1
|
Peng HT, Singh K, Rhind SG, da Luz L, Beckett A. Dried Plasma for Major Trauma: Past, Present, and Future. Life (Basel) 2024; 14:619. [PMID: 38792640 PMCID: PMC11122082 DOI: 10.3390/life14050619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Uncontrollable bleeding is recognized as the leading cause of preventable death among trauma patients. Early transfusion of blood products, especially plasma replacing crystalloid and colloid solutions, has been shown to increase survival of severely injured patients. However, the requirements for cold storage and thawing processes prior to transfusion present significant logistical challenges in prehospital and remote areas, resulting in a considerable delay in receiving thawed or liquid plasma, even in hospitals. In contrast, freeze- or spray-dried plasma, which can be massively produced, stockpiled, and stored at room temperature, is easily carried and can be reconstituted for transfusion in minutes, provides a promising alternative. Drawn from history, this paper provides a review of different forms of dried plasma with a focus on in vitro characterization of hemostatic properties, to assess the effects of the drying process, storage conditions in dry form and after reconstitution, their distinct safety and/or efficacy profiles currently in different phases of development, and to discuss the current expectations of these products in the context of recent preclinical and clinical trials. Future research directions are presented as well.
Collapse
Affiliation(s)
- Henry T. Peng
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON M3K 2C9, Canada; (K.S.); (S.G.R.)
| | - Kanwal Singh
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON M3K 2C9, Canada; (K.S.); (S.G.R.)
| | - Shawn G. Rhind
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON M3K 2C9, Canada; (K.S.); (S.G.R.)
| | - Luis da Luz
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada;
| | - Andrew Beckett
- St. Michael’s Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada;
- Royal Canadian Medical Services, Ottawa, ON K1A 0K2, Canada
| |
Collapse
|
2
|
Edwards TH, Pusateri AE, Mays EL, Bynum JA, Cap AP. Lessons Learned From the Battlefield and Applicability to Veterinary Medicine - Part 2: Transfusion Advances. Front Vet Sci 2021; 8:571370. [PMID: 34026881 PMCID: PMC8138582 DOI: 10.3389/fvets.2021.571370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Since the inception of recent conflicts in Afghanistan and Iraq, transfusion practices in human military medicine have advanced considerably. Today, US military physicians recognize the need to replace the functionality of lost blood in traumatic hemorrhagic shock and whole blood is now the trauma resuscitation product of choice on the battlefield. Building on wartime experiences, military medicine is now one of the country's strongest advocates for the principle of hemostatic resuscitation using whole blood or balanced blood components as the primary means of resuscitation as early as possibly following severe trauma. Based on strong evidence to support this practice in human combat casualties and in civilian trauma care, military veterinarians strive to practice similar hemostatic resuscitation for injured Military Working Dogs. To this end, canine whole blood has become increasingly available in forward environments, and non-traditional storage options for canine blood and blood components are being explored for use in canine trauma. Blood products with improved shelf-life and ease of use are not only useful for military applications, but may also enable civilian general and specialty practices to more easily incorporate hemostatic resuscitation approaches to canine trauma care.
Collapse
Affiliation(s)
- Thomas H Edwards
- U.S. Army Institute of Surgical Research, Joint Base San Antonio, San Antonio, TX, United States
| | - Anthony E Pusateri
- U.S. Army Institute of Surgical Research, Joint Base San Antonio, San Antonio, TX, United States
| | - Erin Long Mays
- Veterinary Specialty Services, Manchester, MO, United States
| | - James A Bynum
- U.S. Army Institute of Surgical Research, Joint Base San Antonio, San Antonio, TX, United States
| | - Andrew P Cap
- U.S. Army Institute of Surgical Research, Joint Base San Antonio, San Antonio, TX, United States
| |
Collapse
|
3
|
Wakam GK, Biesterveld BE, Pai MP, Kemp MT, O'Connell RL, Williams AM, Srinivasan A, Chtraklin K, Siddiqui AZ, Bhatti UF, Vercruysse CA, Alam HB. Administration of valproic acid in clinically approved dose improves neurologic recovery and decreases brain lesion size in swine subjected to hemorrhagic shock and traumatic brain injury. J Trauma Acute Care Surg 2021; 90:346-352. [PMID: 33230090 DOI: 10.1097/ta.0000000000003036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Traumatic brain injury (TBI) and hemorrhage remain the leading causes of death after trauma. We have previously shown that a dose of valproic acid (VPA) at (150 mg/kg) can decrease brain lesion size and hasten neurologic recovery. The current Food and Drug Administration-approved dose of VPA is 60 mg/kg. We evaluate neurologic outcomes and brain lesion size of a single dose of VPA at a level currently within Food and Drug Administration-approved dose in swine subjected to TBI and hemorrhagic shock. METHODS Swine (n = 5/group) were subjected to TBI and 40% blood volume hemorrhage. Animals remained in shock for 2 hours before randomization to normal saline (NS) resuscitation alone (control), NS-VPA 150 mg/kg (VPA 150), or NS-VPA 50 mg/kg (VPA 50). Neurologic severity scores (range, 0-32) were assessed daily for 14 days, and brain lesion size was measured via magnetic resonance imaging on postinjury day (PID) 3. RESULTS Shock severity and laboratory values were similar in all groups. Valproic acid-treated animals demonstrated significantly less neurologic impairment on PID 1 and returned to baseline faster (PID 1 mean neurologic severity score, control = 22 ± 3 vs. VPA 150 mg/kg = 8 ± 7 or VPA 50 mg/kg = 6 ± 6; p = 0.02 and 0.003). Valproic acid-treated animals had significantly smaller brain lesion sizes (mean volume in mm3, control = 1,268.0 ± 241.2 vs. VPA 150 mg/kg = 620.4 ± 328.0 or VPA 50 mg/kg = 438.6 ± 234.8; p = 0.007 and 0.001). CONCLUSION In swine subjected to TBI and hemorrhagic shock, VPA treatment, in a dose that is approved for clinical use, decreases brain lesion size and reduces neurologic impairment compared with resuscitation alone.
Collapse
Affiliation(s)
- Glenn K Wakam
- From the Department of Surgery (G.K.W., B.E.B., M.T.K., R.L.O., A.M.W., K.C., A.Z.S., U.F.B., C.A.V., H.B.A.), Department of Clinical Pharmacy (M.P.P.), and Section of Neuroradiology, Department of Radiology (A.S.), Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Dose optimization of valproic acid in a lethal model of traumatic brain injury, hemorrhage, and multiple trauma in swine. J Trauma Acute Care Surg 2020; 87:1133-1139. [PMID: 31389922 DOI: 10.1097/ta.0000000000002460] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Trauma is a leading cause of death, and traumatic brain injury is one of the hallmark injuries of current military conflicts. Valproic acid (VPA) administration in high doses (300-400 mg/kg) improves survival in lethal trauma models, but effectiveness of lower doses on survival is unknown. This information is essential for properly designing the upcoming clinical trials. We, therefore, performed the current study to determine the lowest dose at which VPA administration improves survival in a model of lethal injuries. METHODS Swine were subjected to traumatic brain injury (10-mm cortical impact), 40% blood volume hemorrhage, and multiple trauma (femur fracture, rectus crush, and Grade V liver laceration). After 1 hour of shock, animals were randomized (n = 6/group) to four groups: normal saline (NS) resuscitation; or NS with VPA doses of 150 mg/kg (VPA 150) or 100 mg/kg (VPA 100) administered over 3 hours or 100 mg/kg over 2 hours (VPA 100 over 2 hours). Three hours after shock, packed red blood cells were given, and animals were monitored for another 4 hours. Survival was assessed using Kaplan-Meier and log-rank test. RESULTS Without resuscitation, all of the injured animals died within 5 hours. Similar survival rates were observed in the NS (17%) and VPA 100 (0%) resuscitation groups. Survival rates in the 100-mg/kg VPA groups were significantly (p < 0.05) better when it was given over 2 hours (67%) compared to 3 hours (0%). 83% of the animals in the VPA 150 group survived, which was significantly higher than the NS and VPA 100 over 3 hours groups (p < 0.05). CONCLUSION A single dose of VPA (150 mg/kg) significantly improves survival in an otherwise lethal model of multiple injuries. This is a much lower dose than previously shown to have a survival benefit and matches the dose that is tolerated by healthy human subjects with minimal adverse effects. LEVEL OF EVIDENCE Therapeutic, level V.
