1
|
Chen Y, Jiang H, Wei Y, Ye S, Jiang J, Mak MKY, Pang MYC, Gao Q, Huang M. Effects of non-invasive brain stimulation over the supplementary motor area on motor function in Parkinson's disease: A systematic review and meta-analysis. Brain Stimul 2025; 18:1-14. [PMID: 39667490 DOI: 10.1016/j.brs.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/03/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND Motor dysfunction profoundly affects individuals with Parkinson's disease (PD). Non-invasive brain stimulation (NIBS) targeting the supplementary motor area (SMA), a critical region for movement-related processing, offers a promising approach to enhance motor function for PD. OBJECTIVE This systematic review and meta-analysis aims to evaluate the efficacy of NIBS over the SMA (SMA-NIBS) in alleviating motor symptoms in PD. METHODS We conducted literature searches in MEDLINE, EMBASE, Physiotherapy Evidence Database, Web of Science, the Chinese National Knowledge Infrastructure, and Scopus. The meta-analysis utilized an inverse variance method and a random-effects model. Subgroup analyses were performed based on stimulation types (e.g., TMS and tDCS), stimulation protocols (e.g., facilitatory and inhibitory stimulation), and medication status during stimulation. RESULTS Twenty randomized control trials involving 442 individuals with PD were included. Compared to sham stimulation, SMA-NIBS significantly improved motor function as measured by the motor section of Unified Parkinson's Disease Rating Scale (UPDRS-III) (mean differences [MD]: -3.45, 95 % confidence interval [CI]: -5.65 to -1.26). Subgroup analysis revealed that only TMS (MD: -3.62, 95%CI: -6.15 to -1.08), not tDCS (MD: -2.47, 95 % CI: -5.03 to 0.08), has significant effect on motor function. Both facilitatory (MD: -2.59, 95 % CI: -3.37 to -1.82) and inhibitory stimulation (MD: -4.98, 95 % CI: -9.29 to -0.66) significantly improved the UPDRS-III score. Effectiveness was observed only during ON medication. Statistically significant effects of SMA-NIBS were reported on Freezing of Gait Questionnaire, not timed up and go test and walking speed. CONCLUSION SMA-NIBS is a promising approach to enhance motor function in PD.
Collapse
Affiliation(s)
- Yawen Chen
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China
| | - Hanhong Jiang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yixin Wei
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Saiqing Ye
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China
| | - Jiaxin Jiang
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China
| | - Margaret K Y Mak
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China
| | - Marco Y C Pang
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China
| | - Qiang Gao
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Meizhen Huang
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China.
| |
Collapse
|
2
|
Nguyen TXD, Mai PT, Chang YJ, Hsieh TH. Effects of transcranial direct current stimulation alone and in combination with rehabilitation therapies on gait and balance among individuals with Parkinson's disease: a systematic review and meta-analysis. J Neuroeng Rehabil 2024; 21:27. [PMID: 38373966 PMCID: PMC10875882 DOI: 10.1186/s12984-024-01311-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 01/24/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a neurogenerative disorder implicated in dysfunctions of motor functions, particularly gait and balance. Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation offered as a potential adjuvant therapy for PD. This systematic review and meta-analysis were conducted to identify whether tDCS alone and combined with additional rehabilitation therapies improve gait and balance among individuals with PD. METHODS We searched PubMed, Embase, Web of Science, and relevant databases for eligible studies from inception to December 2022. Studies with a comparative design investigating the effects of tDCS on motor functions, including gait and balance among individuals with PD, were included. A meta-analysis was performed for each outcome using a random effects model for subgroup analysis and pooling of overall effect sizes. RESULTS A total of 23 studies were included in the meta-analysis. The pooled results revealed that tDCS has moderate overall effects on gait, measured by gait speed (standardized mean deviation [SMD] = 0.238; 95% confidence interval [CI] - 0.026 to 0.502); stride length (SMD = 0.318; 95% CI - 0.015 to 0.652); cadence (SMD = - 0.632; 95% CI - 0.932 to - 0.333); freezing of gait questionnaire scores (SMD = - 0.360; 95% CI - 0.692 to - 0.027); step length (SMD = 0.459; 95% CI - 0.031 to 0.949); walking time (SMD = - 0.253; 95% CI - 0.758 to 0.252); stride time (SMD = - 0.785; 95% CI: - 1.680 to 0.111); double support time (SMD = 1.139; 95% CI - 0.244 to 0.523); and balance, measured by timed up and go (TUG) test (SMD = - 0.294; 95% CI - 0.516 to - 0.073), Berg balance scale (BBS) scores (SMD = 0.406; 95% CI - 0.059 to 0.87), and dynamic gait index (SMD = 0.275; 95% CI - 0.349 to 0.898). For the subgroup analysis, gait and balance demonstrated moderate effect sizes. However, only cadence, stride time, and TUG indicated a significant difference between real and sham tDCS (P = 0.027, P = 0.002, and P = 0.023, respectively), whereas cadence and BBS (P < 0.01 and P = 0.045, respectively) significantly differed after real tDCS plus other therapies rather than after sham tDCS plus other therapies. CONCLUSIONS Our results indicated that tDCS is significantly associated with gait and balance improvements among individuals with PD. The findings of this study provide more proof supporting the effectiveness of tDCS, encouraging tDCS to be utilized alone or in combination with other therapies in clinical practice for PD rehabilitation.
