoted STAT6 phosphorylation by activating the AhR/IL-22 axis. CONCLUSION Sal-B plays a protective role against IIRI in rats by activating the AhR/IL-22/STAT6 axis, which may be achieved by reducing the intestinal inflammatory response and OS responses.
Collapse
Affiliation(s)
- Jinyao Xu
- Department of Gastrointestinal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
| | - Xiangjun Sun
- Department of Gastrointestinal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
| | - Feng Qin
- Department of Gastrointestinal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
| | - Xufeng Wang
- Department of Gastrointestinal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
| | - Qian Chen
- Department of Gastrointestinal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
| | - Ruicheng Yan
- Department of Gastrointestinal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
5
|
Sun Q, Zhang H, Du HB, Zhao ZA, Li CJ, Chen SJ, Li YM, Zhang SL, Liu JC, Niu CY, Zhao ZG. ESTROGEN ALLEVIATES POSTHEMORRHAGIC SHOCK MESENTERIC LYMPH-MEDIATED LUNG INJURY THROUGH AUTOPHAGY INHIBITION. Shock 2023; 59:754-762. [PMID: 36840514 DOI: 10.1097/shk.0000000000002102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
ABSTRACT Background: Hemorrhagic shock-induced acute lung injury (ALI) is commonly associated with the posthemorrhagic shock mesenteric lymph (PHSML) return. Whether excessive autophagy is involved in PHSML-mediated ALI remains unclear. The relationship between estrogen treatment and PHSML or autophagy needs to verify. The current study will clarify the role of estrogen in reducing PHSML-mediated ALI through inhibition of autophagy. Methods: First, a hemorrhagic shock model in conscious rats was used to observe the effects of 17β-estradiol (E2) on intestinal blood flow, pulmonary function, intestinal and pulmonary morphology, and expression of autophagy marker proteins. Meanwhile, the effect of PHSML and autophagy agonist during E2 treatment was also investigated. Secondly, rat primary pulmonary microvascular endothelial cells were used to observe the effect of PHSML, PHSML plus E2, and E2-PHSML (PHSML obtained from rats treated by E2) on the cell viability. Results: Hemorrhagic shock induced intestinal and pulmonary tissue damage and increased wet/dry ratio, reduced intestinal blood flow, along with pulmonary dysfunction characterized by increased functional residual capacity and lung resistance and decreased inspiratory capacity and peak expiratory flow. Hemorrhagic shock also enhanced the autophagy levels in intestinal and pulmonary tissue, which was characterized by increased expressions of LC3 II/I and Beclin-1 and decreased expression of p62. E2 treatment significantly attenuated these adverse changes after hemorrhagic shock, which was reversed by PHSML or rapamycin administration. Importantly, PHSML incubation decreased the viability of pulmonary microvascular endothelial cells, while E2 coincubation or E2-treated lymph counteracted the adverse roles of PHSML. Conclusions: The role of estrogen reducing PHSML-mediated ALI is associated with the inhibition of autophagy.
Collapse
Affiliation(s)
| | | | | | | | | | - Si-Jie Chen
- Institute of Microcirculation and Basic Medical College, Hebei North University, Zhangjiakou, China
| | - Yi-Ming Li
- Institute of Microcirculation and Basic Medical College, Hebei North University, Zhangjiakou, China
| | - Sen-Lu Zhang
- Institute of Microcirculation and Basic Medical College, Hebei North University, Zhangjiakou, China
| | - Jun-Chao Liu
- The First Affiliated Hospital, Hebei North University, Zhangjiakou, China
| | | | | |
Collapse
|
6
|
Effect of Plasma Resuscitation with Adjunctive Peritoneal Resuscitation on Hepatic Blood Flow and End-Organ Damage after Hemorrhagic Shock. J Am Coll Surg 2022; 235:643-653. [DOI: 10.1097/xcs.0000000000000284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Abstract
Direct peritoneal resuscitation (DPR) has been found to be a useful adjunct in the management of critically ill trauma patients. DPR is performed following damage control surgery by leaving a surgical drain in the mesentery, placing a temporary abdominal closure, and postoperatively running peritoneal dialysis solution through the surgical drain with removal through the temporary closure. In the original animal models, the peritoneal dialysate infusion was found to augment visceral microcirculatory blood flow reducing the ischemic insult that occurs following hemorrhagic shock. DPR was also found to minimize the aberrant immune response that occurs secondary to shock and contributes to multisystem organ dysfunction. In the subsequent human trials, performing DPR had significant effects in several key categories. Traumatically injured patients who received DPR had a significantly shorter time to definitive fascial closure, had a higher likelihood of achieving primary fascial closure, and experienced fewer abdominal complications. The use of DPR has been further expanded as a useful adjunct for emergency general surgery patients and in the pretransplant care of human cadaver organ donors.