Collapse
|
5
|
Isoform 6-selective histone deacetylase inhibition reduces lesion size and brain swelling following traumatic brain injury and hemorrhagic shock. J Trauma Acute Care Surg 2020; 86:232-239. [PMID: 30399139 DOI: 10.1097/ta.0000000000002119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Nonselective histone deacetylase (pan-HDAC) inhibitors, such as valproic acid (VPA), have demonstrated neuroprotective properties in trauma models. However, isoform-specific HDAC inhibitors may provide opportunity for more effective drug administration with fewer adverse effects. We investigated HDAC6 inhibition with ACY-1083 in an in vitro and an in vivo large animal model of injury. METHODS Mouse hippocampal cells were subjected to oxygen-glucose deprivation (0% O2, glucose-free and serum-free medium, 18 hours) and reoxygenation (21% O2, normal culture media, 4 hours) with/without VPA (4 mmol/L) or ACY-1083 (30 nmol/L, 300 nmol/L). Cell viability was measured by methylthiazolyl tetrazolium assay. Expression of hypoxia-inducible factor-1α, heat shock protein 70, and effectors in the phosphoinositide-3 kinase/mammalian target of rapamycin pathway were measured by Western blot analysis. Additionally, swine were subjected to combined traumatic brain injury and hemorrhagic shock and randomized to three treatment groups (n = 5/group): (i) normal saline (NS; 3× hemorrhage volume); (ii) NS + VPA (NS; 3× hemorrhage volume, VPA; 150 mg/kg), and (iii) NS + ACY-1083 (NS; 3× hemorrhage volume, ACY-1083; 30 mg/kg). After 6 hours, brain tissue was harvested to assess lesion size and brain swelling. RESULTS Significant improvement in cell viability was seen with both HDAC inhibitors in the in vitro study. ACY-1083 suppressed hypoxia-inducible factor-1α expression and up-regulated phosphorylated mammalian target of rapamycin and heat shock protein 70 in a dose-dependent manner. Lesion size and brain swelling in animals treated with pharmacologic agents (VPA and ACY-1083) were both smaller than in the NS group. No differences were observed between the VPA and ACY-1083 treatment groups. CONCLUSIONS In conclusion, selective inhibition of HDAC6 is as neuroprotective as nonselective HDAC inhibition in large animal models of traumatic brain injury and hemorrhagic shock.
Collapse
|
6
|
Valproic acid improves survival and decreases resuscitation requirements in a swine model of prolonged damage control resuscitation. J Trauma Acute Care Surg 2020; 87:393-401. [PMID: 31206419 DOI: 10.1097/ta.0000000000002281] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Although damage control resuscitation (DCR) is routinely performed for short durations, prolonged DCR may be required in military conflicts as a component of prolonged field care. Valproic acid (VPA) has been shown to have beneficial properties in lethal hemorrhage/trauma models. We sought to investigate whether the addition of a single dose of VPA to a 72-hour prolonged DCR protocol would improve clinical outcomes. METHODS Fifteen Yorkshire swine (40-45 kg) were subjected to lethal (50% estimated total blood volume) hemorrhagic shock (HS) and randomized to three groups: (1) HS, (2) HS-DCR, (3) HS-DCR-VPA (150 mg/kg over 3 hours) (n = 5/cohort). In groups assigned to receive DCR, Tactical Combat Casualty Care guidelines were applied (1 hour into the shock period), targeting a systolic blood pressure of 80 mm Hg. At 72 hours, surviving animals were given transfusion of packed red blood cells, simulating evacuation to higher echelons of care. Survival rates, physiologic parameters, resuscitative fluid requirements, and laboratory profiles were used to compare the clinical outcomes. RESULTS This model was 100% lethal in the untreated animals. DCR improved survival to 20%, although this was not statistically significant. The addition of VPA to DCR significantly improved survival to 80% (p < 0.01). The VPA-treated animals also had significantly (p < 0.05) higher systolic blood pressures, lower fluid resuscitation requirements, higher hemoglobin levels, and lower creatinine and potassium levels. CONCLUSION VPA administration improves survival, decreases resuscitation requirements, and improves hemodynamic and laboratory parameters when added to prolonged DCR in a lethal hemorrhage model.
Collapse
|
7
|
Abstract
Dried plasma provides an alternative for early plasma transfusion in the resuscitation of hemorrhagic shock in environments where fresh frozen plasma is not immediately available. It is produced by freeze-drying or spray-drying liquid or thawed plasma. It is shelf-stable for prolonged periods, can be stored at room temperature, and is easy to transport, reconstitute, and administer. It was widely used in WWII but fell out of favor due to the risk of infectious disease transmission. The German and French experiences with lyophilized plasma are the most extensive and show a good track record of efficacy and safety. Recent studies show many beneficial effects of dried plasma in the treatment of shock in large animal models. Currently, no FDA-licensed product is available in the USA, but several are under development.
Collapse
Affiliation(s)
- Philip C. Spinella
- School of Medicine, Washington University in St. Louis, St. Louis, MO USA
| | | | | |
Collapse
|
8
|
Yusoff SI, Roman M, Lai FY, Eagle-Hemming B, Murphy GJ, Kumar T, Wozniak M. Systematic review and meta-analysis of experimental studies evaluating the organ protective effects of histone deacetylase inhibitors. Transl Res 2019; 205:1-16. [PMID: 30528323 PMCID: PMC6386580 DOI: 10.1016/j.trsl.2018.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 01/07/2023]
Abstract
The clinical efficacy of organ protection interventions are limited by the redundancy of cellular activation mechanisms. Interventions that target epigenetic mechanisms overcome this by eliciting genome wide changes in transcription and signaling. We aimed to review preclinical studies evaluating the organ protection effects of histone deacetylase inhibitors (HDACi) with a view to informing the design of early phase clinical trials. A systematic literature search was performed. Methodological quality was assessed against prespecified criteria. The primary outcome was mortality, with secondary outcomes assessing mechanisms. Prespecified analyses evaluated the effects of likely moderators on heterogeneity. The analysis included 101 experimental studies in rodents (n = 92) and swine (n = 9), exposed to diverse injuries, including: ischemia (n = 72), infection (n = 7), and trauma (n = 22). There were a total of 448 comparisons due to the evaluation of multiple independent interventions within single studies. Sodium valproate (VPA) was the most commonly evaluated HDACi (50 studies, 203 comparisons). All of the studies were judged to have significant methodological limitations. HDACi reduced mortality in experimental models of organ injury (risk ratio = 0.52, 95% confidence interval 0.40-0.68, p < 0.001) without heterogeneity. HDACi administration resulted in myocardial, brain and kidney protection across diverse species and injuries that was attributable to increases in prosurvival cell signaling, and reductions in inflammation and programmed cell death. Heterogeneity in the analyses of secondary outcomes was explained by differences in species, type of injury, HDACi class (Class I better), drug (trichostatin better), and time of administration (at least 6 hours prior to injury better). These findings highlight a potential novel application for HDACi in clinical settings characterized by acute organ injury.
Collapse
Affiliation(s)
- Syabira I Yusoff
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Unit in Cardiovascular Medicine, University of Leicester, Clinical Sciences Wing, Glenfield Hospital, Leicester, UK.
| | - Marius Roman
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Unit in Cardiovascular Medicine, University of Leicester, Clinical Sciences Wing, Glenfield Hospital, Leicester, UK
| | - Florence Y Lai
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Unit in Cardiovascular Medicine, University of Leicester, Clinical Sciences Wing, Glenfield Hospital, Leicester, UK
| | - Bryony Eagle-Hemming
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Unit in Cardiovascular Medicine, University of Leicester, Clinical Sciences Wing, Glenfield Hospital, Leicester, UK
| | - Gavin J Murphy
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Unit in Cardiovascular Medicine, University of Leicester, Clinical Sciences Wing, Glenfield Hospital, Leicester, UK
| | - Tracy Kumar
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Unit in Cardiovascular Medicine, University of Leicester, Clinical Sciences Wing, Glenfield Hospital, Leicester, UK
| | - Marcin Wozniak
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Unit in Cardiovascular Medicine, University of Leicester, Clinical Sciences Wing, Glenfield Hospital, Leicester, UK
| |
Collapse
|
9
|
Synthetic colloid resuscitation in severely injured patients: analysis of a nationwide trauma registry (TraumaRegister DGU). Sci Rep 2018; 8:11567. [PMID: 30068966 PMCID: PMC6070577 DOI: 10.1038/s41598-018-30053-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/24/2018] [Indexed: 02/01/2023] Open
Abstract
The purpose of this study was to investigate the efficacy and safety of synthetic colloid resuscitation among severely injured patients. Fluid resuscitation of trauma patients of a nationwide trauma registry was analysed between 2002 and 2015. Effects of synthetic colloid resuscitation in the pre-hospital setting and emergency department on renal failure, renal replacement therapy and multiple organ failure were analysed among patients with ≥2 days intensive care unit stay, and in-hospital mortality was analysed among all patients. 48,484 patients with mean age of 49 years and mean injury severity score of 23 points were included; 72.3% were male and 95.5% had blunt trauma. Risk-adjusted analyses revealed that patients receiving >1,000 ml synthetic colloids experienced an increase of renal failure and renal replacement therapy rates (OR 1.42 and 1.32, respectively, both p ≤ 0.006). Any synthetic colloid use was associated with an increased risk of multiple organ failure (p < 0.001), but there was no effect on hospital mortality (p = 0.594). Between 2002 and 2015 usage of synthetic colloids dropped, likewise did total fluid intake and usage of blood products. The data from this analysis suggests that synthetic colloid resuscitation provides no beneficial effects and might be harmful in patients with severe trauma.
