1
|
Gallagher LT, LaCroix I, Fields AT, Mitra S, Argabright A, D'Alessandro A, Erickson C, Nunez-Garcia B, Herrera-Rodriguez K, Chou YC, Stocker BW, Ramser BJ, Thielen O, Hallas W, Silliman CC, Kornblith LZ, Cohen MJ. Platelet releasates mitigate the endotheliopathy of trauma. J Trauma Acute Care Surg 2024; 97:738-746. [PMID: 38764145 PMCID: PMC11502277 DOI: 10.1097/ta.0000000000004342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
BACKGROUND Platelets are well known for their roles in hemostasis, but they also play a key role in thromboinflammatory pathways by regulating endothelial health, stimulating angiogenesis, and mediating host defense through both contact dependent and independent signaling. When activated, platelets degranulate releasing multiple active substances. We hypothesized that the soluble environment formed by trauma platelet releasates (TPR) attenuates thromboinflammation via mitigation of trauma induced endothelial permeability and metabolomic reprogramming. METHODS Blood was collected from injured and healthy patients to generate platelet releasates and plasma in parallel. Permeability of endothelial cells when exposed to TPR and plasma (TP) was assessed via resistance measurement by electric cell-substrate impedance sensing (ECIS). Endothelial cells treated with TPR and TP were subjected to mass spectrometry-based metabolomics. RESULTS TP increased endothelial permeability, whereas TPR decreased endothelial permeability when compared with untreated cells. When TP and TPR were mixed ex vivo, TPR mitigated TP-induced permeability, with significant increase in AUC compared with TP alone. Metabolomics of TPR and TP demonstrated disrupted redox reactions and anti-inflammatory mechanisms. CONCLUSION Trauma platelet releasates provide endothelial barrier protection against TP-induced endothelial permeability. Our findings highlight a potential beneficial action of activated platelets on the endothelium in injured patients through disrupted redox reactions and increased antioxidants. Our findings support that soluble signaling from platelet degranulation may mitigate the endotheliopathy of trauma. The clinical implications of this are that activated platelets may prove a promising therapeutic target in the complex integration of thrombosis, endotheliopathy, and inflammation in trauma.
Collapse
Affiliation(s)
- Lauren T Gallagher
- From the Department of Surgery (L.T.G., S.M., B.W.S., B.J.R., O.T., W.H., M.J.C.), Department of Biochemistry and Molecular Genetics (I.L.C., C.E.), University of Colorado, School of Medicine, Aurora, Colorado; Department of Surgery (A.T.F., B.N.-G., K.H.-R., Y.C.C., L.Z.K.), University of California, San Francisco, San Francisco, California; Mass Spectrometry Core Facility (A.A.), University of Colorado, School of Medicine; Department of Biochemistry and Molecular Genetics (A.D'A.), University of Colorado Anschutz Medical Campus, School of Medicine; Vitalant Research Institute, Department of Surgery (C.C.S.), Department of Pediatrics (C.C.S.), University of Colorado, School of Medicine, Aurora, Colorado; and Department of Laboratory Medicine (L.Z.K.), University of California, San Francisco, San Francisco, California
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Thomas KA, Rassam RMG, Kar R, Dishong DM, Rahn KC, Fonseca R, Canas M, Aldana J, Afzal H, Bochicchio K, Neal MD, Bochicchio GV, Spinella PC, Shea SM. Trauma patients have reduced ex vivo flow-dependent platelet hemostatic capacity in a microfluidic model of vessel injury. PLoS One 2024; 19:e0304231. [PMID: 38985805 PMCID: PMC11236159 DOI: 10.1371/journal.pone.0304231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 05/09/2024] [Indexed: 07/12/2024] Open
Abstract
Trauma is the leading cause of death in individuals up to 45 years of age. Alterations in platelet function are a critical component of trauma-induced coagulopathy (TIC), yet these changes and the potential resulting dysfunction is incompletely understood. The lack of clinical assays available to explore platelet function in this patient population has hindered detailed understanding of the role of platelets in TIC. The objective of this study was to assess trauma patient ex vivo flow-dependent platelet hemostatic capacity in a microfluidic model. We hypothesized that trauma patients would have flow-regime dependent alterations in platelet function. Blood was collected from trauma patients with level I activations (N = 34) within 60 min of hospital arrival, as well as healthy volunteer controls (N = 10). Samples were perfused through a microfluidic model of injury at venous and arterial shear rates, and a subset of experiments were performed after incubation with fluorescent anti-CD41 to quantify platelets. Complete blood counts were performed as well as plasma-based assays to quantify coagulation times, fibrinogen, and von Willebrand factor (VWF). Exploratory correlation analyses were employed to identify relationships with microfluidic hemostatic parameters. Trauma patients had increased microfluidic bleeding times compared to healthy controls. While trauma patient samples were able to deposit a substantial amount of clot in the model injury site, the platelet contribution to microfluidic hemostasis was attenuated. Trauma patients had