1
|
Ptak L, Meyers RO, Radko‐Ganz O, McDowell KA, Jorgenson M, Chilsen M, Mandelbrot D, Galipeau J, Parajuli S. A Phase I Study Evaluating Safety and Tolerability of Viral-Specific T Cells Against BK-Virus in Adult Kidney Transplant Recipients. J Med Virol 2025; 97:e70357. [PMID: 40249038 PMCID: PMC12007393 DOI: 10.1002/jmv.70357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/05/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025]
Abstract
BK polyomavirus (BKPyV) poses a significant threat to kidney transplant recipients (KTR). Current management primarily involves reducing immunosuppression, which increases the risk of rejection. Cell-based immunotherapy with virus-specific T cells (VST) has emerged as an alternative approach for treating BKPyV in KTRs. This single-center phase I, open-label trial enrolled KTRs with persistent BKPyV-DNAemia and BKPyV nephropathy (BKPyVAN) (NCT05042076) despite being on lower immunosuppression. BK-specific T cells were isolated from leukapheresis products from compatible donors. Patients were treated with VST therapy and followed for 52 weeks. Safety and tolerability were the primary focus of this trial. Three patients completed the trial. No grade III or IV adverse events, acute rejections, or graft versus host disease were reported. All patients tolerated the therapy well, with no significant safety concerns observed during the follow-up period. BK-VST demonstrated promising safety and tolerability profiles in this small cohort of kidney transplant recipients with severe BK infections. These findings suggest that VST therapy may offer a safe adjunctive treatment option for BKPyV infections post-transplantation. Larger studies are needed to confirm these preliminary results and assess long-term efficacy in treating BKPyV infections and preserving graft function in kidney transplant recipients.
Collapse
Affiliation(s)
- Lucy Ptak
- Division of Nephrology, Department of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Ross O. Meyers
- Division of Pharmacy Professional DevelopmentUniversity of Wisconsin‐Madison School of PharmacyMadisonWisconsinUSA
- Program for Advanced Cell TherapyUniversity of Wisconsin Hospital and Clinics and School of Medicine and Public HealthMadisonWisconsinUSA
| | - Olga Radko‐Ganz
- Division of Pharmacy Professional DevelopmentUniversity of Wisconsin‐Madison School of PharmacyMadisonWisconsinUSA
- Program for Advanced Cell TherapyUniversity of Wisconsin Hospital and Clinics and School of Medicine and Public HealthMadisonWisconsinUSA
- University of Wisconsin Carbone Cancer CenterMadisonWisconsinUSA
| | - Kimberly A. McDowell
- Program for Advanced Cell TherapyUniversity of Wisconsin Hospital and Clinics and School of Medicine and Public HealthMadisonWisconsinUSA
| | - Margaret Jorgenson
- Department of PharmacyUniversity of Wisconsin Hospital and ClinicsMadisonWisconsinUSA
| | - Maggie Chilsen
- Clinical Trial InstituteUniversity of Wisconsin‐ School of Medicine and Public HealthMadisonWisconsinUSA
| | - Didier Mandelbrot
- Division of Nephrology, Department of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Jacques Galipeau
- Program for Advanced Cell TherapyUniversity of Wisconsin Hospital and Clinics and School of Medicine and Public HealthMadisonWisconsinUSA
- University of Wisconsin Carbone Cancer CenterMadisonWisconsinUSA
- Division of Hematology and Oncology, Department of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Sandesh Parajuli
- Division of Nephrology, Department of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| |
Collapse
|
2
|
Al‐Talib M, Skaria A, Griffin S. Cellular Immunity Against BK Polyomavirus in Kidney Transplant Recipients: A Comprehensive Review. Transpl Infect Dis 2025; 27:e14401. [PMID: 39499036 PMCID: PMC11827742 DOI: 10.1111/tid.14401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/03/2024] [Accepted: 10/13/2024] [Indexed: 11/07/2024]
Abstract