Collapse
Affiliation(s)
- Thi Xuan Dieu Nguyen
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Phuc Thi Mai
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Ju Chang
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.
- Neuroscience Research Center, Chang Gung Memorial Hospital Linkou, Taoyuan, Taiwan.
| | - Tsung-Hsun Hsieh
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.
- Neuroscience Research Center, Chang Gung Memorial Hospital Linkou, Taoyuan, Taiwan.
| |
Collapse
|
3
|
Liu X, Li L, Liu Y. Comparative motor effectiveness of non-invasive brain stimulation techniques in patients with Parkinson's disease: A network meta-analysis. Medicine (Baltimore) 2023; 102:e34960. [PMID: 37773851 PMCID: PMC10545289 DOI: 10.1097/md.0000000000034960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/04/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Although noninvasive brain stimulation (NIBS) techniques are an effective alternative treatment option, their relative effects in patients with Parkinson's disease (PD) remain undefined. Here, we aimed to compare motor efficacy of the NIBS techniques in PD. METHODS We carried out an electronic search in PubMed, Embase, Cochrane Library, CINAHL, PEDro and PsycINFO (accessed via Ovid) for articles published until August 2022. The treatment efficacy of motor function was quantified by the Unified Parkinson's disease rating scale part III. RESULTS 28 randomized controlled trials with parallel group were included in the analysis, enrolling 1057 patients. In the "on" state, high-frequency repetitive transcranial magnetic stimulation (HFrTMS) conferred better short-term and long-term efficacy compared to transcranial direct current stimulation. Surface under the cumulative ranking curve rank showed that HFrTMS combined with transcranial direct current stimulation and low-frequency TMS ranked first among PD in improving motor function. In the "off" state, there were no significant differences in most of the treatments, but surface under the cumulative ranking curve rank showed that continuous theta burst stimulation and low-frequency TMS had the highest short- and long-term effect in improving motor function. CONCLUSION HFrTMS is an effective intervention in improving motor function. Besides, its combination with another NIBS technique produces better therapeutic effects in the "on" state.
Collapse
Affiliation(s)
- Xuan Liu
- Beijing Sport University, Beijing, China
| | - Lei Li
- Beijing Chunlizhengda Medical Instruments Co., Ltd, Beijing, China
| | - Ye Liu
- Beijing Sport University, Beijing, China
| |
Collapse
|
4
|
Fujikawa J, Morigaki R, Yamamoto N, Oda T, Nakanishi H, Izumi Y, Takagi Y. Therapeutic Devices for Motor Symptoms in Parkinson’s Disease: Current Progress and a Systematic Review of Recent Randomized Controlled Trials. Front Aging Neurosci 2022; 14:807909. [PMID: 35462692 PMCID: PMC9020378 DOI: 10.3389/fnagi.2022.807909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/14/2022] [Indexed: 11/29/2022] Open
Abstract
Background Pharmacotherapy is the first-line treatment option for Parkinson’s disease, and levodopa is considered the most effective drug for managing motor symptoms. However, side effects such as motor fluctuation and dyskinesia have been associated with levodopa treatment. For these conditions, alternative therapies, including invasive and non-invasive medical devices, may be helpful. This review sheds light on current progress in the development of devices to alleviate motor symptoms in Parkinson’s disease. Methods We first conducted a narrative literature review to obtain an overview of current invasive and non-invasive medical devices and thereafter performed a systematic review of recent randomized controlled trials (RCTs) of these devices. Results Our review revealed different characteristics of each device and their effectiveness for motor symptoms. Although invasive medical devices are usually highly effective, surgical procedures can be burdensome for patients and have serious side effects. In contrast, non-pharmacological/non-surgical devices have fewer complications. RCTs of non-invasive devices, especially non-invasive brain stimulation and mechanical peripheral stimulation devices, have proven effectiveness on motor symptoms. Nearly no non-invasive devices have yet received Food and Drug Administration certification or a CE mark. Conclusion Invasive and non-invasive medical devices have unique characteristics, and several RCTs have been conducted for each device. Invasive devices are more effective, while non-invasive devices are less effective and have lower hurdles and risks. It is important to understand the characteristics of each device and capitalize on these.