largely normal hematology and plasma-based coagulation times, yet had elevated D-Dimer and VWF. Venous microfluidic bleeding time negatively correlated with VWF, D-Dimer, and mean platelet volume (MPV), while arterial microfluidic bleeding time positively correlated with oxygenation. Arterial clot growth rate negatively correlated with red cell count, and positively with mean corpuscular volume (MCV). We observed changes in clot composition in trauma patient samples reflected by significantly diminished platelet contribution, which resulted in reduced hemostatic function in a microfluidic model of vessel injury. We observed a reduction in platelet clot contribution under both venous and arterial flow ex vivo in trauma patient samples. While our population was heterogenous and had relatively mild injury severity, microfluidic hemostatic parameters correlated with different patient-specific data depending on the flow setting, indicating potentially differential mechanistic pathways contributing to platelet hemostatic capacity in the context of TIC. These data were generated with the goal of identifying key features of platelet dysfunction in bleeding trauma patients under conditions of flow and to determine if these features correlate with clinically available metrics, thus providing preliminary surrogate markers of physiological platelet dysfunction to be further studied across larger cohorts. Future studies will continue to explore those relationships and further define mechanisms of TIC and their relationship with patient outcomes.
Collapse
Affiliation(s)
| | - Rassam M. G. Rassam
- Trauma and Transfusion Medicine Research Center (TTMRC), Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ronit Kar
- Trauma and Transfusion Medicine Research Center (TTMRC), Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Devin M. Dishong
- Trauma and Transfusion Medicine Research Center (TTMRC), Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Katelin C. Rahn
- Trauma and Transfusion Medicine Research Center (TTMRC), Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ricardo Fonseca
- Department of Surgery, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Melissa Canas
- Department of Surgery, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Jose Aldana
- Department of Surgery, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Hussain Afzal
- Department of Surgery, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Kelly Bochicchio
- Department of Surgery, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Matthew D. Neal
- Trauma and Transfusion Medicine Research Center (TTMRC), Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Grant V. Bochicchio
- Department of Surgery, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Philip C. Spinella
- Trauma and Transfusion Medicine Research Center (TTMRC), Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Susan M. Shea
- Trauma and Transfusion Medicine Research Center (TTMRC), Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
3
|
Xu Z, Lee MC, Sheehan K, Fujii K, Rabl K, Rader G, Varney S, Sharma M, Eilers H, Kober K, Miaskowski C, Levine JD, Schumacher MA. Chemotherapy for pain: reversing inflammatory and neuropathic pain with the anticancer agent mithramycin A. Pain 2024; 165:54-74. [PMID: 37366593 PMCID: PMC10723648 DOI: 10.1097/j.pain.0000000000002972] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/08/2023] [Accepted: 04/25/2023] [Indexed: 06/28/2023]
Abstract
ABSTRACT The persistence of inflammatory and neuropathic pain is poorly understood. We investigated a novel therapeutic paradigm by targeting gene networks that sustain or reverse persistent pain states. Our prior observations found that Sp1-like transcription factors drive the expression of TRPV1, a pain receptor, that is blocked in vitro by mithramycin A (MTM), an inhibitor of Sp1-like factors. Here, we investigate the ability of MTM to reverse in vivo models of inflammatory and chemotherapy-induced peripheral neuropathy (CIPN) pain and explore MTM's underlying mechanisms. Mithramycin reversed inflammatory heat hyperalgesia induced by complete Freund adjuvant and cisplatin-induced heat and mechanical hypersensitivity. In addition, MTM reversed both short-term and long-term (1 month) oxaliplatin-induced mechanical and cold hypersensitivity, without the rescue of intraepidermal nerve fiber loss. Mithramycin reversed oxaliplatin-induced cold hypersensitivity and oxaliplatin-induced TRPM8 overexpression in dorsal root ganglion (DRG). Evidence across multiple transcriptomic profiling approaches suggest that MTM reverses inflammatory and neuropathic pain through broad transcriptional and alternative splicing regulatory actions. Mithramycin-dependent changes in gene expression following oxaliplatin treatment were largely opposite to and rarely overlapped with changes in gene expression induced by oxaliplatin alone. Notably, RNAseq analysis revealed MTM rescue of oxaliplatin-induced dysregulation of mitochondrial electron transport chain genes that correlated with in vivo reversal of excess reactive oxygen species in DRG neurons. This finding suggests that the mechanism(s) driving persistent pain states such as CIPN are not fixed but are sustained by ongoing modifiable transcription-dependent processes.
