1
|
Varol H, Wagenmakers A, Hoeft K, Callemeyn J, Bodewes R, Bramer W, Stubbs A, Kramann R, Naesens M, Clahsen-Van Groningen MC. Expanding the Scope of Microvascular Inflammation: Unveiling Its Presence Beyond Antibody-Mediated Rejection Into T-Cell Mediated Contexts. Transpl Int 2025; 37:13464. [PMID: 39834692 PMCID: PMC11742949 DOI: 10.3389/ti.2024.13464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025]
Abstract
Microvascular inflammation (MVI) in kidney transplant biopsies is mainly associated with antibody-mediated rejection (AMR), sparking debate within the Banff Classification of Renal Allograft Pathology regarding its exclusivity. This study reviewed the literature on MVI in T cell-mediated rejection (TCMR) and analyzed MVI in our transplant population. We searched English publications in MEDLINE, Embase, Web of Science, Cochrane, and Google Scholar until June 2024, focusing on glomerulitis (g), peritubular capillaritis (ptc), or MVI in kidney transplant biopsies classified as TCMR. Additionally, we examined g, ptc, and MVI in 69 patients with AMR, TCMR, and no rejection. Our search yielded 541 citations, with 10 studies included, covering 810 TCMR and 156 AMR biopsies. The studies showed g, ptc, and MVI were present in TCMR but were less prevalent and severe than in AMR. In our cohort, AMR had significantly higher g, ptc, and MVI scores compared to aTCMR and ATN, however, aTCMR also displayed MVI. These findings confirm that MVI occurs in aTCMR and should not be exclusively linked to AMR. These findings highlight the need to further explore MVI's significance in TCMR and investigate the inflammatory composition. This could refine the Banff Classification, improving Classification accuracy of kidney transplant pathology assessments.
Collapse
Affiliation(s)
- Hilal Varol
- Department of Pathology, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Anne Wagenmakers
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Konrad Hoeft
- Division of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Jasper Callemeyn
- Division of Nephrology, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium
| | - Roos Bodewes
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Wichor Bramer
- Medical Library, Erasmus MC, Erasmus University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Andrew Stubbs
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Pathology, Clinical Bioinformatics Unit, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Rafael Kramann
- Division of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Maarten Naesens
- Division of Nephrology, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium
| | - Marian C Clahsen-Van Groningen
- Department of Pathology, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
- Division of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
2
|
Bajaj V, Kashif A, Singh V, Sharma S, Venkatesan S. Glomerulitis in T cell-mediated renal allograft rejection and antibody-mediated rejection histology in the absence of donor-specific antibodies heralds a similar clinico-morphologic pattern of injury to an antibody-mediated rejection: A systematic review. Med J Armed Forces India 2024; 80:620-631. [PMID: 39990525 PMCID: PMC11842912 DOI: 10.1016/j.mjafi.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 08/28/2024] [Indexed: 02/25/2025] Open
Abstract
The morphologic finding of transplant glomerulitis (g) forms important evidence of microvascular injury. Besides antibody-mediated rejection (ABMR), this morphological feature is also seen in acute cellular rejection (ACR) and vasculitis but not included in the grading criteria for cellular rejection. A systematic review was thus conducted to summarize the current evidence and shed light on the quantum of impetus to be given to this finding when encountered during evaluation of renal biopsies. Out of a total of 13 studies selected, 06 studies supported the histologic finding of glomerulitis in ACR and non-DSA ABMR morphologies with variable incidence ranging from 15 to 21%. Seven studies supported glomerulitis as an independent prognostic marker for graft outcome at 1 year post transplant with or without DSA with highest HR reported of 4.52 and lowest being 01. Reviewing the present literature revealed interesting insights into occurrence, nature, molecular expression, role in glomerular injury and long-term outcomes with glomerulitis. It is recommended to approach the treatment of such lesions with heightened caution, as there appear to be elevated rates of graft failure, delayed graft function and Transplant glomerulopathy.