Collapse
|
10
|
Dekker SE, Nikolian VC, Sillesen M, Bambakidis T, Schober P, Alam HB. Different resuscitation strategies and novel pharmacologic treatment with valproic acid in traumatic brain injury. J Neurosci Res 2018; 96:711-719. [PMID: 28742231 PMCID: PMC5785554 DOI: 10.1002/jnr.24125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 07/06/2017] [Accepted: 07/06/2017] [Indexed: 12/28/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of death in young adults, and effective treatment strategies have the potential to save many lives. TBI results in coagulopathy, endothelial dysfunction, inflammation, cell death, and impaired epigenetic homeostasis, ultimately leading to morbidity and/or mortality. Commonly used resuscitation fluids such as crystalloids or colloids have several disadvantages and might even be harmful when administered in large quantities. There is a need for next-generation treatment strategies (especially in the prehospital setting) that minimize cellular damage, improve survival, and enhance neurological recovery. Pharmacologic treatment with histone deacetylase inhibitors, such as valproic acid, has shown promising results in animal studies of TBI and may therefore be an excellent example of next-generation therapy. This review briefly describes traditional resuscitation strategies for TBI combined with hemorrhagic shock and describes preclinical studies on valproic acid as a new pharmacologic agent in the treatment of TBI. It finally discusses limitations and future directions on the use of histone deacetylase inhibitors for the treatment of TBI.
Collapse
Affiliation(s)
- Simone E. Dekker
- Department of Surgery, University of Michigan Hospital, Ann Arbor, Michigan, USA
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Anesthesiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, the Netherlands
| | - Vahagn C. Nikolian
- Department of Surgery, University of Michigan Hospital, Ann Arbor, Michigan, USA
| | - Martin Sillesen
- Department of Surgical Gastroenterology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Institute for Inflammation Research, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Ted Bambakidis
- Department of Surgery, University of Michigan Hospital, Ann Arbor, Michigan, USA
| | - Patrick Schober
- Department of Anesthesiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, the Netherlands
| | - Hasan B. Alam
- Department of Surgery, University of Michigan Hospital, Ann Arbor, Michigan, USA
| |
Collapse
|
11
|
Nikolian VC, Pan B, Mesar T, Dennahy IS, Georgoff PE, Duan X, Liu B, Wu X, Duggan MJ, Alam HB, Li Y. Lung Protective Effects of Low-Volume Resuscitation and Pharmacologic Treatment of Swine Subjected to Polytrauma and Hemorrhagic Shock. Inflammation 2018; 40:1264-1274. [PMID: 28493077 DOI: 10.1007/s10753-017-0569-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Hemorrhage is a common cause of death in the battlefield. Valproic acid (VPA) has been associated with improved outcomes in multiple models of trauma, when combined with isotonic fluid resuscitation. However, isotonic fluid administered in this setting is logistically impractical and may be associated with complications. In this study, we sought to evaluate the feasibility and immunologic impact of combining VPA treatment with low-volume hypertonic saline (HTS). In vivo: female Yorkshire swine were subjected to hemorrhage (40% total blood volume) and polytrauma (rib fracture and delayed liver injury). Animals were kept in shock for 30 minutes and resuscitated with (1) normal saline (NS, 3× hemorrhaged volume), (2) HTS (7.5% saline, 4 mL/kg), or (3) HTS + VPA (4 mg/kg; 150 mg/kg; n = 3/cohort). After 18 hours of observation, animals were euthanized and the lungs evaluated for acute injury and expression of myeloperoxidase (MPO) and caveolin-1 (Cav-1). In vitro: human umbilical vein endothelial cells (HUVECs) were exposed to anoxic conditions (5% CO2, 95% N2) for 16 hours in (1) normosmotic, (2) hyperosmotic (400 mOsm), or (3) hyperosmotic + VPA (4 mM) media. Immunohistochemistry and Western blots were performed to determine Cav-1 expression. Lungs from VPA-treated animals demonstrated decreased acute injury, MPO expression, and endothelial expression of Cav-1 when compared to lungs from animals resuscitated with NS or HTS alone. Similarly, HUVECs cultured in hyperosmotic media containing VPA demonstrated decreased expression of Cav-1. This study demonstrates that combined treatment with VPA and HTS is a viable strategy in hemorrhagic shock and polytrauma. Attenuation of lung injury following VPA treatment may be related to modulation of the inflammatory response.
Collapse
Affiliation(s)
- Vahagn C Nikolian
- Department of Surgery, University of Michigan Health System, NCRC Building 26 Room 363N, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Baihong Pan
- Department of Surgery, University of Michigan Health System, NCRC Building 26 Room 363N, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.,Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tomaz Mesar
- Division of Trauma, Emergency Surgery and Surgical Critical Care, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Isabel S Dennahy
- Department of Surgery, University of Michigan Health System, NCRC Building 26 Room 363N, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Patrick E Georgoff
- Department of Surgery, University of Michigan Health System, NCRC Building 26 Room 363N, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Xiuzhen Duan
- Department of Pathology, Loyola University Medical Center, Maywood, IL, USA
| | - Baoling Liu
- Department of Surgery, University of Michigan Health System, NCRC Building 26 Room 363N, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Xizi Wu
- Emergency Department, The First Hospital of China Medical University, Shenyang, China
| | - Michael J Duggan
- Division of Trauma, Emergency Surgery and Surgical Critical Care, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Hasan B Alam
- Department of Surgery, University of Michigan Health System, NCRC Building 26 Room 363N, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Yongqing Li
- Department of Surgery, University of Michigan Health System, NCRC Building 26 Room 363N, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
12
|
Yao F, Lu YQ, Jiang JK, Gu LH, Mou HZ. Immune recovery after fluid resuscitation in rats with severe hemorrhagic shock. J Zhejiang Univ Sci B 2018; 18:402-409. [PMID: 28471112 DOI: 10.1631/jzus.b1600370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To investigate the effects of resuscitation with normal saline (NS), hypertonic saline (HTS), and hydroxyethyl starch (HES) on regulatory T cells (Tregs), helper T 1 (Th1)/Th2 and cytotoxic T 1 (Tc1)/Tc2 profiles in the treatment of hemorrhagic shock. METHODS Rats subjected to severe hemorrhagic shock were resuscitated for 30 min with NS (n=8), HTS (n=8), or HES (n=8); sham (n=8) and naive control (n=8) groups were used for comparison. Following fluid resuscitation, the whole shed blood was reinfused for 30 min, and the rats were observed with continuous hemodynamic monitoring for 120 min. CD4+CD25+Foxp3+ Treg proportions, Th1/Th2 and Tc1/Tc2 profiles in spleen were analyzed by three-color flow cytometry. RESULTS The proportion of CD4+CD25+Foxp3+ Tregs and ratios of Th1/Th2 and Tc1/Tc2 did not differ among control, sham, and HTS groups, but were significantly lower in NS and HES groups (both P<0.05 vs. sham); NS and HES levels were similar. The level of Tc1 was significantly increased in HTS (P<0.05 vs. sham), and levels of Tc2 were increased in NS, HES, and HTS groups compared to sham (all P<0.05), but did not differ from each other. CONCLUSIONS HTS resuscitation has a greater impact on immune system recovery than NS or HES by preserving the proportion of Tregs and maintaining the balance between Th1/Th2 and Tc1/Tc2 cells in the spleen. Thus, HTS resuscitation provides potential immunomodulatory activity in the early stage after hemorrhagic shock.
Collapse
Affiliation(s)
- Feng Yao
- Department of Emergency Medicine, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yuan-Qiang Lu
- Department of Emergency Medicine, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jiu-Kun Jiang
- Department of Emergency Medicine, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Lin-Hui Gu
- Cancer Institute, Zhejiang Tumor Hospital, Hangzhou 310022, China
| | - Han-Zhou Mou
- Cancer Institute, Zhejiang Tumor Hospital, Hangzhou 310022, China
| |
Collapse
|
13
|
Valproic acid decreases brain lesion size and improves neurologic recovery in swine subjected to traumatic brain injury, hemorrhagic shock, and polytrauma. J Trauma Acute Care Surg 2017; 83:1066-1073. [PMID: 28697014 DOI: 10.1097/ta.0000000000001612] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND We have previously shown that treatment with valproic acid (VPA) decreases brain lesion size in swine models of traumatic brain injury (TBI) and controlled hemorrhage. To translate this treatment into clinical practice, validation of drug efficacy and evaluation of pharmacologic properties in clinically realistic models of injury are necessary. In this study, we evaluate neurologic outcomes and perform pharmacokinetic analysis of a single dose of VPA in swine subjected to TBI, hemorrhagic shock, and visceral hemorrhage. METHODS Yorkshire swine (n = 5/cohort) were subjected to TBI, hemorrhagic shock, and polytrauma (liver and spleen injury, rib fracture, and rectus abdominis crush). Animals remained in hypovolemic shock for 2 hours before resuscitation with isotonic sodium chloride solution (ISCS; volume = 3× hemorrhage) or ISCS + VPA (150 mg/kg). Neurologic severity scores were assessed daily for 30 days, and brain lesion size was measured via magnetic resonance imaging on postinjury days (PID) 3 and 10. Serum samples were collected for pharmacokinetic analysis. RESULTS Shock severity and response to resuscitation were similar in both groups. Valproic acid-treated animals demonstrated significantly less neurologic impairment between PID 1 to 5 and smaller brain lesions on PID 3 (mean lesion size ± SEM, mm: ISCS = 4,956 ± 1,511 versus ISCS + VPA = 828 ± 279; p = 0.047). No significant difference in lesion size was identified between groups at PID 10 and all animals recovered to baseline neurologic function during the 30-day observation period. Animals treated with VPA had faster neurocognitive recovery (days to initiation of testing, mean ± SD: ISCS = 6.2 ± 1.6 vs ISCS + VPA = 3.6 ± 1.5; p = 0.002; days to task mastery: ISCS = 7.0 ± 1.0 vs ISCS + VPA = 4.8 ± 0.5; p = 0.03). The mean ± SD maximum VPA concentrations, area under the curve, and half-life were 145 ± 38.2 mg/L, 616 ± 150 hour·mg/L, and 1.70 ± 0.12 hours. CONCLUSIONS In swine subjected to TBI, hemorrhagic shock, and polytrauma, VPA treatment is safe, decreases brain lesion size, and reduces neurologic injury compared to resuscitation with ISCS alone. These benefits are achieved at clinically translatable serum concentrations of VPA. LEVEL OF EVIDENCE Therapeutic (preclinical study).