Collapse
Affiliation(s)
- Samuel J Pera
- Hiram C. Polk Jr. Department of Surgery, University of Louisville, 550 South Jackson Street, Louisville, KY 40202, USA
| | - Jessica Schucht
- Hiram C. Polk Jr. Department of Surgery, University of Louisville, 550 South Jackson Street, Louisville, KY 40202, USA
| | - Jason W Smith
- Hiram C. Polk Jr. Department of Surgery, University of Louisville, 550 South Jackson Street, Louisville, KY 40202, USA.
| |
Collapse
|
8
|
The role of direct peritoneal resuscitation in the treatment of hemorrhagic shock after trauma and in emergency acute care surgery: a systematic review. Eur J Trauma Emerg Surg 2021; 48:791-797. [PMID: 34773466 DOI: 10.1007/s00068-021-01821-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE Direct peritoneal resuscitation (DPR) has been used to help preserve microcirculation by reversing vasoconstriction and hypoperfusion associated with the pathophysiological process of shock, which can occur despite appropriate intravenous resuscitation. This approach depends on infusing a hyperosmolar solution intraperitoneally via a percutaneous catheter with the tip ending near the pelvis or the root of the mesentery. The abdomen is usually left open with a negative pressure abdominal dressing to continuously evacuate the infused dialysate. Hypertonicity of the solution triggers visceral vasodilation to help maintain blood flow, even during shock, and is also associated with reduced local inflammatory cytokines and other mediators, preservation of endothelial cell function, and mitigation of organ edema and necrosis. It also has a direct effect on liver perfusion and edema, more rapidly corrects electrolyte abnormalities compared to intravenous resuscitation alone, and may requireless intravenous fluid to stabilize blood pressure, all of which shortens the time required to close patients' abdomen. METHODS An online query using the search term "direct peritoneal resuscitation" was carried out in PubMed, MEDLINE and SciELO, limited to publications indexed from January 2014 to June 2020. Of the 20 articles returned, full text was able to be obtained for 19. A manual review of included articles' references was resulted in the addition of 1 article, for a total of 20 included articles. RESULTS The 20 articles were comprised of 15 animal studies, 4 clinical studies,and 1 expert opinion. The benefits include both local and possibly systemic effects on perfusion, hypoxia, acidosis, and inflammation, and are associated with improved outcomes and reduced complications. CONCLUSION DPR shows promise in patients with hemorrhagic shock, septic shock, and other conditions resulting in an open abdomen after damage control laparotomy.
Collapse
|
9
|
Zhou S, Xie J, Yu C, Feng Z, Cheng K, Ma J, Wang Y, Duan C, Zhang Y, Jin B, Yin W, Zhuang R. CD226 deficiency promotes glutaminolysis and alleviates mitochondria damage in vascular endothelial cells under hemorrhagic shock. FASEB J 2021; 35:e21998. [PMID: 34669985 DOI: 10.1096/fj.202101134r] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/23/2021] [Accepted: 10/04/2021] [Indexed: 12/18/2022]
Abstract
Hemorrhagic shock (HS) is common in clinical emergencies, leading to millions of deaths each year globally. CD226 is a costimulatory adhesion molecule expressed on both immune cells and endothelial cells (ECs) to regulate their metabolic activity and function. As endothelial dysfunction occurs after HS, the roles CD226 plays in vascular EC metabolism were investigated. CD226fl/fl Tekcre mice were adopted to achieve vascular EC-specific knockout of CD226, and subjected to HS modelling. Serum levels of crucial intermediate metabolites were evaluated through liquid chromatography-mass spectrometry analysis. Human umbilical vein ECs (HUVECs) were used to study the effects of CD226 under hypoxia in vitro. Seahorse analysis evaluated the cellular glycolysis and mitochondria bioenergetics. Results showed that CD226 deficiency in vascular ECs alleviated HS-induced intestinal damage and inflammatory response in mice. Animal studies indicated an improved energy metabolism when CD226 was knocked out in ECs after HS, as evidenced by enhanced glutamine-glutamate metabolism and decreased lactic acid levels. Glut-1 was upregulated in mouse vascular ECs after HS and HUVECs under hypoxia, combined with decreased CD226. Moreover, HUVECs with CD226 knockdown exhibited relieved mitochondrial damage and early apoptosis under hypoxia, whereas CD226 overexpression showed opposite effects. Seahorse analysis showed that downregulated CD226 significantly increased mitochondrial ATP production and glucose uptake in HUVECs under hypoxia. Additionally, Erk/PHD2 signaling-mediated HIF-1α/Glut-1 and HIF-2α/ASCT2 pathways were involved in CD226 regulation on HUVEC glutaminolysis after hypoxia. Hence, CD226 deficiency promotes bypass energy supply to vascular ECs under ischemic or hypoxic stress, to ameliorate the stress-mediated metabolic disturbance.