Collapse
Affiliation(s)
- Joji Fujikawa
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Ryoma Morigaki
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
- *Correspondence: Ryoma Morigaki,
| | - Nobuaki Yamamoto
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
- Department of Neurology, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Teruo Oda
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Hiroshi Nakanishi
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Yuishin Izumi
- Department of Neurology, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Yasushi Takagi
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| |
Collapse
|
5
|
de Oliveira PCA, de Araújo TAB, Machado DGDS, Rodrigues AC, Bikson M, Andrade SM, Okano AH, Simplicio H, Pegado R, Morya E. Transcranial Direct Current Stimulation on Parkinson's Disease: Systematic Review and Meta-Analysis. Front Neurol 2022; 12:794784. [PMID: 35082749 PMCID: PMC8785799 DOI: 10.3389/fneur.2021.794784] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/30/2021] [Indexed: 12/30/2022] Open
Abstract
Background: Clinical impact of transcranial direct current stimulation (tDCS) alone for Parkinson's disease (PD) is still a challenge. Thus, there is a need to synthesize available results, analyze methodologically and statistically, and provide evidence to guide tDCS in PD. Objective: Investigate isolated tDCS effect in different brain areas and number of stimulated targets on PD motor symptoms. Methods: A systematic review was carried out up to February 2021, in databases: Cochrane Library, EMBASE, PubMed/MEDLINE, Scopus, and Web of science. Full text articles evaluating effect of active tDCS (anodic or cathodic) vs. sham or control on motor symptoms of PD were included. Results: Ten studies (n = 236) were included in meta-analysis and 25 studies (n = 405) in qualitative synthesis. The most frequently stimulated targets were dorsolateral prefrontal cortex and primary motor cortex. No significant effect was found among single targets on motor outcomes: Unified Parkinson's Disease Rating Scale (UPDRS) III – motor aspects (MD = −0.98%, 95% CI = −10.03 to 8.07, p = 0.83, I2 = 0%), UPDRS IV – dyskinesias (MD = −0.89%, CI 95% = −3.82 to 2.03, p = 0.55, I2 = 0%) and motor fluctuations (MD = −0.67%, CI 95% = −2.45 to 1.11, p = 0.46, I2 = 0%), timed up and go – gait (MD = 0.14%, CI 95% = −0.72 to 0.99, p = 0.75, I2 = 0%), Berg Balance Scale – balance (MD = 0.73%, CI 95% = −1.01 to 2.47, p = 0.41, I2 = 0%). There was no significant effect of single vs. multiple targets in: UPDRS III – motor aspects (MD = 2.05%, CI 95% = −1.96 to 6.06, p = 0.32, I2 = 0%) and gait (SMD = −0.05%, 95% CI = −0.28 to 0.17, p = 0.64, I2 = 0%). Simple univariate meta-regression analysis between treatment dosage and effect size revealed that number of sessions (estimate = −1.7, SE = 1.51, z-score = −1.18, p = 0.2, IC = −4.75 to 1.17) and cumulative time (estimate = −0.07, SE = 0.07, z-score = −0.99, p = 0.31, IC = −0.21 to 0.07) had no significant association. Conclusion: There was no significant tDCS alone short-term effect on motor function, balance, gait, dyskinesias or motor fluctuations in Parkinson's disease, regardless of brain area or targets stimulated.