BK polyomavirus (BKPyV) is an important opportunistic viral infection that complicates kidney transplantation. Uncontrolled viral replication may result in BKPyV-associated nephropathy (BKPyVAN), a major cause of premature allograft damage and failure. In the continued absence of proven treatments, management relies on the empirical reduction of immunosuppression to facilitate an effective host immune response to clear the virus. This may be complicated by the risk of allograft rejection. There is compelling evidence that cellular immune responses are key to establishing control after viral reactivation. Measurable peripheral BKPyV-specific T cell responses temporally correlate with declining viral loads and subsequent clearance. Conversely, these responses are delayed or absent in BKPyVAN. How these peripheral findings correspond to the intragraft response, and whether BKPyV-specific T cells contribute to the immunopathology of BKPyVAN, remains poorly understood. Molecular techniques have provided some insights; however, these have been unable to fully discriminate BKPyVAN from cellular rejection to date. Furthermore, the contributions of components of innate cellular immunity, such as natural killer cells, are not known. Herein, we review the role of cellular immunity in BKPyV infection in kidney transplant recipients. We discuss advances in the understanding of how the development, phenotype, and functionality of these responses may determine the balance between viral control and immunopathology, and how this knowledge is being translated into tools to prognosticate and guide individualized immunosuppression reduction. Lastly, we consider how further elucidation of these responses may inform the design of therapies that would revolutionize how BKPyV is managed after transplantation.
Collapse
Affiliation(s)
- Mohammed Al‐Talib
- Systems Immunity Research InstituteDivision of Infection and ImmunitySchool of MedicineCardiff UniversityCardiffUK
- Bristol Medical SchoolUniversity of BristolBristolUK
| | - Anna Skaria
- Southmead HospitalNorth Bristol NHS TrustBristolUK
| | - Siân Griffin
- Department of Nephrology and TransplantationCardiff and Vale University Health BoardCardiffUK
| |
Collapse
|
3
|
Cioni M, Muscianisi S, De Cicco M, Basso S, Hirsch HH, Fontana I, Catenacci L, Bagnarino J, Siciliano M, Montana Lampo O, Acquafredda G, Boti LTD, Rotella J, Bozza E, Zumelli J, Mebelli K, Baldanti F, Cardillo M, Zecca M, Nocera A, Luppi M, Verrina E, Ginevri F, Comoli P. Control of BKPyV-DNAemia by a Tailored Viro-Immunologic Approach Does Not Lead to BKPyV-Nephropathy Progression and Development of Donor-Specific Antibodies in Pediatric Kidney Transplantation. Microorganisms 2024; 13:48. [PMID: 39858816 PMCID: PMC11767705 DOI: 10.3390/microorganisms13010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/05/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
Polyomavirus BK (BKPyV)-associated nephropathy (BKPyV-nephropathy) remains a significant cause of premature kidney allograft failure. In the absence of effective antiviral treatments, current therapeutic approaches rely on immunosuppression (IS) reduction, possibly at the risk of inducing alloimmunity. Therefore, we sought to explore the long-term effects of a tailored viro-immunologic surveillance and treatment program for BKPyV on the development of alloimmunity and kidney graft outcome. Forty-five pediatric kidney transplant recipients were longitudinally monitored for BKPyV replication, virus-specific immunity, and donor-specific HLA antibodies (DSAs). DNAemia developed in 15 patients who were treated with stepwise IS reduction. Among the other 30 patients, 17 developed DNAuria without DNAemia and 13 always resulted as BKPyV-negative. All patients with DNAemia cleared BKPyV after having mounted a virus-specific cellular immune response, and no biopsy-proven BKPyV-nephropathy was observed. The presence of cytotoxic populations directed to the BKPyV Large-T (LT) antigen early after transplantation protected kidney recipients from developing BKPyV replication, and the appearance of LT-specific T cells in viruric patients prevented the development of BKPyV-DNAemia. In our cohort, no significant correlation was observed between BKPyV-DNAemia and the development of DSA and antibody-mediated rejection. However, patients who experienced and cleared BKPyV-DNAemia had a worse allograft survival at a median follow-up of 18.9 years (p = 0.048). These data need to be confirmed in larger cohorts.