Collapse
Affiliation(s)
- Shangxun Zhou
- Department of Immunology, Fourth Military Medical University, Xi'an, China.,Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jiangang Xie
- Department of Immunology, Fourth Military Medical University, Xi'an, China.,Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chaoping Yu
- Department of Immunology, Fourth Military Medical University, Xi'an, China.,Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhusheng Feng
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Kun Cheng
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Jingchang Ma
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Yuling Wang
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Chujun Duan
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yuan Zhang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Boquan Jin
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Wen Yin
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ran Zhuang
- Department of Immunology, Fourth Military Medical University, Xi'an, China.,Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
10
|
Wang ZY, Lin JY, Feng YR, Liu DS, Zhao XZ, Li T, Li SY, Sun JC, Li SF, Jia WY, Jing HR. Recombinant angiopoietin-like protein 4 attenuates intestinal barrier structure and function injury after ischemia/reperfusion. World J Gastroenterol 2021; 27:5404-5423. [PMID: 34539141 PMCID: PMC8409166 DOI: 10.3748/wjg.v27.i32.5404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/17/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Intestinal barrier breakdown, a frequent complication of intestinal ischemia-reperfusion (I/R) including dysfunction and the structure changes of the intestine, is characterized by a loss of tight junction and enhanced permeability of the intestinal barrier and increased mortality. To develop effective and novel therapeutics is important for the improvement of outcome of patients with intestinal barrier deterioration. Recombinant human angiopoietin-like protein 4 (rhANGPTL4) is reported to protect the blood-brain barrier when administered exogenously, and endogenous ANGPTL4 deficiency deteriorates radiation-induced intestinal injury. AIM To identify whether rhANGPTL4 may protect intestinal barrier breakdown induced by I/R. METHODS Intestinal I/R injury was elicited through clamping the superior mesenteric artery for 60 min followed by 240 min reperfusion. Intestinal epithelial (Caco-2) cells and human umbilical vein endothelial cells were challenged by hypoxia/ reoxygenation to mimic I/R in vitro. RESULTS Indicators including fluorescein isothiocyanate-conjugated dextran (4 kilodaltons; FD-4) clearance, ratio of phosphorylated myosin light chain/total myosin light chain, myosin light chain kinase and loss of zonula occludens-1, claudin-2 and VE-cadherin were significantly increased after intestinal I/R or cell hypoxia/reoxygenation. rhANGPTL4 treatment significantly reversed these indicators, which were associated with inhibiting the inflammatory and oxidative cascade, excessive activation of cellular autophagy and apoptosis and improvement of survival rate. Similar results were observed in vitro when cells were challenged by hypoxia/reoxygenation, whereas rhANGPTL4 reversed the indicators close to normal level in Caco-2 cells and human umbilical vein endothelial cells significantly. CONCLUSION rhANGPTL4 can function as a protective agent against intestinal injury induced by intestinal I/R and improve survival via maintenance of intestinal barrier structure and functions.
Collapse
Affiliation(s)
- Zi-Yi Wang
- Emergent Intensive Care Unit, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| | - Jian-Yu Lin
- Department of Gastrointestinal Surgery, Weihai Central Hospital, Weihai 264200, Shandong Province, China
| | - Yang-Rong Feng
- Graduate College, Shandong First Medical University, Jinan 271000, Shandong Province, China
| | - De-Shun Liu
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, Liaoning Province, China
| | - Xu-Zi Zhao
- Department of Pharmacology, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Tong Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100000, China
| | - Si-Yuan Li
- Department of General Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Jing-Chao Sun
- Department of General Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Shu-Feng Li
- Department of General Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Wen-Yan Jia
- Physiological Examination Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Hui-Rong Jing
- Department of General Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, Shandong Province, China
| |
Collapse
|