Collapse
|
14
|
Wagner N, Franz N, Dieteren S, Perl M, Mörs K, Marzi I, Relja B. Acute Alcohol Binge Deteriorates Metabolic and Respiratory Compensation Capability After Blunt Chest Trauma Followed by Hemorrhagic Shock-A New Research Model. Alcohol Clin Exp Res 2017; 41:1559-1567. [PMID: 28715125 DOI: 10.1111/acer.13446] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/07/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND The clinical relevance of blunt (thoracic) chest trauma (TxT) and hemorrhagic shock is indisputable due to the high prevalence of this injury type, as well as its close association with mortality and/or preventable deaths. Furthermore, there is an ongoing discussion about the influence of alcohol in trauma patients. Thus, we established a model of TxT followed by hemorrhagic shock with resuscitation (H/R) in alcohol-intoxicated rats. METHODS Depending on group allocation, 12 (subacute) or 2 (acute) hours before experimentation, the animals received a single oral dose of alcohol (ethanol [EtOH]) or saline (NaCl) followed by TxT, hemorrhagic shock (35 ± 3 mm Hg), and resuscitation (TxT + H/R). Arterial blood gas analyses and continuous monitoring of blood pressure were performed during the experimentation period. Survival during the experimentation procedure was determined. RESULTS Subacute and acute EtOH group exhibited lower baseline mean arterial blood pressure values compared with the corresponding NaCl group, respectively. Both EtOH groups showed lower maximal bleed-out volume, which was necessary to induce hemorrhagic shock compared to NaCl groups, and the recovery during the resuscitation period was attenuated. During the experimentation in all groups, a trend to acidic pH was observed. Acute EtOH group showed lowest pH values compared to all other groups. Higher pCO2 values were observed in both EtOH groups. All groups developed negative base excess and decreasing HCO3- values until the end of hemorrhagic shock and showed increasing base excess and HCO3- values during resuscitation. Significantly higher mortality rate was found in the acute EtOH group. CONCLUSIONS This study indicates that alcohol limits the metabolic and respiratory compensation capability, thereby promoting mortality.
Collapse
Affiliation(s)
- Nils Wagner
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Niklas Franz
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Scott Dieteren
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Mario Perl
- BG-Trauma Center Murnau, Murnau, Germany
| | - Katharina Mörs
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Borna Relja
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| |
Collapse
|
15
|
Abstract
In a Perspective, Hasan Alam discusses emerging treatment approaches in trauma care.
Collapse
|
16
|
Alterations in the human proteome following administration of valproic acid. J Trauma Acute Care Surg 2016; 81:1020-1027. [DOI: 10.1097/ta.0000000000001249] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Addition of low-dose valproic acid to saline resuscitation provides neuroprotection and improves long-term outcomes in a large animal model of combined traumatic brain injury and hemorrhagic shock. J Trauma Acute Care Surg 2016; 79:911-9; discussion 919. [PMID: 26680134 DOI: 10.1097/ta.0000000000000789] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Combined traumatic brain injury (TBI) and hemorrhagic shock (HS) is highly lethal. In a nonsurvival model of TBI + HS, addition of high-dose valproic acid (VPA) (300 mg/kg) to hetastarch reduced brain lesion size and associated swelling 6 hours after injury; whether this would have translated into better neurologic outcomes remains unknown. It is also unclear whether lower doses of VPA would be neuroprotective. We hypothesized that addition of low-dose VPA to normal saline (NS) resuscitation would result in improved long-term neurologic recovery and decreased brain lesion size. METHODS TBI was created in anesthetized swine (40-43 kg) by controlled cortical impact, and volume-controlled hemorrhage (40% volume) was induced concurrently. After 2 hours of shock, animals were randomized (n = 5 per group) to NS (3× shed blood) or NS + VPA (150 mg/kg). Six hours after resuscitation, packed red blood cells were transfused, and animals were recovered. Peripheral blood mononuclear cells were analyzed for acetylated histone-H3 at lysine-9. A Neurological Severity Score (NSS) was assessed daily for 30 days. Brain magnetic resonance imaging was performed on Days 3 and 10. Cognitive performance was assessed by training animals to retrieve food from color-coded boxes. RESULTS There was a significant increase in histone acetylation in the NS + VPA-treated animals compared with NS treatment. The NS + VPA group demonstrated significantly decreased neurologic impairment and faster speed of recovery as well as smaller brain lesion size compared with the NS group. Although the final cognitive function scores were similar between the groups, the VPA-treated animals reached the goal significantly faster than the NS controls. CONCLUSION In this long-term survival model of TBI + HS, addition of low-dose VPA to saline resuscitation resulted in attenuated neurologic impairment, faster neurologic recovery, smaller brain lesion size, and a quicker normalization of cognitive functions.
Collapse
|
18
|
Halaweish I, Nikolian V, Georgoff P, Li Y, Alam HB. Creating a "Prosurvival Phenotype" Through Histone Deacetylase Inhibition: Past, Present, and Future. Shock 2016; 44 Suppl 1:6-16. [PMID: 25565645 DOI: 10.1097/shk.0000000000000319] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Traumatic injuries and their sequelae represent a major source of mortality in the United States and globally. Initial treatment for shock, traumatic brain injury, and polytrauma is limited to resuscitation fluids to replace lost volume. To date, there are no treatments with inherent prosurvival properties. Our laboratory has investigated the use of histone deacetylase inhibitors (HDACIs) as pharmacological agents to improve survival. This class of drugs acts through posttranslational protein modifications and is a direct regulator of chromatin structure and function, as well as the function of numerous cytoplasmic proteins. In models of hemorrhagic shock and polytrauma, administration of HDACIs offers a significant survival advantage, even in the absence of fluid resuscitation. Positive results have also been shown in two-hit models of hemorrhage and sepsis and in hemorrhagic shock combined with traumatic brain injury. Accumulating data generated by our group and others continue to support the use of HDACIs for the creation of a prosurvival phenotype. With further research and clinical trials, HDACIs have the potential to be an integral tool in the treatment of trauma, especially in the prehospital phase.
