1
|
Tepes M, Krezic I, Vranes H, Smoday IM, Kalogjera L, Zizek H, Vukovic V, Oroz K, Kovac KK, Madzar Z, Rakic M, Miskic B, Sikiric S, Barisic I, Strbe S, Antunovic M, Novosel L, Kavelj I, Vlainic J, Dobric I, Staresinic M, Skrtic A, Seiwerth S, Blagaic AB, Sikiric P. Stable Gastric Pentadecapeptide BPC 157 Therapy: Effect on Reperfusion Following Maintained Intra-Abdominal Hypertension (Grade III and IV) in Rats. Pharmaceuticals (Basel) 2023; 16:1554. [PMID: 38004420 PMCID: PMC10675657 DOI: 10.3390/ph16111554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Given in reperfusion, the use of stable gastric pentadecapeptide BPC 157 is an effective therapy in rats. It strongly counteracted, as a whole, decompression/reperfusion-induced occlusion/occlusion-like syndrome following the worst circumstances of acute abdominal compartment and intra-abdominal hypertension, grade III and grade IV, as well as compression/ischemia-occlusion/occlusion-like syndrome. Before decompression (calvariectomy, laparotomy), rats had long-lasting severe intra-abdominal hypertension, grade III (25 mmHg/60 min) (i) and grade IV (30 mmHg/30 min; 40 mmHg/30 min) (ii/iii), and severe occlusion/occlusion-like syndrome. Further worsening was caused by reperfusion for 60 min (i) or 30 min (ii/iii). Severe vascular and multiorgan failure (brain, heart, liver, kidney, and gastrointestinal lesions), widespread thrombosis (peripherally and centrally) severe arrhythmias, intracranial (superior sagittal sinus) hypertension, portal and caval hypertension, and aortal hypotension were aggravated. Contrarily, BPC 157 therapy (10 µg/kg, 10 ng/kg sc) given at 3 min reperfusion times eliminated/attenuated venous hypertension (intracranial (superior sagittal sinus), portal, and caval) and aortal hypotension and counteracted the increases in organ lesions and malondialdehyde values (blood ˃ heart, lungs, liver, kidney ˃ brain, gastrointestinal tract). Vascular recovery promptly occurred (i.e., congested inferior caval and superior mesenteric veins reversed to the normal vessel presentation, the collapsed azygos vein reversed to a fully functioning state, the inferior caval vein-superior caval vein shunt was recovered, and direct blood delivery returned). BPC 157 therapy almost annihilated thrombosis and hemorrhage (i.e., intracerebral hemorrhage) as proof of the counteracted general stasis and Virchow triad circumstances and reorganized blood flow. In conclusion, decompression/reperfusion-induced occlusion/occlusion-like syndrome counteracted by BPC 157 therapy in rats is likely for translation in patients. It is noteworthy that by rapidly counteracting the reperfusion course, it also reverses previous ischemia-course lesions, thus inducing complete recovery.
Collapse
Affiliation(s)
- Marijan Tepes
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
- Department of Clinical Medicine, Faculty of Dental Medicine and Health Osijek, 31000 Osijek, Croatia;
- PhD Program Translational Research in Biomedicine-TRIBE, School of Medicine, University of Split, 21000 Split, Croatia
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Hrvoje Vranes
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Ivan Maria Smoday
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Luka Kalogjera
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Helena Zizek
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Vlasta Vukovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Katarina Oroz
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Katarina Kasnik Kovac
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Zrinko Madzar
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Mislav Rakic
- Department of Abdominal Surgery, Clinical Hospital Dubrava, 10040 Zagreb, Croatia;
| | - Blazenka Miskic
- Department of Clinical Medicine, Faculty of Dental Medicine and Health Osijek, 31000 Osijek, Croatia;
| | - Suncana Sikiric
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (S.S.)
| | - Ivan Barisic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Marko Antunovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Luka Novosel
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Ivana Kavelj
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Josipa Vlainic
- Laboratory for Advanced Genomics, Division of Molecular Medicine, Institute Ruder Boskovic, 10000 Zagreb, Croatia;
| | - Ivan Dobric
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Mario Staresinic
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (S.S.)
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (S.S.)
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| |
Collapse
|
2
|
Chen P, Tang H, Zhang Q, Xu L, Zhou W, Hu X, Deng Y, Zhang L. Basic Fibroblast Growth Factor (bFGF) Protects the Blood-Brain Barrier by Binding of FGFR1 and Activating the ERK Signaling Pathway After Intra-Abdominal Hypertension and Traumatic Brain Injury. Med Sci Monit 2020; 26:e922009. [PMID: 32036381 PMCID: PMC7029819 DOI: 10.12659/msm.922009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Intra-abdominal hypertension (IAH) is associated with high morbidity and mortality. IAH leads to intra-abdominal tissue damage and causes dysfunction in distal organs such as the brain. The effect of a combined injury due to IAH and traumatic brain injury (TBI) on the integrity of the blood–brain barrier (BBB) has not been investigated. Material/Methods Intracranial pressure (ICP) monitoring, brain water content, EB permeability detection, immunofluorescence staining, real-time PCR, and Western blot analysis were used to examine the effects of IAH and TBI on the BBB in rats, and to characterize the protective effects of basic fibroblast growth factor (bFGF) on combined injury-induced BBB damage. Results Combined injury from IAH and TBI to the BBB resulted in brain edema and increased intracranial pressure. The effects of bFGF on alleviating the rat BBB injuries were determined, indicating that bFGF regulated the expression levels of the tight junction (TJ), adhesion junction (AJ), matrix metalloproteinase (MMP), and IL-1β, as well as reduced BBB permeability, brain edema, and intracranial pressure. Moreover, the FGFR1 antagonist PD 173074 and the ERK antagonist PD 98059 decreased the protective effects of bFGF. Conclusions bFGF effectively protected the BBB from damage caused by combined injury from IAH and TBI, and binding of FGFR1 and activation of the ERK signaling pathway was involved in these effects.