Collapse
Affiliation(s)
- Varun Bajaj
- Assistant Professor, Department of Pathology, Armed Forces Medical College, Pune, India
| | - A.W. Kashif
- Professor, Department of Pathology, Armed Forces Medical College, Pune, India
| | - Vikram Singh
- Assistant Professor, Department of Pathology, Armed Forces Medical College, Pune, India
| | - Surabhi Sharma
- Senior Resident (Community Medicine), Army Institute of Cardiothoracic Sciences, Pune, India
| | | |
Collapse
|
3
|
Charmetant X, Chen CC, Hamada S, Goncalves D, Saison C, Rabeyrin M, Rabant M, Duong van Huyen JP, Koenig A, Mathias V, Barba T, Lacaille F, le Pavec J, Brugière O, Taupin JL, Chalabreysse L, Mornex JF, Couzi L, Graff-Dubois S, Jeger-Madiot R, Tran-Dinh A, Mordant P, Paidassi H, Defrance T, Morelon E, Badet L, Nicoletti A, Dubois V, Thaunat O. Inverted direct allorecognition triggers early donor-specific antibody responses after transplantation. Sci Transl Med 2022; 14:eabg1046. [PMID: 36130013 DOI: 10.1126/scitranslmed.abg1046] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The generation of antibodies against donor-specific major histocompatibility complex (MHC) antigens, a type of donor-specific antibodies (DSAs), after transplantation requires that recipient's allospecific B cells receive help from T cells. The current dogma holds that this help is exclusively provided by the recipient's CD4+ T cells that recognize complexes of recipient's MHC II molecules and peptides derived from donor-specific MHC alloantigens, a process called indirect allorecognition. Here, we demonstrated that, after allogeneic heart transplantation, CD3ε knockout recipient mice lacking T cells generate a rapid, transient wave of switched alloantibodies, predominantly directed against MHC I molecules. This is due to the presence of donor CD4+ T cells within the graft that recognize intact recipient's MHC II molecules expressed by B cell receptor-activated allospecific B cells. Indirect evidence suggests that this inverted direct pathway is also operant in patients after transplantation. Resident memory donor CD4+ T cells were observed in perfusion liquids of human renal and lung grafts and acquired B cell helper functions upon in vitro stimulation. Furthermore, T follicular helper cells, specialized in helping B cells, were abundant in mucosa-associated lymphoid tissue of lung and intestinal grafts. In the latter, more graft-derived passenger T cells correlated with the detection of donor T cells in recipient's circulation; this, in turn, was associated with an early transient anti-MHC I DSA response and worse transplantation outcomes. We conclude that this inverted direct allorecognition is a possible explanation for the early transient anti-MHC DSA responses frequently observed after lung or intestinal transplantations.
Collapse
Affiliation(s)
- Xavier Charmetant
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Chien-Chia Chen
- Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Sarah Hamada
- French National Blood Service (EFS), HLA Laboratory, 69150 Décines, France
| | - David Goncalves
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Carole Saison
- French National Blood Service (EFS), HLA Laboratory, 69150 Décines, France
| | - Maud Rabeyrin
- Department of Pathology, Hospices Civils de Lyon, Groupement Hospitalier Est, 69500 Bron, France
| | - Marion Rabant
- Pathology Department, Assistance Publique-Hôpitaux de Paris, Hôpital Necker, 75015 Paris, France
| | | | - Alice Koenig
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), 69008 Lyon, France
- Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, 69003 Lyon, France
| | - Virginie Mathias
- French National Blood Service (EFS), HLA Laboratory, 69150 Décines, France
| | - Thomas Barba
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Florence Lacaille
- Pediatric Gastroenterology-Hepatology-Nutrition Unit, Hôpital Universitaire Necker-Enfants malades, 75015 Paris, France
| | - Jérôme le Pavec
- Department of Pulmonology and Lung Transplantation, Marie Lannelongue Hospital, 92350 Le Plessis Robinson, France
| | - Olivier Brugière
- Pulmonology Department, Adult Cystic Fibrosis Centre and Lung Transplantation Department, Foch Hospital, 92150 Suresnes, France
| | - Jean-Luc Taupin
- Laboratory of Immunology and Histocompatibility, Hôpital Saint-Louis APHP, 75010 Paris, France
- INSERM U976 Institut de Recherche Saint-Louis, Université Paris Diderot, 75010 Paris, France