Collapse
Affiliation(s)
- Ihab Halaweish
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | | | | | | | | |
Collapse
|
19
|
Pusateri AE, Given MB, Schreiber MA, Spinella PC, Pati S, Kozar RA, Khan A, Dacorta JA, Kupferer KR, Prat N, Pidcoke HF, Macdonald VW, Malloy WW, Sailliol A, Cap AP. Dried plasma: state of the science and recent developments. Transfusion 2016; 56 Suppl 2:S128-39. [DOI: 10.1111/trf.13580] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/30/2016] [Accepted: 02/15/2016] [Indexed: 12/25/2022]
Affiliation(s)
| | | | | | | | - Shibani Pati
- Blood Systems Research Institute; San Francisco California
| | | | - Abdul Khan
- Velico Medical, Inc.; Beverly Massachusetts
| | | | | | - Nicolas Prat
- French Armed Forces Institute of Biomedical Research (IRBA) Bretigny-sur-Orge; France
| | | | - Victor W. Macdonald
- US Army Medical Materiel Development Activity; US Army Medical Research and Materiel Command; Fort Detrick Maryland
| | - Wilbur W. Malloy
- Congressionally Directed Medical Research Programs; US Army Medical Research and Materiel Command; Fort Detrick Maryland
| | - Anne Sailliol
- Centre de Transfusion Sanguine des Armées; Clamart CEDEX France
| | - Andrew P. Cap
- US Army Institute of Surgical Research; Fort Sam Houston Texas
| |
Collapse
|
20
|
Histone deactylase gene expression profiles are associated with outcomes in blunt trauma patients. J Trauma Acute Care Surg 2016; 80:26-32; discussion 32-3. [PMID: 26517778 DOI: 10.1097/ta.0000000000000896] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Treatment with histone deacetylase (HDAC) inhibitors, such as valproic acid, increases survival in animal models of trauma and sepsis. Valproic acid is a pan-inhibitor that blocks most of the known HDAC isoforms. Targeting individual HDAC isoforms may increase survival and reduce complications, but little is known of the natural history of HDAC gene expression following trauma. We hypothesized that distinct HDAC isoform gene expression patterns would be associated with differences in outcomes following trauma. METHODS Twenty-eight-day longitudinal HDAC leukocyte gene expression profiles in 172 blunt trauma patients were extracted from the Inflammation and the Host Response to Injury (Glue Grant) data set. Outcome was classified as complicated (death or no recovery by Day 28, n = 51) or uncomplicated (n = 121). Mixed modeling was used to compare the HDAC expression trajectories between the groups, corrected for Injury Severity Score (ISS), base deficit, and volume of blood products transfused during the initial 12 hours following admission. Weighted gene correlation network analysis identified modules of genes with significant coexpression, and HDAC genes were mapped to these modules. Biologic function of these modules was investigated using the Gene Ontology database. RESULTS Elevated longitudinal HDAC expression trajectories for HDAC1, HDAC3, HDAC6, and HDAC11 were associated with complicated outcomes. In contrast, suppressed expression of Sirtuin 3 (SIRT3) was associated with adverse outcome (p < 0.01). Weighted gene correlation network analysis identified significant coexpression of HDAC and SIRT genes with genes involved in ribosomal function and down-regulation of protein translation in response to stress (HDAC1), T-cell signaling, and T-cell selection (HDAC3) as well as coagulation and hemostasis (SIRT3). No coexpression of HDAC11 was identified. CONCLUSION Expression trajectories of HDAC1, HDAC3, HDAC6, HDAC11, and SIRT3 correlate with outcomes following trauma and may potentially serve as biomarkers. They may also be promising targets for pharmacologic intervention. The effects of HDAC and SIRT gene expression in trauma may be mediated through pathways involved in ribosomal and T-cell function as well as coagulation and hemostasis. LEVEL OF EVIDENCE Prognostic study, level III.
Collapse
|
21
|
|
22
|
Eschbach D, Steinfeldt T, Hildebrand F, Frink M, Schöller K, Sassen M, Wiesmann T, Debus F, Vogt N, Uhl E, Wulf H, Ruchholtz S, Pape HC, Horst K. A porcine polytrauma model with two different degrees of hemorrhagic shock: outcome related to trauma within the first 48 h. Eur J Med Res 2015; 20:73. [PMID: 26338818 PMCID: PMC4559152 DOI: 10.1186/s40001-015-0162-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/11/2015] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND An animal polytrauma model was developed, including trunk and extremity injuries combined with hemorrhagic shock and a prolonged post-traumatic phase. This could be useful for the assessment of different therapeutic approaches during intensive care therapy. METHODS A standardized polytrauma including lung contusion, liver laceration and lower leg fracture was applied in 25 pigs. They underwent controlled haemorrhage either with a blood volume loss of 45 % and a median arterial pressure (MAP) <30 mmHg/90 min (group L, n = 15) or a 50 % blood loss of and an MAP <25 mmHg/120 min (group H, n = 10). Five non-traumatized pigs served as a control (group C). Subsequently, intensive care treatment was given for an observational period of 48 h. RESULTS Both trauma groups showed signs of shock and organ injury (heart rate, MAP and lactate). The frequency of cardiopulmonary resuscitation (CPR) and lung injury was directly related to the severity of the haemorrhagic shock (CPR-group L: 4 of 15 pigs, group H: 4 of 10 pigs; Respiratory failure-group L: 3 of 13, group H: 3 of 9. There was no difference in mortality between trauma groups. CONCLUSION The present data suggest that our model reflects the mortality and organ failure of polytrauma in humans during shock and the intensive care period. This suggests that the experimental protocol could be useful for the assessment of therapeutic approaches during the post-traumatic period.
Collapse
Affiliation(s)
- D Eschbach
- Center for Orthopaedics and Trauma Surgery; University Hospital Giessen and Marburg, Marburg, Germany.
| | - T Steinfeldt
- Department of Anaesthesiology and Critical Care, University of Marburg, Marburg, Germany.
| | - F Hildebrand
- Trauma Department, University of Aachen, Aachen, Germany.
| | - M Frink
- Center for Orthopaedics and Trauma Surgery; University Hospital Giessen and Marburg, Marburg, Germany.
| | - K Schöller
- Department of Neurosurgery, University of Giessen, Giessen, Germany.
| | - M Sassen
- Department of Anaesthesiology and Critical Care, University of Marburg, Marburg, Germany.
| | - T Wiesmann
- Department of Anaesthesiology and Critical Care, University of Marburg, Marburg, Germany.
| | - F Debus
- Center for Orthopaedics and Trauma Surgery; University Hospital Giessen and Marburg, Marburg, Germany.
| | - N Vogt
- Department of Neurosurgery, University of Giessen, Giessen, Germany.
| | - E Uhl
- Department of Neurosurgery, University of Giessen, Giessen, Germany.
| | - H Wulf
- Department of Anaesthesiology and Critical Care, University of Marburg, Marburg, Germany.
| | - S Ruchholtz
- Center for Orthopaedics and Trauma Surgery; University Hospital Giessen and Marburg, Marburg, Germany.
| | - H C Pape
- Trauma Department, University of Aachen, Aachen, Germany.
| | - K Horst
- Trauma Department, University of Aachen, Aachen, Germany.
| |
Collapse
|
23
|
Lee JH, Kim K, Jo YH, Lee MJ, Hwang JE, Kim MA. Effect of valproic acid combined with therapeutic hypothermia on neurologic outcome in asphyxial cardiac arrest model of rats. Am J Emerg Med 2015; 33:1773-9. [PMID: 26377282 DOI: 10.1016/j.ajem.2015.08.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 08/07/2015] [Accepted: 08/16/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUNDS Valproic acid (VPA) has been reported to have survival and neuroprotective effects in a cardiac arrest rat model. This study was designed to investigate the effect of VPA combined with therapeutic hypothermia (HT) in an asphyxial cardiac arrest rat model. METHODS Rats were subjected to 6 minutes of asphyxial cardiac arrest. Cardiopulmonary resuscitation was performed and then the randomly allocated to 1 of 4 groups (normal saline [NS]/normothermia [NT], VPA/NT, NS/HT, and VPA/HT). Hypothermia (32.5°C ± 0.5°C, 4 hours of HT and 2 hours of rewarming) or NT (37°C ± 0.5°C for 6 hours) was applied, and VPA (300 mg/kg) or NS was administered immediately after the return of spontaneous circulation. Neurologic deficit score was measured, and a tape removal test was performed for 3 days. Histologic injury of hippocampus was evaluated. RESULTS Valproic acid significantly improved neurologic deficit score at 48 and 72 hours in the NT-treated rats and at 72 hours in the HT-treated rats (all P < .05). Although the latency and success rate were not significantly different between the VPA/NT and NS/NT groups, the VPA/HT group showed significantly lower latency and higher success rates compared to the NS/HT group (P < .05). The histologic injury score in the hippocampal CA1 sector was significantly lower in the VPA/NT group than the NS/NT group (P < .05) and showed a tendency to be decreased in the VPA/HT group compared with the NS/HT group (P = .06). CONCLUSION In an asphyxial cardiac arrest rat model, administration of VPA improved neurologic outcomes and added a neuroprotective effect to HT.
Collapse
Affiliation(s)
- Jae Hyuk Lee
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| | - Kyuseok Kim
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea.
| | - You Hwan Jo
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| | - Min Ji Lee
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| | - Ji Eun Hwang
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| | - Min A Kim
- Department of Pathology, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
24
|
Fresh frozen plasma and spray-dried plasma mitigate pulmonary vascular permeability and inflammation in hemorrhagic shock. J Trauma Acute Care Surg 2015; 78:S7-S17. [PMID: 26002267 DOI: 10.1097/ta.0000000000000630] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND In retrospective and prospective observational studies, fresh frozen plasma (FFP) has been associated with a survival benefit in massively transfused trauma patients. A dry plasma product, such as spray-dried plasma (SDP), offers logistical advantages over FFP. Recent studies on FFP have demonstrated that FFP modulates systemic vascular stability and inflammation. The effect of SDP on these measures has not been previously examined. This study compares SDP with FFP using in vitro assays of endothelial function and in vivo assays of lung injury using a mouse model of hemorrhagic shock (HS) and trauma. METHODS FFP, SDP, and lactated Ringer's (LR) solution were compared in vitro using assays of endothelial cell (EC) permeability, cytokine production and content, gene expression, as well as tight and adherens junction stability. All resuscitation products were also compared in a murine model of HS. Mean arterial pressures and physiologic measures were assessed. Pulmonary vascular permeability was measured using tagged dextran. Lung tissues were stained for CD68, VE-cadherin, and occludin. RESULTS Treatment of ECs with FFP and SDP, but not LR, preserved the integrity of EC monolayers in vitro and resulted in similar EC gene expression patterns and cytokine/growth factor production. FFP and SDP also reduced HS-induced pulmonary vascular permeability in vivo to the same extent. In mice with HS, mean arterial pressures and base excess were corrected by both FFP and SDP to levels observed in sham-treated mice. Treatment after HS with FFP and SDP but not LR solution reduce alveolar wall thickening, leukocyte infiltration, and the breakdown of EC junctions, as measured by staining for VE-cadherin, and occludin. CONCLUSION Both FFP and SDP similarly modulate pulmonary vascular integrity, permeability, and inflammation in vitro and in vivo in a murine model of HS and trauma.