Collapse
Affiliation(s)
- Michela Cioni
- Fondazione Malattie Renali del Bambino, IRCCS G. Gaslini Institute, 16147 Genova, Italy; (M.C.); (A.N.); (E.V.); (F.G.)
- Transfusion Service, IRCCS G. Gaslini Institute, 16147 Genova, Italy
| | - Stella Muscianisi
- Cell Factory, Department of Mother and Child Health, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.M.); (M.D.C.); (S.B.); (L.C.); (M.S.); (O.M.L.); (G.A.); (L.T.D.B.); (J.R.); (E.B.); (J.Z.); (K.M.)
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy;
| | - Marica De Cicco
- Cell Factory, Department of Mother and Child Health, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.M.); (M.D.C.); (S.B.); (L.C.); (M.S.); (O.M.L.); (G.A.); (L.T.D.B.); (J.R.); (E.B.); (J.Z.); (K.M.)
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy;
| | - Sabrina Basso
- Cell Factory, Department of Mother and Child Health, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.M.); (M.D.C.); (S.B.); (L.C.); (M.S.); (O.M.L.); (G.A.); (L.T.D.B.); (J.R.); (E.B.); (J.Z.); (K.M.)
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy;
| | - Hans H. Hirsch
- Transplantation and Clinical Virology, Department of Biomedicine, University of Basel, 4009 Basel, Switzerland;
| | - Iris Fontana
- Vascular and Endovascular Department, Kidney Transplant Surgery Unit, Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Laura Catenacci
- Cell Factory, Department of Mother and Child Health, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.M.); (M.D.C.); (S.B.); (L.C.); (M.S.); (O.M.L.); (G.A.); (L.T.D.B.); (J.R.); (E.B.); (J.Z.); (K.M.)
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy;
| | - Jessica Bagnarino
- Microbiology and Virology, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (J.B.); (F.B.)
| | - Mariangela Siciliano
- Cell Factory, Department of Mother and Child Health, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.M.); (M.D.C.); (S.B.); (L.C.); (M.S.); (O.M.L.); (G.A.); (L.T.D.B.); (J.R.); (E.B.); (J.Z.); (K.M.)
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy;
| | - Oriana Montana Lampo
- Cell Factory, Department of Mother and Child Health, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.M.); (M.D.C.); (S.B.); (L.C.); (M.S.); (O.M.L.); (G.A.); (L.T.D.B.); (J.R.); (E.B.); (J.Z.); (K.M.)
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy;
| | - Gloria Acquafredda
- Cell Factory, Department of Mother and Child Health, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.M.); (M.D.C.); (S.B.); (L.C.); (M.S.); (O.M.L.); (G.A.); (L.T.D.B.); (J.R.); (E.B.); (J.Z.); (K.M.)
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy;
| | - Lou Tina Diana Boti
- Cell Factory, Department of Mother and Child Health, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.M.); (M.D.C.); (S.B.); (L.C.); (M.S.); (O.M.L.); (G.A.); (L.T.D.B.); (J.R.); (E.B.); (J.Z.); (K.M.)
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy;
| | - Jessica Rotella
- Cell Factory, Department of Mother and Child Health, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.M.); (M.D.C.); (S.B.); (L.C.); (M.S.); (O.M.L.); (G.A.); (L.T.D.B.); (J.R.); (E.B.); (J.Z.); (K.M.)
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy;
| | - Eleonora Bozza
- Cell Factory, Department of Mother and Child Health, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.M.); (M.D.C.); (S.B.); (L.C.); (M.S.); (O.M.L.); (G.A.); (L.T.D.B.); (J.R.); (E.B.); (J.Z.); (K.M.)
| | - Jennifer Zumelli
- Cell Factory, Department of Mother and Child Health, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.M.); (M.D.C.); (S.B.); (L.C.); (M.S.); (O.M.L.); (G.A.); (L.T.D.B.); (J.R.); (E.B.); (J.Z.); (K.M.)