Collapse
Affiliation(s)
- Paloma Cristina Alves de Oliveira
- Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil
| | - Thiago Anderson Brito de Araújo
- Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil
| | | | - Abner Cardoso Rodrigues
- Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States
| | | | - Alexandre Hideki Okano
- Center for Mathematics, Computing and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil
| | - Hougelle Simplicio
- Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil.,Rehabilitation Center, Anita Garibaldi Center for Education and Health, Santos Dumont Institute, Macaíba, Brazil.,Department of Biomedical Sciences, State University of Rio Grande do Norte, Mossoró, Brazil.,Neuron-Care Unit in Neurosurgery, Hospital Rio Grande, Natal, Brazil
| | - Rodrigo Pegado
- Program in Rehabilitation Science, Program in Health Science, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Edgard Morya
- Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil
| |
Collapse
|
6
|
Nascimento LR, Nakamura-Palacios EM, Boening A, Cordeiro BNL, Cabral DL, Swarowsky A, Arêas GPT, Paiva WS, da Silva Arêas FZ. Transcranial direct current stimulation (tDCS) in addition to walking training on walking, mobility, and reduction of falls in Parkinson's disease: study protocol for a randomized clinical trial. Trials 2021; 22:647. [PMID: 34548110 PMCID: PMC8454107 DOI: 10.1186/s13063-021-05603-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 09/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) has the potential to modulate cortical excitability and enhance the effects of walking training in people with Parkinson's disease. This study will examine the efficacy of the addition of tDCS to a task-specific walking training to improve walking and mobility and to reduce falls in people with Parkinson's disease. METHODS This is a two-arm, prospectively registered, randomized trial with concealed allocation, blinded assessors, participants and therapists, and intention-to-treat analysis. Twenty-four individuals with Parkinson's disease, categorized as slow or intermediate walkers (walking speeds ≤ 1.0 m/s), will be recruited. The experimental group will undertake a 30-min walking training associated with tDCS, for 4 weeks. The control group will undertake the same walking training, but with sham-tDCS. The primary outcome will be comfortable walking speed. Secondary outcomes will include walking step length, walking cadence, walking confidence, mobility, freezing of gait, fear of falling, and falls. Outcomes will be collected by a researcher blinded to group allocation at baseline (week 0), after intervention (week 4), and 1 month beyond intervention (week 8). DISCUSSION tDCS associated with walking training may help improve walking of slow and intermediate walkers with Parkinson's disease. If walking is enhanced, the benefits may be accompanied by better mobility and reduced fear of falling, and individuals may experience greater free-living physical activity at home and in the community. TRIAL REGISTRATION Brazilian Registry of Clinical Trials (ReBEC) RBR-6bvnx6 . Registered on September 23, 2019.
Collapse
Affiliation(s)
- Lucas Rodrigues Nascimento
- Center of Health Sciences, Discipline of Physical Therapy, Universidade Federal do Espírito Santo (UFES), 1468 Marechal Campos Avenue, Maruípe, Vitória, ES, 29043900, Brazil
- NeuroGroup, Department of Physical Therapy, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Ester Miyuki Nakamura-Palacios
- Laboratory of Cognitive Sciences and Neuropsychopharmacology, Department of Physiological Sciences, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | - Augusto Boening
- Center of Health Sciences, Discipline of Physical Therapy, Universidade Federal do Espírito Santo (UFES), 1468 Marechal Campos Avenue, Maruípe, Vitória, ES, 29043900, Brazil
| | - Bárbara Naeme Lima Cordeiro
- Center of Health Sciences, Discipline of Physical Therapy, Universidade Federal do Espírito Santo (UFES), 1468 Marechal Campos Avenue, Maruípe, Vitória, ES, 29043900, Brazil
| | - Daniel Lyrio Cabral
- Center of Health Sciences, Discipline of Physical Therapy, Universidade Federal do Espírito Santo (UFES), 1468 Marechal Campos Avenue, Maruípe, Vitória, ES, 29043900, Brazil
| | - Alessandra Swarowsky
- Department of Physical Therapy, Universidade Estadual de Santa Catarina (UDESC), Florianópolis, SC, Brazil
- Doctor of Physical Therapy Program, Advent Health University, Orlando, USA
| | | | - Wellingson Silva Paiva
- Neurosurgery Division, Department of Neurology, Clinical Hospital, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Fernando Zanela da Silva Arêas
- Center of Health Sciences, Discipline of Physical Therapy, Universidade Federal do Espírito Santo (UFES), 1468 Marechal Campos Avenue, Maruípe, Vitória, ES, 29043900, Brazil.