Collapse
|
25
|
Induced Hypothermia Does Not Harm Hemodynamics after Polytrauma: A Porcine Model. Mediators Inflamm 2015; 2015:829195. [PMID: 26170533 PMCID: PMC4481088 DOI: 10.1155/2015/829195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 05/05/2015] [Accepted: 05/05/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The deterioration of hemodynamics instantly endangers the patients' life after polytrauma. As accidental hypothermia frequently occurs in polytrauma, therapeutic hypothermia still displays an ambivalent role as the impact on the cardiopulmonary function is not yet fully understood. METHODS We have previously established a porcine polytrauma model including blunt chest trauma, penetrating abdominal trauma, and hemorrhagic shock. Therapeutic hypothermia (34°C) was induced for 3 hours. We documented cardiovascular parameters and basic respiratory parameters. Pigs were euthanized after 15.5 hours. RESULTS Our polytrauma porcine model displayed sufficient trauma impact. Resuscitation showed adequate restoration of hemodynamics. Induced hypothermia had neither harmful nor major positive effects on the animals' hemodynamics. Though heart rate significantly decreased and mixed venous oxygen saturation significantly increased during therapeutic hypothermia. Mean arterial blood pressure, central venous pressure, pulmonary arterial pressure, and wedge pressure showed no significant differences comparing normothermic trauma and hypothermic trauma pigs during hypothermia. CONCLUSIONS Induced hypothermia after polytrauma is feasible. No major harmful effects on hemodynamics were observed. Therapeutic hypothermia revealed hints for tissue protective impact. But the chosen length for therapeutic hypothermia was too short. Nevertheless, therapeutic hypothermia might be a useful tool for intensive care after polytrauma. Future studies should extend therapeutic hypothermia.
Collapse
|
26
|
Okoye OT, Reddy H, Wong MD, Doane S, Resnick S, Karamanos E, Skiada D, Goodrich R, Inaba K. Large animal evaluation of riboflavin and ultraviolet light-treated whole blood transfusion in a diffuse, nonsurgical bleeding porcine model. Transfusion 2015; 55:532-43. [PMID: 25582335 DOI: 10.1111/trf.12894] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 07/31/2014] [Accepted: 08/11/2014] [Indexed: 11/25/2022]
Abstract
BACKGROUND The Mirasol system has been demonstrated to effectively inactivate white blood cells (WBCs) and reduce pathogens in whole blood in vitro. The purpose of this study was to compare the safety and efficacy of Mirasol-treated fresh whole blood (FWB) to untreated FWB in an in vivo model of surgical bleeding. STUDY DESIGN AND METHODS A total of 18 anesthetized pigs (40 kg) underwent a 35% total blood volume bleed, cooling to 33°C, and a standardized liver injury. Animals were then randomly assigned to resuscitation with either Mirasol-treated or untreated FWB, and intraoperative blood loss was measured. After abdominal closure, the animals were observed for 14 days, after which the animals were euthanized and tissues were obtained for histopathologic examination. Mortality, tissue near-infrared spectroscopy, red blood cell (RBC) variables, platelets (PLTs), WBCs, and coagulation indices were analyzed. RESULTS Total intraoperative blood loss was similar in test and control arms (8.3 ± 3.2 mL/kg vs. 7.7 ± 3.9 mL/kg, p = 0.720). All animals survived to Day 14. Trended values over time did not show significant differences-tissue oxygenation (p = 0.605), hemoglobin (p = 0.461), PLTs (p = 0.807), WBCs (p = 0.435), prothrombin time (p = 0.655), activated partial thromboplastin time (p = 0.416), thromboelastography (TEG)-reaction time (p = 0.265), or TEG-clot formation time (p = 0.081). Histopathology did not show significant differences between arms. CONCLUSIONS Mirasol-treated FWB did not impact survival, blood loss, tissue oxygen delivery, RBC indices, or coagulation variables in a standardized liver injury model. These data suggest that Mirasol-treated FWB is both safe and efficacious in vivo.
Collapse
Affiliation(s)
- Obi T Okoye
- Division of Trauma Surgery and Surgical Critical Care, Department of Surgery, Keck School of Medicine of University of Southern California, Los Angeles, California
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Valparaiso AP, Vicente DA, Bograd BA, Elster EA, Davis TA. Modeling acute traumatic injury. J Surg Res 2014; 194:220-32. [PMID: 25481528 DOI: 10.1016/j.jss.2014.10.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/16/2014] [Accepted: 10/17/2014] [Indexed: 11/26/2022]
Abstract
Acute traumatic injury is a complex disease that has remained a leading cause of death, which affects all ages in our society. Direct mechanical insult to tissues may result in physiological and immunologic disturbances brought about by blood loss, coagulopathy, as well as ischemia and reperfusion insults. This inappropriate response leads to an abnormal release of endogenous mediators of inflammation that synergistically contribute to the incidence of morbidity and mortality. This aberrant activation and suppression of the immune system follows a bimodal pattern, wherein activation of the innate immune responses is followed by an anti-inflammatory response with suppression of the adaptive immunity, which can subsequently lead secondary insults and multiple organ dysfunction. Traumatic injury rodent and swine models have been used to describe many of the underlying pathologic mechanisms, which have led to an improved understanding of the morbidity and mortality associated with critically ill trauma patients. The enigmatic immunopathology of the human immunologic response after severe trauma, however, has never more been apparent and there grows a need for a clinically relevant animal model, which mimics this immune physiology to enhance the care of the most severely injured. This has necessitated preclinical studies in a more closely related model system, the nonhuman primate. In this review article, we summarize animal models of trauma that have provided insight into the clinical response and understanding of cellular mechanisms involved in the onset and progression of ischemia-reperfusion injury as well as describe future treatment options using immunomodulation-based strategies.
Collapse
Affiliation(s)
- Apple P Valparaiso
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, Maryland; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Diego A Vicente
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, Maryland; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland; Department of Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Benjamin A Bograd
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, Maryland; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland; Department of Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Eric A Elster
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, Maryland; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland; Department of Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Thomas A Davis
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, Maryland; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland.
| |
Collapse
|
28
|
Hildebrand F, Radermacher P, Ruchholtz S, Huber-Lang M, Seekamp A, Flohé S, van Griensven M, Andruszkow H, Pape HC. Relevance of induced and accidental hypothermia after trauma-haemorrhage-what do we know from experimental models in pigs? Intensive Care Med Exp 2014; 2:16. [PMID: 26266916 PMCID: PMC4512998 DOI: 10.1186/2197-425x-2-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 04/06/2014] [Indexed: 12/17/2022] Open
Abstract
Recent experimental research has either focused on the role of accidental hypothermia as part of the lethal triad after trauma or tried to elucidate the effects of therapeutically induced hypothermia on the posttraumatic course. Induced hypothermia seems to reduce the mortality in experimental models of trauma-haemorrhage. As potential mechanisms, a decrease of cellular metabolism, beneficial effects on haemodynamic function and an attenuation of the inflammatory response have been described. However, negative side effects of hypothermia have to be considered, such as impairment of the coagulatory function and immunosuppressive effects. Furthermore, the optimal strategy for the induction of hypothermia (magnitude, duration, timing, cooling rate, etc.) and subsequent rewarming remains unclear. Nevertheless, this piece of information is essential before considering hypothermia as a treatment strategy for severely injured patients. This review aims to elaborate the differences between accidental and induced hypothermia and to summarize the current knowledge of the potential therapeutic use of induced hypothermia suggested in porcine models of trauma-haemorrhage.