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy;
| | - Kristiana Mebelli
- Cell Factory, Department of Mother and Child Health, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.M.); (M.D.C.); (S.B.); (L.C.); (M.S.); (O.M.L.); (G.A.); (L.T.D.B.); (J.R.); (E.B.); (J.Z.); (K.M.)
| | - Fausto Baldanti
- Microbiology and Virology, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (J.B.); (F.B.)
| | - Massimo Cardillo
- Transplantation Immunology, Fondazione Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milano, Italy;
| | - Marco Zecca
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy;
| | - Arcangelo Nocera
- Fondazione Malattie Renali del Bambino, IRCCS G. Gaslini Institute, 16147 Genova, Italy; (M.C.); (A.N.); (E.V.); (F.G.)
- Nephrology, Dialysis and Transplantation Unit, IRCCS G. Gaslini Institute, 16147 Genova, Italy
| | - Mario Luppi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy;
| | - Enrico Verrina
- Fondazione Malattie Renali del Bambino, IRCCS G. Gaslini Institute, 16147 Genova, Italy; (M.C.); (A.N.); (E.V.); (F.G.)
- Nephrology, Dialysis and Transplantation Unit, IRCCS G. Gaslini Institute, 16147 Genova, Italy
| | - Fabrizio Ginevri
- Fondazione Malattie Renali del Bambino, IRCCS G. Gaslini Institute, 16147 Genova, Italy; (M.C.); (A.N.); (E.V.); (F.G.)
- Nephrology, Dialysis and Transplantation Unit, IRCCS G. Gaslini Institute, 16147 Genova, Italy
| | - Patrizia Comoli
- Cell Factory, Department of Mother and Child Health, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.M.); (M.D.C.); (S.B.); (L.C.); (M.S.); (O.M.L.); (G.A.); (L.T.D.B.); (J.R.); (E.B.); (J.Z.); (K.M.)
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy;
| |
Collapse
|
4
|
Parajuli S, Aziz F, Zhong W, Djamali A. BK polyomavirus infection: more than 50 years and still a threat to kidney transplant recipients. FRONTIERS IN TRANSPLANTATION 2024; 3:1309927. [PMID: 38993764 PMCID: PMC11235301 DOI: 10.3389/frtra.2024.1309927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/08/2024] [Indexed: 07/13/2024]
Abstract
BK polyomavirus (BKPyV) is a ubiquitous human polyomavirus and a major infection after kidney transplantation, primarily due to immunosuppression. BKPyV reactivation can manifest as viruria in 30%-40%, viremia in 10%-20%, and BK polyomavirus-associated nephropathy (BKPyVAN) in 1%-10% of recipients. BKPyVAN is an important cause of kidney graft failure. Although the first case of BKPyV was identified in 1971, progress in its management has been limited. Specifically, there is no safe and effective antiviral agent or vaccine to treat or prevent the infection. Even in the current era, the mainstay approach to BKPyV is a reduction in immunosuppression, which is also limited by safety (risk of de novo donor specific antibody and rejection) and efficacy (graft failure). However, recently BKPyV has been getting more attention in the field, and some new treatment strategies including the utilization of viral-specific T-cell therapy are emerging. Given all these challenges, the primary focus of this article is complications associated with BKPyV, as well as strategies to mitigate negative outcomes.