Collapse
Affiliation(s)
- Peng Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center of People's Liberation Army (PLA), Daping Hospital, Army Medical University, Chongqing, China (mainland).,Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing, China (mainland)
| | - Hao Tang
- State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center of People's Liberation Army (PLA), Daping Hospital, Army Medical University, Chongqing, China (mainland)
| | - Qingtao Zhang
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing, China (mainland)
| | - Lei Xu
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing, China (mainland)
| | - Wei Zhou
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing, China (mainland)
| | - Xi Hu
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing, China (mainland)
| | - Yongbing Deng
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing, China (mainland)
| | - Lianyang Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center of People's Liberation Army (PLA), Daping Hospital, Army Medical University, Chongqing, China (mainland)
| |
Collapse
|
3
|
Intraperitoneal hypertension, a novel risk factor for sepsis-associated encephalopathy in sepsis mice. Sci Rep 2018; 8:8173. [PMID: 29802336 PMCID: PMC5970176 DOI: 10.1038/s41598-018-26500-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/20/2018] [Indexed: 12/25/2022] Open
Abstract
Sepsis associated encephalopathy (SAE), appears often indicates the deterioration of the sepsis disease and which have high risk of death. Although several mechanism and hypotheses have been proposed and studied, there is no breakthrough in the treatment of SAE. We performed a systematic research to evaluate the effect of intraperitoneal pressure on SAE. A mice model of sepsis was established by intraperitoneal injection of endotoxin. A total of 48 female BALB/c mouse (30 days old) were randomly divided into a control group (n = 12) and an injection of endotoxin referred to bacterial lipopolysaccharide (LPS) group (n = 12). Intraperitoneal hypertension (IAH) referred to IAH group (n = 12), and LPS + IAH group (n = 12). Following sepsis induction, diagnosis, the brains were analyzed for both function and ultrastructural morphology.We determined that IAH exacerbated sepsis induces sepsis-associated encephalopathy when examining low score of neurological function and more delta wave in EEG, increased neuronal edema in LPS + IAH group, as well as an escalation of Bax and Cleaved-caspase-3, Cleaved-parp, and reduction of Bcl-2 and Mfsd2a in LPS + IAH group. Therefore, IAH can exacerbate and increase incident rate of sepsis-related encephalopathy in sepsis mice by promoting neuronal apoptosis and destruction of the blood-brain barrier.
Collapse
|
4
|
Liu D, Zhang HG, Zhao ZA, Chang MT, Li Y, Yu J, Zhang Y, Zhang LY. Melanocortin MC4 receptor agonists alleviate brain damage in abdominal compartment syndrome in the rat. Neuropeptides 2015; 49:55-61. [PMID: 25616531 DOI: 10.1016/j.npep.2014.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 12/17/2014] [Accepted: 12/22/2014] [Indexed: 12/11/2022]
Abstract
Intra-abdominal hypertension (IAH) is accompanied by high morbidity and mortality in surgical departments and ICUs. However, its specific pathophysiology is unclear. IAH not only leads to intra-abdominal tissue damage but also causes dysfunction in distal organs, such as the brain. In this study, we explore the protective effects of melanocortin 4 receptor agonists in IAH-induced brain injury. The IAH rat models were induced by hemorrhagic shock/resuscitation (with the mean arterial pressure (MAP) maintained at 30 mm Hg for 90 min followed by the reinfusion of the withdrawn blood with lactated Ringer's solution). Then, air was injected into the peritoneal cavity of the rats to maintain an intra-abdominal pressure of 20 mm Hg for 4 h. The effects of the melanocortin 4 receptor agonist RO27-3225 in alleviating the rats' IAH brain injuries were observed, which indicated that RO27-3225 could reduce brain edema, the expressions of the IL-1β and TNF-α inflammatory cytokines, the blood-brain barrier's permeability and the aquaporin4 (AQP4) and matrix metalloproteinase 9 (MMP9) levels. Moreover, the nicotinic acetylcholine receptor antagonist chlorisondamine and the selective melanocortin 4 receptor antagonist HS024 can negate the protective effects of the RO27-3225. The MC4R agonist can effectively reduce the intracerebral proinflammatory cytokine gene expression and alleviate the brain injury caused by blood-brain barrier damage following IAH.
Collapse
Affiliation(s)
- Dong Liu
- Trauma Center, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Hong-Guang Zhang
- Trauma Center, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Zi-Ai Zhao
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ming-Tao Chang
- Trauma Center, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yang Li
- Trauma Center, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Jian Yu
- Trauma Center, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Ye Zhang
- Trauma Center, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Lian-Yang Zhang
- Trauma Center, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| |
Collapse
|