Collapse
Affiliation(s)
- Frank Hildebrand
- Department of Orthopedic Trauma and Reconstructive Surgery and Harald Tscherne Laboratory, University of Aachen, Pauwelsstraße 30, Aachen, 52074, Germany,
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lashof-Sullivan M, Shoffstall A, Lavik E. Intravenous hemostats: challenges in translation to patients. NANOSCALE 2013; 5:10719-28. [PMID: 24088870 PMCID: PMC4238379 DOI: 10.1039/c3nr03595f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Excessive bleeding and the resulting complications are a leading killer of young people globally. There are many successful methods to halt bleeding in the extremities, including compression, tourniquets, and dressings. However, current treatments for internal hemorrhage (including from head or truncal injuries), termed non-compressible bleeding, are inadequate. For these non-compressible injuries, blood transfusions are the current treatment standard. However, they must be refrigerated, may potentially transfer disease, and are of limited supply. In addition, time is of the essence for halting hemorrhage, since more than a third of civilian deaths due to hemorrhage from trauma occur before the patient even reaches the hospital. As a result, particles that can cross-link activated platelets through the glycoprotein IIb/IIIa receptor expressed on activated platelets are being investigated as an alternative treatment for non-compressible bleeding. Ideally, these particles would interact specifically with platelets to stabilize the platelet plug. Initial designs used biologically derived microparticles with red blood cell fragment or albumin cores decorated with RGD or fibrinogen, which bind to GPIIb/IIIa. More recently there has been research into the use of fully synthetic nanoparticles with liposomal or polymer cores that crosslink platelets through a targeting peptide bound to the surface. Some of the challenges for the development of these particles include appropriate sizing to prevent blocking the capillaries of the lungs, immune system evasion to prevent strong reactions and increase circulation time, and storage and resuspension so that first responders can easily use the particles. In addition, the effectiveness of the variety of animal bleeding models in predicting outcomes must be examined before test results can be fully understood. Progress has been made in the development of particles to combat hemorrhage, but issues of immune sensitivity and storage must be resolved before these types of particles can be translated for human use.
Collapse
|
30
|
Hwabejire JO, Lu J, Liu B, Li Y, Halaweish I, Alam HB. Valproic acid for the treatment of hemorrhagic shock: a dose-optimization study. J Surg Res 2013; 186:363-70. [PMID: 24135375 DOI: 10.1016/j.jss.2013.09.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND Valproic acid (VPA) has been shown to improve survival in animal models of hemorrhagic shock at a dose of 300 mg/kg. Our aim was to identify the ideal dose through dose-escalation, split-dosing, and dose de-escalation regimens. MATERIALS AND METHODS Rats were subjected to sublethal 40% hemorrhage and treated with vehicle or VPA (dose of 300, 400, or 450 mg/kg) after 30 min of shock. Acetylated histones and activated proteins from the PI3K-Akt-GSK-3β survival pathway at different time points were quantified by Western blot analysis. In a similar model, a VPA dose of 200 mg/kg followed 2 h later by another dose of 100 mg/kg was administered. Finally, animals were subjected to a lethal 50% hemorrhage and VPA was administered in a dose de-escalation manner (starting at dose of 300 mg/kg) until a significant drop in percent survival was observed. RESULTS Larger doses of VPA resulted in greater acetylation of histone 3 and increased activation of PI3K pathway proteins. Dose-dependent differences were significant in histone acetylation but not in the activation of the survival pathway proteins. Split-dose administration of VPA resulted in similar results to a single full dose. Survival was as follows: 87.5% with 300 and 250 mg/kg of VPA, 50% with 200 mg/kg of VPA, and 14% with vehicle-treated animals. CONCLUSIONS Although higher doses of VPA result in greater histone acetylation and activation of prosurvival protein signaling, doses as low as 250 mg/kg of VPA confer the same survival advantage in lethal hemorrhagic shock. Also, VPA can be given in a split-dose fashion without a reduction in its cytoprotective effectiveness.
Collapse
Affiliation(s)
- John O Hwabejire
- Division of Trauma, Emergency Surgery and Surgical Critical Care, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
BACKGROUND We have previously demonstrated that valproic acid (VPA), a histone deacetylase inhibitor, can improve survival after hemorrhagic shock (HS), protect neurons from hypoxia-induced apoptosis, and attenuate the inflammatory response. We have also shown that administration of 6% hetastarch (Hextend [Hex]) after traumatic brain injury (TBI) decreases brain swelling, without affecting size of the lesion. This study was performed to determine whether addition of VPA to Hex would decrease the lesion size in a clinically relevant large animal model of TBI + HS. METHODS Yorkshire swine (42-50 kg) were instrumented to measure hemodynamic parameters, intracranial pressure, and brain tissue oxygenation. A custom-designed, computer-controlled cortical impact device was used to create a TBI through a 20-mm craniotomy: 15-mm cylindrical tip impactor at 4-m/s velocity, 100-millisecond dwell time, and 12-mm penetration depth. Volume-controlled hemorrhage was started (40% blood volume) concurrent with the TBI. After 2 hours of shock, animals were randomized to one of three resuscitation groups (n = 7 per group) as follows: (1) isotonic sodium chloride solution; (2) 6% hetastarch, Hex; and (3) Hex and VPA 300 mg/kg (Hex + VPA). Volumes of Hex matched the shed blood, whereas that of the isotonic sodium chloride solution was three times the volume. VPA treatment was started after an hour of shock. After 6 hours of postresuscitation monitoring, brains were sectioned into 5-mm slices and stained with 2, 3, 5-Triphenyltetrazolium chloride to quantify the lesion size (mm) and brain swelling (percent change compared with uninjured side). Levels of acetylated histone H3 were determined to quantify acetylation, and myeloperoxidase and interleukine-1β (IL-1β) levels were measured as markers of brain inflammation. RESULTS Combination of 40% blood loss with cortical impact and a period of shock (2 hours) and resuscitation resulted in a highly reproducible brain injury. Lesion size and brain swelling in the Hex + VPA group (1,989 [156.8] mm, and 19% [1.6%], respectively) were significantly smaller than the isotonic sodium chloride solution group (3,335 [287.9] mm and 36% [2.2%], respectively). Hex alone treatment significantly decreased the swelling (27% [1.6%]) without reducing the lesion size. The number of CD11b-positive cells as well as myeloperoxidase and IL-1 levels in the brains were significantly reduced by the VPA treatment. CONCLUSION In a combined HS and TBI model, treatment with artificial colloid (Hex) improves hemodynamic parameters and reduces swelling, without affecting the actual size of the brain lesion. Addition of VPA effectively reduces both the size of brain lesion and associated swelling by attenuating the inflammatory response.
Collapse
|
32
|
Darlington DN, Gonzales MD. HPLC DETERMINATION OF VALPROIC ACID IN PLASMA BY CONJUGATION TO A HYDRAZIDE. J LIQ CHROMATOGR R T 2013. [DOI: 10.1080/10826076.2012.717059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | - Mary D. Gonzales
- a US Army Institute of Surgical Research , San Antonio , Texas , USA
| |
Collapse
|
33
|
Induced hypothermia does not impair coagulation system in a swine multiple trauma model. J Trauma Acute Care Surg 2013; 74:1014-20. [PMID: 23511139 DOI: 10.1097/ta.0b013e3182826edd] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Accidental hypothermia, acidosis, and coagulopathy represent the lethal triad in severely injured patients. Therapeutic hypothermia however is commonly used in transplantations, cardiac and neurosurgical surgery, or after cardiac arrest. However, the effects of therapeutic hypothermia on the coagulation system following multiple trauma need to be elucidated. METHODS In a porcine model of multiple trauma including blunt chest injury, liver laceration, and hemorrhagic shock followed by fluid resuscitation, the influence of therapeutic hypothermia on coagulation was evaluated. A total of 40 pigs were randomly assigned to sham (only anesthesia) or trauma groups receiving either hypothermia or normothermia. Each group consisted of 10 pigs. Analyzed parameters were cell count (red blood cells, platelets), pH, prothrombin time (PT), fibrinogen concentration, and analysis with ROTEM and Multiplate. RESULTS Trauma and consecutive fluid resuscitation resulted in impaired coagulation parameters (cell count, pH, PT, fibrinogen, ROTEM, and platelet function). During hypothermia, coagulation parameters measured at 37°C, such as PT, fibrinogen, thrombelastometry measurements, and platelet function, showed no significant differences between normothermic and hypothermic animals in both trauma groups. Additional analyses of thrombelastometry at 34°C during hypothermia showed significant differences for clotting time and clot formation time but not for maximum clot firmness. We were not able to detect macroscopic or petechial bleeding in both trauma groups. CONCLUSION Based on the results of the present study we suggest that mild hypothermia can be safely performed after stabilization following major trauma. Mild hypothermia has effects on the coagulation system but does not aggravate trauma-induced coagulopathy in our model. Before hypothermic treatment can be performed in the clinical setting, additional experiments with prolonged and deeper hypothermia to exclude detrimental effects are required.