Collapse
Affiliation(s)
- Sandesh Parajuli
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Fahad Aziz
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Weixiong Zhong
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Arjang Djamali
- Department of Medicine, Maine Medical Center Maine Health, Portland, ME, United States
| |
Collapse
|
5
|
Gorriceta JH, Lopez Otbo A, Uehara G, Posadas Salas MA. BK viral infection: A review of management and treatment. World J Transplant 2023; 13:309-320. [PMID: 38174153 PMCID: PMC10758681 DOI: 10.5500/wjt.v13.i6.309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/15/2023] [Accepted: 11/30/2023] [Indexed: 12/15/2023] Open
Abstract
BK viral infection remains to be a challenging post-transplant infection, which can result in kidney dysfunction. The mainstay approach to BK infection is reduction of immunosuppression. Alterations in immunosuppressive regimen with minimization of calcineurin inhibitors, use of mechanistic target of rapamycin inhibitors, and leflunomide have been attempted with variable outcomes. Over the past few years, investigators have explored potential therapeutic options for BK infection. Fluoroquinolone prophylaxis and treatment was found to have no benefit in kidney transplant recipients. The utility of cidofovir is limited by its nephrotoxicity. Intravenous immunoglobulin is becoming a popular option for treatment and prophylaxis for BK infection, as it increases the neutralizing antibody titers against the most common BK virus serotypes. Virus-specific T cell therapy is an emerging treatment option for BK viremia. In this review, we will explore management and therapeutic options for BK infection and recent evidence available in literature.
Collapse
Affiliation(s)
| | - Amy Lopez Otbo
- Department of Medicine, St. Luke’s Medical Center, Quezon 1112, Philippines
| | - Genta Uehara
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Maria Aurora Posadas Salas
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC 29425, United States
| |
Collapse
|
6
|
Najafabadi MM, Soleimani M, Ahmadvand M, Zomorrod MS, Mousavi SA. In Vitro Generation of BK polyomavirus-specific T cells for adoptive cell therapy in refractory cystitis hemorrhagic patients after hematopoietic stem cell transplantation. BMC Immunol 2022; 23:31. [PMID: 35689183 PMCID: PMC9188250 DOI: 10.1186/s12865-022-00497-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 05/04/2022] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION BKPyV associated hemorrhagic cystitis (BKPyV-HC) is a major and prevalent outcome of hematopoietic stem cell transplantation (HSCT) with no standard treatment option. Adoptive T cell therapy (ACT) against transplant-associated viruses has shown promising potential. We sought to produce virus-specific T cells (VSTs) against BKPyV with the aim of treating refractory HSCT-associated HC. METHODS Peripheral blood mononuclear cells (PBMC) from healthy donors were isolated by Ficoll-Hypaque density gradient centrifugation. BKPyV-pulsed, monocyte-derived dendritic cells (mo-DCs) and T cells were co-cultured and expanded over 2-3 weeks with the addition of IL-2. The T cells were examined for various functional assays. RESULTS Comparison analysis of Carboxyfluorescein diacetate succinimidyl ester (CFSE) indicated that the percentage of proliferated cells were significantly higher in donors (49.62 ± 7.09%) than controls (7.96 ± 4.55%). Furthermore, expanded T cells exhibited specificity to BKPyV antigens by IFN-γ ELISPOT assay. The expanded cells showed cytotoxic function versus human lymphoblastoid cell line (LCL). Final VST products mainly comprised of CD8/CD69 double-positive T cells, which were significantly higher in donors (46.8 ± 7.1%) than controls (16.91 ± 3.40%). CONCLUSION In this study we demonstrated the feasibility of producing functional BKPyV-specific T cells in healthy donors using BKPyV PepMixes. These functional cells were able to proliferate and produce IFN-γ cytokine in response to BKPyV PepMixes. In addition, these T cells had cytotoxic ability against BKPyV antigen-expressing target cells.