- Laboratory of Cognitive Sciences and Neuropsychopharmacology, Department of Physiological Sciences, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil.
| |
Collapse
|
7
|
Terenzi D, Catalan M, Polverino P, Bertolotti C, Manganotti P, Rumiati RI, Aiello M. Effects of tDCS on reward responsiveness and valuation in Parkinson's patients with impulse control disorders. J Neurol 2021; 269:1557-1565. [PMID: 34333702 DOI: 10.1007/s00415-021-10733-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/18/2021] [Accepted: 07/26/2021] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) patients with impulse control disorders (ICD) frequently report hypersensitivity to rewards. However, a few studies have explored the effectiveness of modulation techniques on symptoms experienced by these patients. In this study, we assessed the effect of anodal tDCS over the DLPFC on reward responsiveness and valuation in PD patients with ICD. 43 participants (15 PD patients with ICD, 13 PD without ICD, and 15 healthy matched controls) were asked to perform a reward-craving test employing both explicit (self-ratings of liking and wanting) and implicit (heart rate and skin conductance response) measures, as well as two temporal discounting tasks with food and money rewards. Each participant performed the experimental tasks during active anodal tDCS of the left dorsolateral prefrontal cortex (DLPFC), anodal tDCS of the primary motor cortex (M1), and sham tDCS. Results showed increased wanting and a steeper temporal discounting of rewards in PD with ICD compared to the other groups. Moreover, we found that PD without ICD exhibit reduced liking for rewards. tDCS results capable to modulate the altered intensity of PD patients' liking, but not wanting and temporal discounting of rewards in PD patients with ICD. These findings confirm that alterations in reward responsiveness and valuation are characteristics of impulse control disorders in patients with PD but suggest that anodal tDCS over the left DLPFC is not capable to influence these processes. At the same time, they provide new insight into affective experience of rewards in PD.
Collapse
Affiliation(s)
- Damiano Terenzi
- Area of Neuroscience, SISSA, Via Bonomea, 265, Trieste, TS, Italy.,Department of Decision Neuroscience and Nutrition, German Institute of Human Nutrition, Potsdam Rehbrücke, Nuthetal, Germany.,Berlin Institute of Health, Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin, Germany.,Deutsches Zentrum Für Diabetes, Neuherberg, Germany
| | - Mauro Catalan
- Clinical Unit of Neurology, Department of Medical Sciences, University Hospital and Health Services of Trieste, University of Trieste, Trieste, Italy
| | - Paola Polverino
- Clinical Unit of Neurology, Department of Medical Sciences, University Hospital and Health Services of Trieste, University of Trieste, Trieste, Italy
| | - Claudio Bertolotti
- Clinical Unit of Neurology, Department of Medical Sciences, University Hospital and Health Services of Trieste, University of Trieste, Trieste, Italy
| | - Paolo Manganotti
- Clinical Unit of Neurology, Department of Medical Sciences, University Hospital and Health Services of Trieste, University of Trieste, Trieste, Italy
| | - Raffaella I Rumiati
- Area of Neuroscience, SISSA, Via Bonomea, 265, Trieste, TS, Italy.,SSAS - Scuola superiore di Studi Avanzati Sapienza, Rome, Italy
| | - Marilena Aiello
- Area of Neuroscience, SISSA, Via Bonomea, 265, Trieste, TS, Italy.
| |
Collapse
|
8
|
Nascimento LR, do Carmo WA, de Oliveira GP, Arêas FZDS, Dias FMV. Transcranial direct current stimulation provides no clinically important benefits over walking training for improving walking in Parkinson's disease: a systematic review. J Physiother 2021; 67:190-196. [PMID: 34147400 DOI: 10.1016/j.jphys.2021.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022] Open
Abstract
QUESTIONS Does walking training combined with transcranial direct current stimulation (tDCS) improve walking (ie, speed, cadence and step length) and reduce falls and freezing, compared with no/sham intervention, in people with Parkinson's disease? Is walking training combined with tDCS superior to walking training alone? Are any benefits carried over to social participation and/or maintained beyond the intervention period? DESIGN A systematic review with meta-analyses of randomised clinical trials. PARTICIPANTS Ambulatory adults with a clinical diagnosis of Parkinson's disease. INTERVENTION tDCS combined with walking training. OUTCOME MEASURES Primary outcomes were walking speed, cadence and step length. Secondary outcomes were number of falls, fear of falling, freezing of gait and social participation. RESULTS Five trials involving 117 participants were included. The mean PEDro score of the included trials was 8 out of 10. Participants undertook training for 30 to 60 minutes, two to three times per week, on average for 4 weeks. Moderate-quality evidence indicated that the addition of tDCS to walking training produced negligible additional benefit over the effect of walking training alone on walking speed (MD -0.01 m/s, 95% CI -0.05 to 0.04), step length (MD 1.2 cm, 95% CI -1.2 to 3.5) or cadence (MD -3 steps/minute, 95% CI -6 to 1). No evidence was identified with which to estimate the effect of the addition of tDCS to walking training on freezing of gait, falls and social participation. CONCLUSION The addition of tDCS to walking training provided no clinically important benefits on walking in ambulatory people with Parkinson's disease. REGISTRATION PROSPERO CRD42020162908.