Collapse
Affiliation(s)
- Zheyun Xu
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, San Francisco, CA, United States
| | - Man-Cheung Lee
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, San Francisco, CA, United States
| | - Kayla Sheehan
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, San Francisco, CA, United States
| | - Keisuke Fujii
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Anesthesiology, Wakayama Medical University, Wakayama, Japan
| | - Katalin Rabl
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, San Francisco, CA, United States
| | - Gabriella Rader
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, San Francisco, CA, United States
| | - Scarlett Varney
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, San Francisco, CA, United States
| | - Manohar Sharma
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, San Francisco, CA, United States
| | - Helge Eilers
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, San Francisco, CA, United States
| | - Kord Kober
- Department of Physiological Nursing, School of Nursing, University of California, San Francisco, CA, United States
| | - Christine Miaskowski
- Department of Physiological Nursing, School of Nursing, University of California, San Francisco, CA, United States
| | - Jon D. Levine
- Division of Neuroscience, Departments of Medicine and Oral and Maxillofacial Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Mark A. Schumacher
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
4
|
Soslau G. Platelet protein synthesis, regulation, and post-translational modifications: mechanics and function. Crit Rev Biochem Mol Biol 2023; 58:99-117. [PMID: 37347996 DOI: 10.1080/10409238.2023.2224532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/08/2023] [Indexed: 06/24/2023]
Abstract
Dogma had been firmly entrenched in the minds of the scientific community that the anucleate mammalian platelet was incapable of protein biosynthesis since their identification in the late 1880s. These beliefs were not challenged until the 1960s when several reports demonstrated that platelets possessed the capacity to biosynthesize proteins. Even then, many still dismissed the synthesis as trivial and unimportant for at least another two decades. Research in the field expanded after the 1980s and numerous reports have since been published that now clearly demonstrate the potential significance of platelet protein synthesis under normal, pathological, and activating conditions. It is now clear that the platelet proteome is not a static entity but can be altered slowly or rapidly in response to external signals to support physiological requirements to maintain hemostasis and other biological processes. All the necessary biological components to support protein synthesis have been identified in platelets along with post-transcriptional processing of mRNAs, regulators of translation, and post-translational modifications such as glycosylation. The last comprehensive review of the subject appeared in 2009 and much work has been conducted since that time. The current review of the field will briefly incorporate the information covered in earlier reviews and then bring the reader up to date with more recent findings.
Collapse
Affiliation(s)
- Gerald Soslau
- Department of Biochemistry and Molecular Biology Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
5
|
Platelet Transfusion for Trauma Resuscitation. CURRENT TRAUMA REPORTS 2022. [DOI: 10.1007/s40719-022-00236-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Abstract
Purpose of Review
To review the role of platelet transfusion in resuscitation for trauma, including normal platelet function and alterations in behavior following trauma, blood product transfusion ratios and the impact of platelet transfusion on platelet function, platelet function assays, risks of platelet transfusion and considerations for platelet storage, and potential adjunct therapies and synthetic platelets.
Recent Findings
Platelets are a critical component of clot formation and breakdown following injury, and in addition to these hemostatic properties, have a complex role in vascular homeostasis, inflammation, and immune function. Evidence supports that platelets are activated following trauma with several upregulated functions, but under conditions of severe injury and shock are found to be impaired in their hemostatic behaviors. Platelets should be transfused in balanced ratios with red blood cells and plasma during initial trauma resuscitation as this portends improved outcomes including survival. Multiple coagulation assays can be used for goal-directed resuscitation for traumatic hemorrhage; however, these assays each have drawbacks in terms of their ability to measure platelet function. While resuscitation with balanced transfusion ratios is supported by the literature, platelet transfusion carries its own risks such as bacterial infection and lung injury. Platelet supply is also limited, with resource-intensive storage requirements, making exploration of longer-term storage options and novel platelet-based therapeutics attractive. Future focus on a deeper understanding of the biology of platelets following trauma, and on optimization of novel platelet-based therapeutics to maintain hemostatic effects while improving availability should be pursued.
Summary
While platelet function is altered following trauma, platelets should be transfused in balanced ratios during initial resuscitation. Severe injury and shock can impair platelet function, which can persist for several days following the initial trauma. Assays to guide resuscitation following the initial period as well as storage techniques to extend platelet shelf life are important areas of investigation.
Collapse
|