Collapse
Affiliation(s)
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran.
| | - Mohammad Ahmadvand
- Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mina Soufi Zomorrod
- Applied Cell Sciences Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seied Asadollah Mousavi
- Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Parajuli S, Jorgenson M, Meyers RO, Djamali A, Galipeau J. Role of Virus-Specific T Cell Therapy for Cytomegalovirus and BK Infections in Kidney Transplant Recipients. KIDNEY360 2021; 2:905-915. [PMID: 35373059 PMCID: PMC8791350 DOI: 10.34067/kid.0001572021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/24/2021] [Indexed: 02/04/2023]
Abstract
Cytomegalovirus (CMV) and BK virus (BKV) are common viral infections after kidney transplant. Their negative effects on patient and graft outcomes have been well described. However, despite improvement in screening and prophylaxis strategies, CMV and BKV continue to negatively affect both short- and long-term graft survival. Adequate cell-mediated immunity is essential for the control and prevention of opportunistic viral infections, such as CMV and BKV. Therefore, immune reconstitution, in particular T cell recovery, is a key factor in antiviral control after kidney transplantation. Cell-based immunotherapy offers an attractive alternative approach to traditional interventions. Adoptive T cell transfer, via infusions of allogeneic virus-specific T lymphocytes is capable of restoring virus-specific T cell immunity, and are safe and effective in the treatment of viral infections after hematopoietic stem cell transplantation. In this article, we review the emerging role of virus-specific T cell therapy in the management of CMV and BKV after kidney transplantation. On the basis of the available data, virus-specific T cell therapy may be a promising addition to the antiviral treatment armamentarium after kidney transplantation. Future studies are needed to more clearly define the efficacy and risks of virus-specific T cell therapy in the kidney transplant population.
Collapse
Affiliation(s)
- Sandesh Parajuli
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Margaret Jorgenson
- Department of Pharmacy, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| | - Ross O. Meyers
- Division of Pharmacy Professional Development, University of Wisconsin-Madison School of Pharmacy, Madison, Wisconsin
- Program for Advanced Cell Therapy, University of Wisconsin Hospital and Clinics and School of Medicine and Public Health, Madison Wisconsin
| | - Arjang Djamali
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Jacques Galipeau
- Program for Advanced Cell Therapy, University of Wisconsin Hospital and Clinics and School of Medicine and Public Health, Madison Wisconsin
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin
| |
Collapse
|
8
|
Non-permissive human conventional CD1c+ dendritic cells enable trans-infection of human primary renal tubular epithelial cells and protect BK polyomavirus from neutralization. PLoS Pathog 2021; 17:e1009042. [PMID: 33592065 PMCID: PMC7886149 DOI: 10.1371/journal.ppat.1009042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/04/2021] [Indexed: 12/31/2022] Open
Abstract
The BK polyomavirus (BKPyV) is a ubiquitous human virus that persists in the renourinary epithelium. Immunosuppression can lead to BKPyV reactivation in the first year post-transplantation in kidney transplant recipients (KTRs) and hematopoietic stem cell transplant recipients. In KTRs, persistent DNAemia has been correlated to the occurrence of polyomavirus-associated nephropathy (PVAN) that can lead to graft loss if not properly controlled. Based on recent observations that conventional dendritic cells (cDCs) specifically infiltrate PVAN lesions, we hypothesized that those cells could play a role in BKPyV infection. We first demonstrated that monocyte-derived dendritic cells (MDDCs), an in vitro model for mDCs, captured BKPyV particles through an unconventional GRAF-1 endocytic pathway. Neither BKPyV particles nor BKPyV-infected cells were shown to activate MDDCs. Endocytosed virions were efficiently transmitted to permissive cells and protected from the antibody-mediated neutralization. Finally, we demonstrated that freshly isolated CD1c+ mDCs from the blood and kidney parenchyma behaved similarly to MDDCs thus extending our results to cells of clinical relevance. This study sheds light on a potential unprecedented CD1c+ mDC involvement in the BKPyV infection as a promoter of viral spreading. Dr Sylvia Gardner first discovered the BK polyomavirus (BKPyV) in the urine of a kidney-transplant recipient in 1970. In the 1990’s, the widespread use of potent immunosuppressive drugs such as tacrolimus, sirolimus or mycophenolate mofetil led to the emergence of BKPyV nephropathy. Recently, various studies reported a specific influx of myeloid dendritic cells (mDCs) in the renal tissue of kidney-transplant patients who were diagnosed with a BKPyV nephropathy. MDCs are immune cells both residing in tissues and migrating to other organs or compartments like the blood when changes in their environment occur. Their main functions are the detection of danger signals such as pathogens or tumors and the processing of antigens to prime naïve specific effectors of the adaptive immune response. Although anti-BKPyV cellular immune responses have been investigated in post-transplant recipients as well as healthy individuals, supporting an active role of mDCs little is known about how mDCs and BKPyV interact with each other. Our study provides the basis to understand the role played by mDCs in virus capture through an unprecedented endocytic mechanism and possibly in viral protection from neutralization by specific antibodies. Moreover, we showed that mDCs are unable to sense BKPyV particles or BKPyV-infected dying cells as a danger signal, supporting the view that other DC subsets might act as the true antigen presenting cells that promote the adaptive immune response against BKPyV infection.