Collapse
Affiliation(s)
- Lucas Rodrigues Nascimento
- Center of Health Sciences, Discipline of Physiotherapy, Universidade Federal do Espírito Santo, Vitória, Brazil; NeuroGroup, Discipline of Physiotherapy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Willian Assis do Carmo
- Center of Health Sciences, Discipline of Physiotherapy, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Gabriela Pinto de Oliveira
- Center of Health Sciences, Discipline of Physiotherapy, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Fernando Zanela da Silva Arêas
- Center of Health Sciences, Discipline of Physiotherapy, Universidade Federal do Espírito Santo, Vitória, Brazil; Laboratory of Cognitive Sciences and Neuropsychopharmacology, Department of Physiological Sciences, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Fernanda Moura Vargas Dias
- Center of Health Sciences, Discipline of Physiotherapy, Universidade Federal do Espírito Santo, Vitória, Brazil
| |
Collapse
|
9
|
Suárez-García DMA, Birba A, Zimerman M, Diazgranados JA, Lopes da Cunha P, Ibáñez A, Grisales-Cárdenas JS, Cardona JF, García AM. Rekindling Action Language: A Neuromodulatory Study on Parkinson's Disease Patients. Brain Sci 2021; 11:887. [PMID: 34356122 PMCID: PMC8301982 DOI: 10.3390/brainsci11070887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
Impairments of action semantics (a cognitive domain that critically engages motor brain networks) are pervasive in early Parkinson's disease (PD). However, no study has examined whether action semantic skills in persons with this disease can be influenced by non-invasive neuromodulation. Here, we recruited 22 PD patients and performed a five-day randomized, blinded, sham-controlled study to assess whether anodal transcranial direct current stimulation (atDCS) over the primary motor cortex, combined with cognitive training, can boost action-concept processing. On day 1, participants completed a picture-word association (PWA) task involving action-verb and object-noun conditions. They were then randomly assigned to either an atDCS (n = 11, 2 mA for 20 m) or a sham tDCS (n = 11, 2 mA for 30 s) group and performed an online PWA practice over three days. On day 5, they repeated the initial protocol. Relative to sham tDCS, the atDCS group exhibited faster reaction times for action (as opposed to object) concepts in the post-stimulation test. This result was exclusive to the atDCS group and held irrespective of the subjects' cognitive, executive, and motor skills, further attesting to its specificity. Our findings suggest that action-concept deficits in PD are distinctively grounded in motor networks and might be countered by direct neuromodulation of such circuits. Moreover, they provide new evidence for neurosemantic models and inform a thriving agenda in the embodied cognition framework.
Collapse
Affiliation(s)
- Diana M. A. Suárez-García
- Facultad de Psicología, Universidad del Valle, Santiago de Cali 76001, Colombia; (D.M.A.S.-G.); (J.S.G.-C.)
| | - Agustina Birba
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires B1644BID, Argentina; (A.B.); (M.Z.); (P.L.d.C.); (A.I.)
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1033AAJ, Argentina
| | - Máximo Zimerman
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires B1644BID, Argentina; (A.B.); (M.Z.); (P.L.d.C.); (A.I.)
| | - Jesús A. Diazgranados
- Centro Médico de Atención Neurológica “Neurólogos de Occidente”, Santiago de Cali 76001, Colombia;
| | - Pamela Lopes da Cunha
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires B1644BID, Argentina; (A.B.); (M.Z.); (P.L.d.C.); (A.I.)
- Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Buenos Aires C1425FQD, Argentina
| | - Agustín Ibáñez
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires B1644BID, Argentina; (A.B.); (M.Z.); (P.L.d.C.); (A.I.)
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1033AAJ, Argentina
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA 94143, USA
- Trinity College Dublin (TCD), D02R590 Dublin 2, Ireland
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago 8320000, Chile
| | - Johan S. Grisales-Cárdenas
- Facultad de Psicología, Universidad del Valle, Santiago de Cali 76001, Colombia; (D.M.A.S.-G.); (J.S.G.-C.)
| | - Juan Felipe Cardona
- Facultad de Psicología, Universidad del Valle, Santiago de Cali 76001, Colombia; (D.M.A.S.-G.); (J.S.G.-C.)
| | - Adolfo M. García
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires B1644BID, Argentina; (A.B.); (M.Z.); (P.L.d.C.); (A.I.)