| | - Lara Chalabreysse
- Department of Pathology, Hospices Civils de Lyon, Groupement Hospitalier Est, 69500 Bron, France
| | - Jean-François Mornex
- Université de Lyon, Université Lyon 1, INRAE, IVPC, UMR754, 69000 Lyon, France
- Department of Pneumology, GHE, Hospices Civils de Lyon, 69000 Lyon, France
| | - Lionel Couzi
- Department of Nephrology, Transplantation, Dialysis, Apheresis, Pellegrin Hospital, 33000 Bordeaux, France
| | - Stéphanie Graff-Dubois
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), 75013 Paris, France
| | - Raphaël Jeger-Madiot
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), 75013 Paris, France
| | - Alexy Tran-Dinh
- Université de Paris, LVTS, INSERM U1148, 75018 Paris, France
| | - Pierre Mordant
- Department of Vascular and Thoracic Surgery, Assistance Publique-Hôpitaux de Paris, Bichat-Claude Bernard Hospital, 75018 Paris, France
| | - Helena Paidassi
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Thierry Defrance
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Emmanuel Morelon
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), 69008 Lyon, France
- Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, 69003 Lyon, France
| | - Lionel Badet
- Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), 69008 Lyon, France
- Department of Urology and Transplantation Surgery, Hospices Civils de Lyon, Edouard Herriot Hospital, 69003 Lyon, France
| | | | - Valérie Dubois
- French National Blood Service (EFS), HLA Laboratory, 69150 Décines, France
| | - Olivier Thaunat
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), 69008 Lyon, France
- Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, 69003 Lyon, France
| |
Collapse
|
4
|
Zhang ZW, Wang M, Hu JJ, Xu G, Zhang Y, Zhang N. Decreased Expression of MicroRNA-107 in B Lymphocytes of Patients with Antibody-Mediated Renal Allograft Rejection. TOHOKU J EXP MED 2018; 246:87-96. [PMID: 30333363 DOI: 10.1620/tjem.246.87] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNA molecules that participate in normal B cell lineage development through posttranscriptional gene regulation. Antibody-mediated renal allograft rejection (ABMR) is emerging as one of the most common serious threats to renal transplant patients. In this study, we explored the role of miRNAs in the pathogenesis of ABMR. The differentially expressed miRNAs were identified by Affymetrix miRNA microarray analysis using B lymphocytes from 5 recipients and 5 volunteers. Based on quantitative RT-PCR, the expression levels of miR-107 were lower in the B lymphocytes from recipients than in those from volunteers. Computational analysis predicted that 3'-untranslated region of the autophagy-related protein 12 (ATG12) mRNA was targeted by miR-107, and we identified ATG12 as a target of miR-107 by Luciferase assay. Importantly, the expression levels of ATG12 in B lymphocytes of recipients were higher than those in the volunteer group, and miR-107 mimic significantly decreased ATG12 expression and formation of autolysosomes in B lymphocytes of recipients. Furthermore, we observed that levels of autophagy in B lymphocytes of transplant recipients were higher than those in B cells from volunteers. These findings suggest that miR-107 may contribute to the regulation of autophagy via targeting ATG12. Lastly, treatment with an miR-107 mimic caused the decrease in the secretion of IgG and IgM antibodies from B lymphocytes of transplant recipients, indicating that deregulated miR-107 could be involved in the pathogenesis of ABMR. Taken together, we propose that decreased miR-107 expression is associated with autophagy activation in B lymphocytes from patients with ABMR.
Collapse
Affiliation(s)
- Zhe-Wei Zhang
- Urology Department, The Second Affiliated Hospital, Zhejiang University School of Medicine
| | - Ming Wang
- Urology Department, The Second Affiliated Hospital, Zhejiang University School of Medicine
| | - Jun-Jie Hu
- Urology Department, Lanxi Branch of Lanxi People's Hospital, The Second Affiliated Hospital Zhejiang University School of Medicine
| | - Gang Xu
- Urology Department, The Second Affiliated Hospital, Zhejiang University School of Medicine
| | - Yong Zhang
- Urology Department, The Second Affiliated Hospital, Zhejiang University School of Medicine
| | - Nan Zhang
- Urology Department, The Second Affiliated Hospital, Zhejiang University School of Medicine
| |
Collapse
|