Collapse
|
34
|
Lee JH, Kim K, Jo YH, Lee SH, Kang C, Kim J, Park CJ, Kim MA, Lee MJ, Rhee JE. Effect of valproic acid on survival and neurologic outcomes in an asphyxial cardiac arrest model of rats. Resuscitation 2013; 84:1443-9. [PMID: 23648213 DOI: 10.1016/j.resuscitation.2013.04.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 04/15/2013] [Accepted: 04/29/2013] [Indexed: 10/26/2022]
Abstract
AIM OF THE STUDY Valproic acid (VPA) has been known to reduce neuronal injury, has anti-inflammatory and anti-apoptotic effects as a histone deacetylase (HDAC) inhibitor. Thus, this study was performed to investigate the effects of VPA on survival and neurological outcomes in an asphyxial cardiac arrest model of rats. METHODS Male Sprague-Dawley rats were subjected to asphyxial cardiac arrest. For survival study, rats were subjected to 450s of asphyxial cardiac arrest. Cardiopulmonary resuscitation (CPR) was performed and then rats were blindly allocated to one of two groups (control group, n=10; VPA group, n=10). Valproic acid (300mgkg(-1)) or vehicle (normal saline) was administered via tail vein immediately after return of spontaneous circulation (ROSC) and observed for 72h. For neurological outcome study, rats (n=7 for each group) were subjected to same experimental procedures except duration of cardiac arrest of 360s. Neurological deficit scale (NDS) score was measured every 24h after ROSC for 72h and was ranged from 0 (brain dead) to 80 (normal). Brain tissues were harvested at 72h for evaluation of apoptotic injury and acetylation status of histone H3. RESULTS In survival study, 2 rats in VPA group were excluded because cardiac arrest was not achieved in predetermined time. Thus, 10 rats were allocated to control group and 8 rats were allocated to VPA group. The survival rates at 72h after cardiac arrest were significantly higher in VPA group than in control group (6/8 in VPA group, 3/10 rats in control group; log rank test, p<0.05). In neurological outcome study, all rats survived for 72h and NDS at 72h were significantly higher in VPA group than in control group (p<0.05). In brain tissues, expressions of acetylated histone H3 were not significantly different. However, expressions of cleaved caspase-3 were significantly lower in VPA group than in control group (p<0.05). CONCLUSION VPA increased survival rates and improved neurologic outcome in asphyxial cardiac arrest model of rats while decreasing expressions of cleaved caspase-3.
Collapse
Affiliation(s)
- Jae Hyuk Lee
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Devlin JJ, DeVito SS, Littlejohn LF, Gutierrez MA, Nowak G, Henao J, Bielawski A, Kotora J, Johnson AS. Terlipressin with limited fluid resuscitation in a swine model of hemorrhage. J Emerg Med 2013; 45:78-85. [PMID: 23602144 DOI: 10.1016/j.jemermed.2012.12.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Revised: 11/26/2012] [Accepted: 12/19/2012] [Indexed: 10/26/2022]
Abstract
BACKGROUND Principles of damage control resuscitation include minimizing intravenous fluid (IVF) administration while correcting perfusion pressure as quickly as possible. Recent studies have identified a potential advantage of vasopressin over catecholamines in traumatic shock. Terlipressin (TP) is a vasopressin analogue used to reverse certain shock etiologies in some European countries. STUDY OBJECTIVE We evaluated three dosages of TP when combined with a limited colloid resuscitation strategy on mean arterial pressure (MAP) and lactatemia in a swine model of isolated hemorrhage. METHODS Sixty anesthetized swine underwent intubation and severe hemorrhage. Subjects were randomized to one of four resuscitation groups: 4 mL/kg Hextend(®) (Hospira Inc, Lake Forest, IL) only, 3.75 μg/kg TP + Hextend, 7.5 μg/kg TP + Hextend, or 15 μg/kg TP + Hextend. MAP and heart rate were recorded every 5 min. Baseline and serial lactate values at 30-min intervals were recorded and compared. RESULTS Subjects receiving 7.5 μg/kg TP had significantly higher MAPs at times t15 (p = 0.012), t20 (p = 0.004), t25 (p = 0.018), t30 (p = 0.032), t35 (p = 0.030), and t40 (p = 0.021). No statistically significant differences in lactate values between TP groups and controls were observed. CONCLUSION Subjects receiving 7.5 μg/kg of TP demonstrated improved MAP within 10 min of administration. When combined with minimal IVF resuscitation, TP doses between 3.75 and 15 μg/kg do not elevate lactate levels in hemorrhaged swine.
Collapse
Affiliation(s)
- John J Devlin
- Department of Emergency Medicine, Naval Medical Center Portsmouth, Portsmouth, Virginia, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Survival after severe traumatic shock can be complicated by a number of pathophysiologic processes that ensue after the initial trauma. One of these is trauma-induced coagulopathy (TIC) whose onset may occur before initial fluid resuscitation. The pathogenesis of TIC has not yet been fully elaborated, but evolving evidence appears to link severe tissue hypoxia and damage to the endothelium as key factors, which evolve into measurable structural and biochemical changes of the endothelium resulting in a coagulopathic state. This paper will provide a general review of these linkages and identify knowledge gaps as well as suggest new approaches and areas of investigation, which may both limit the development of TIC as well as produce insights into its pathophysiology. A better understanding of these issues will be necessary in order to advance the practice of remote damage control resuscitation.
Collapse
Affiliation(s)
- Kevin R Ward
- Department of Emergency Medicine, University of Michigan, Michigan Center for Integrative Research in Critical Care, Ann Arbor, MI 48109, USA.
| |
Collapse
|
37
|
Wataha K, Menge T, Deng X, Shah A, Bode A, Holcomb JB, Potter D, Kozar R, Spinella PC, Pati S. Spray-dried plasma and fresh frozen plasma modulate permeability and inflammation in vitro in vascular endothelial cells. Transfusion 2013; 53 Suppl 1:80S-90S. [PMID: 23301978 DOI: 10.1111/trf.12040] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND After major traumatic injury, patients often require multiple transfusions of fresh frozen plasma (FFP) to correct coagulopathy and to reduce bleeding. A spray-dried plasma (SDP) product has several logistical benefits over FFP use in trauma patients with coagulopathy. These benefits include ease of transport, stability at room temperature, and rapid reconstitution for infusion. Our past work suggests that FFP promotes endothelial stability by inhibiting endothelial permeability. STUDY DESIGN AND METHODS The main goal of this project is to determine if solvent-detergent-treated SDP is equivalent to FFP in inhibiting vascular endothelial cell (EC) permeability and inflammation in vitro. Furthermore, this study aimed to determine if solvent-detergent treatment and spray drying of plasma alters the protective effects of FFP on EC function. The five groups tested in our studies are the following: 1) fresh frozen-thawed plasma (FFP); 2) solvent-detergent-treated FFP; 3) solvent-detergent-treated SDP; 4) lactated Ringer's solution; and 5) Hextend. RESULTS This study demonstrates that in vitro SDP and FFP equivalently inhibit vascular EC permeability, EC adherens junction breakdown, and endothelial white blood cell binding, an effect that is independent of changes in Vascular Cell Adhesion Molecule 1, Intracellular Adhesion Molecule 1, or E-selectin expression on ECs. Solvent-detergent treatment of FFP does not alter the protective effects of FFP on endothelial cell function in vitro. CONCLUSION These data suggest the equivalence of FFP and SDP on modulation of endothelial function and inflammation in vitro.
Collapse
Affiliation(s)
- K Wataha
- Blood Systems Research Institute, University of California San Francisco, San Francisco, California 94118, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Anti-inflammatory properties of histone deacetylase inhibitors: a mechanistic study. J Trauma Acute Care Surg 2012; 72:347-53; discussion 353-4. [PMID: 22327976 DOI: 10.1097/ta.0b013e318243d8b2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND We have demonstrated that postshock administration of suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, can significantly improve early survival in a highly lethal model of hemorrhagic shock. As the primary insult in hemorrhagic shock is cellular hypoxia, and transcription factor hypoxia-inducible factor-1α (HIF-1α) controls proinflammatory gene expression in macrophages, we hypothesized that SAHA would attenuate the HIF-1α associated proinflammatory pathway in a hypoxic macrophage model. METHODS Mouse macrophages were exposed to hypoxic conditions (0.5% O2, 10% CO2, and 89.5% N2) at 37°C in the presence or absence of SAHA (10 μmol/L). The cells and culture medium were harvested at 1 hour, 4 hours, and 8 hours. Sham (no hypoxia, no SAHA) served as a control. Western blots were performed to assess protein levels of prolyl hydroxylase 2 (PHD2), HIF-1α, and inducible nitric oxide synthase (iNOS) in the cells. Colorimetric biochemical assay and enzyme-linked immunosorbent assay were used to analyze the release of nitric oxide (NO) and secretion of tumor necrosis factor α (TNF-α), respectively, in the cell culture medium. RESULTS Hypoxia significantly increased cellular level of HIF-1α (1 hour and 4 hours), gene transcription of iNOS (4 hours and 8 hours), iNOS protein (8 hours), NO production (8 hours), and TNF-α secretion (4 hours and 8 hours). SAHA treatment attenuated all of the above hypoxia-induced alterations in the macrophages. In addition, SAHA treatment significantly increased cellular level of PHD2, one of the upstream negative regulators of HIF-1α, at 1 hour. CONCLUSIONS Treatment with SAHA attenuates hypoxia-HIF-1α-inflammatory pathway in macrophages and suppresses hypoxia-induced release of proinflammatory NO and TNF-α. SAHA also causes an early increase in cellular PHD2, which provides, at least in part, a new explanation for the decrease in the HIF-1α protein levels.
Collapse
|