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1033AAJ, Argentina
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA 94143, USA
- Trinity College Dublin (TCD), D02R590 Dublin 2, Ireland
- Faculty of Education, National University of Cuyo (UNCuyo), Mendoza M5502GKA, Argentina
- Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago 9170020, Chile
| |
Collapse
|
10
|
Pol F, Salehinejad MA, Baharlouei H, Nitsche MA. The effects of transcranial direct current stimulation on gait in patients with Parkinson's disease: a systematic review. Transl Neurodegener 2021; 10:22. [PMID: 34183062 PMCID: PMC8240267 DOI: 10.1186/s40035-021-00245-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/07/2021] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Gait problems are an important symptom in Parkinson's disease (PD), a progressive neurodegenerative disease. Transcranial direct current stimulation (tDCS) is a neuromodulatory intervention that can modulate cortical excitability of the gait-related regions. Despite an increasing number of gait-related tDCS studies in PD, the efficacy of this technique for improving gait has not been systematically investigated yet. Here, we aimed to systematically explore the effects of tDCS on gait in PD, based on available experimental studies. METHODS Using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) approach, PubMed, Web of Science, Scopus, and PEDro databases were searched for randomized clinical trials assessing the effect of tDCS on gait in patients with PD. RESULTS Eighteen studies were included in this systematic review. Overall, tDCS targeting the motor cortex and supplementary motor area bilaterally seems to be promising for gait rehabilitation in PD. Studies of tDCS targeting the dorosolateral prefrontal cortex or cerebellum showed more heterogeneous results. More studies are needed to systematically compare the efficacy of different tDCS protocols, including protocols applying tDCS alone and/or in combination with conventional gait rehabilitation treatment in PD. CONCLUSIONS tDCS is a promising intervention approach to improving gait in PD. Anodal tDCS over the motor areas has shown a positive effect on gait, but stimulation of other areas is less promising. However, the heterogeneities of methods and results have made it difficult to draw firm conclusions. Therefore, systematic explorations of tDCS protocols are required to optimize the efficacy.
Collapse
Affiliation(s)
- Fateme Pol
- Musculoskeletal Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Ali Salehinejad
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Hamzeh Baharlouei
- Musculoskeletal Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Michael A. Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| |
Collapse
|
11
|
Workman CD, Fietsam AC, Rudroff T. Tolerability and Blinding of Transcranial Direct Current Stimulation in People with Parkinson's Disease: A Critical Review. Brain Sci 2020; 10:brainsci10070467. [PMID: 32698528 PMCID: PMC7407758 DOI: 10.3390/brainsci10070467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/08/2020] [Accepted: 07/16/2020] [Indexed: 12/23/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is accompanied by transient sensations (e.g., tingling, itching, burning), which may affect treatment outcomes or break the blinding of the study protocol. Assessing tolerability and blinding is integral to providing ample evidence of a "real effect" from the applied stimulation and dispelling the possibility of placebo effects. People with Parkinson's disease (PwPD) endure many motor and non-motor symptoms that might be amenable to tDCS. However, because the disease also affects sensation capabilities, these subjects might report tolerability and blinding differently than other cohorts. Therefore, the purpose of this review was to aggregate the tolerability and blinding reports of tDCS studies in PwPD and recommend a standard tolerability and blinding reporting practice. A literature search of the PubMed and Scopus databases from 1 January 2020 to 1 April 2020 was performed to identify publications that applied tDCS to PwPD. Seventy studies were potentially reviewable, but only 36 (nine with quantitative tolerability reports, 20 with qualitative tolerability reports, and seven that only reported blinding) provided sufficient information to be included in the review. Quantitative information on tDCS tolerability and blinding maintenance in PwPD is scarce, and future reviews and metanalyses should carefully consider the possibility of placebo effects in their included studies.
Collapse
Affiliation(s)
- Craig D. Workman
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52242, USA; (A.C.F.); (T.R.)
- Correspondence: ; Tel.: +1-319-467-0746
| | - Alexandra C. Fietsam
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52242, USA; (A.C.F.); (T.R.)
| | - Thorsten Rudroff
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52242, USA; (A.C.F.); (T.R.)
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| |
Collapse
|
12
|
Ganguly J, Murgai A, Sharma S, Aur D, Jog M. Non-invasive Transcranial Electrical Stimulation in Movement Disorders. Front Neurosci 2020; 14:522. [PMID: 32581682 PMCID: PMC7290124 DOI: 10.3389/fnins.2020.00522] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/27/2020] [Indexed: 12/19/2022] Open
Abstract
Dysfunction within large-scale brain networks as the basis for movement disorders is an accepted hypothesis. The treatment options for restoring network function are limited. Non-invasive brain stimulation techniques such as repetitive transcranial magnetic stimulation are now being studied to modify the network. Transcranial electrical stimulation (tES) is also a portable, cost-effective, and non-invasive way of network modulation. Transcranial direct current stimulation and transcranial alternating current stimulation have been studied in Parkinson’s disease, dystonia, tremor, and ataxia. Transcranial pulsed current stimulation and transcranial random noise stimulation are not yet studied enough. The literature in the use of these techniques is intriguing, yet many unanswered questions remain. In this review, we highlight the studies using these four potential tES techniques and their electrophysiological basis and consider the therapeutic implication in the field of movement disorders. The objectives are to consolidate the current literature, demonstrate that these methods are feasible, and encourage the application of such techniques in the near future.
Collapse
Affiliation(s)
- Jacky Ganguly
- Movement Disorder Centre, London Health Sciences Centre, The University of Western Ontario, London, ON, Canada
| | - Aditya Murgai
- Movement Disorder Centre, London Health Sciences Centre, The University of Western Ontario, London, ON, Canada
| | - Soumya Sharma
- Movement Disorder Centre, London Health Sciences Centre, The University of Western Ontario, London, ON, Canada
| | - Dorian Aur
- Movement Disorder Centre, London Health Sciences Centre, The University of Western Ontario, London, ON, Canada
| | - Mandar Jog
- Movement Disorder Centre, London Health Sciences Centre, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
13
|
Lee HK, Ahn SJ, Shin YM, Kang N, Cauraugh JH. Does transcranial direct current stimulation improve functional locomotion in people with Parkinson's disease? A systematic review and meta-analysis. J Neuroeng Rehabil 2019; 16:84. [PMID: 31286974 PMCID: PMC6615099 DOI: 10.1186/s12984-019-0562-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 06/28/2019] [Indexed: 12/22/2022] Open
Abstract
PURPOSE The purpose of this meta-analysis was to investigate the treatment effects of transcranial direct current stimulation (tDCS) on functional locomotion in people with Parkinson's disease (PD). METHODS A systematic literature search identified 18 qualified studies that used tDCS protocols as functional locomotion rehabilitation interventions for people with PD. All included studies used either a randomized control trial or crossover designs with a sham control group. Meta-analysis quantified both (a) short-term treatment effects: change in functional locomotion between baseline and immediate posttests on 18 comparisons and (b) long-term treatment effects: change in functional locomotion between baseline and delayed retention tests on six comparisons. Moreover, we performed moderator variable analyses for comparing effect sizes between tDCS targeting multiple brain regions and tDCS targeting a single brain region. RESULTS Random effects model meta-analyses revealed a significant short-term treatment effect (effect size = 0.359; P = 0.001), whereas no significant long-term treatment effects were identified (effect size = 0.164; P = 0.314). In addition, tDCS protocols that targeted multiple brain regions showed relatively more positive effects on functional locomotion than protocols that targeted a single brain region. CONCLUSIONS These meta-analytic findings indicate that tDCS protocols may show immediate positive effects on functional locomotion in people with PD. However, given the relatively low effect size, exploring more appropriate tDCS protocols (i.e., targeting multiple motor and prefrontal regions and medication condition) should be a focus in future studies.
Collapse
Affiliation(s)
- Hyo Keun Lee
- Division of Sport Science, Neuromechanical Rehabilitation Research Laboratory, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, South Korea
- Vector Biomechanics Inc., Yongin, South Korea
| | - Se Ji Ahn
- Division of Sport Science, Neuromechanical Rehabilitation Research Laboratory, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, South Korea
| | - Yang Mi Shin
- Division of Sport Science, Neuromechanical Rehabilitation Research Laboratory, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, South Korea
| | - Nyeonju Kang
- Division of Sport Science, Neuromechanical Rehabilitation Research Laboratory, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, South Korea
- Sport Science Institute, Incheon National University, Incheon, South Korea
| | - James H. Cauraugh
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida USA
| |
Collapse
|