Collapse
|
9
|
BK polyomavirus-specific antibody and T-cell responses in kidney transplantation: update. Curr Opin Infect Dis 2020; 32:575-583. [PMID: 31567736 DOI: 10.1097/qco.0000000000000602] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW BK polyomavirus (BKPyV) has emerged as a significant cause of premature graft failure after kidney transplantation. Without effective antiviral drugs, treatment is based on reducing immunosuppression to regain immune control over BKPyV replication. The paradigm of high-level viruria/decoy cells, BKPyV-DNAemia, and proven nephropathy permits early interventions. Here, we review recent findings about BKPyV-specific antibody and T-cell responses and their potential role in risk stratification, immune monitoring, and therapy. RECENT FINDING Kidney transplant recipients having low or undetectable BKPyV-specific IgG immunoglobulin G (IgG) are higher risk for developing BKPyV-DNAemia if the donor has high BKPyV-specific IgG. This observation has been extended to neutralizing antibodies. Immunosuppression, impaired activation, proliferation, and exhaustion of BKPyV-specific T cells may increase the risk of developing BKPyV-DNAemia and nephropathy. Clearance of BKPyV-DNAemia was correlated with high CD8 T cell responses to human leukocyte antigen (HLA)-types presenting BKPyV-encoded immunodominant 9mers. For clinical translation, these data need to be assessed in appropriately designed clinical studies, as outlined in recent guidelines on BKPyV in kidney transplantation. SUMMARY Evaluation of BKPyV-specific immune responses in recipient and donor may help to stratify the risk of BKPyV-DNAemia, nephropathy, and graft loss. Future efforts need to evaluate clinical translation, vaccines, and immunotherapy to control BKPyV replication.
Collapse
|
10
|
Garcia Urbán J, Gurrado K, Brea Rivas PC, Abou Elrous D, Zubimendi Machain M, Romero Gómez M, García Rodríguez J, Vicandi Plaza B, Yébenes Gregorio L, García Fernández E, Jiménez Martín C, López Oliva MO, González García E, Ledesma Sánchez G, Carreño Cornejo G, Selgas Gutiérrez R, Zarauza Santoveña A, Melgosa Hijosa M, Fernández Camblor C, Mozo Del Castillo Y, Sisinni L, Bueno Sánchez D, Pérez-Martínez A, Sánchez Zapardiel E, López Granados E, Monserrat Villatoro J, Hernández Zabala R, Borobia AM, Frías J, Ramírez E. A case-control study to assess the role of polyomavirus in transplant complications: Where do we stand? Transpl Infect Dis 2020; 22:e13432. [PMID: 32738811 DOI: 10.1111/tid.13432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 11/27/2022]
Abstract
PURPOSE The study's aim was to assess whether polyomavirus DNAemia screening was associated with different outcomes in patients with positive viremia compared with negative viremia. METHODS Case-control retrospective study of patients with polyomavirus DNAemia (viremia > 1000 copies/mL) matched 1:1 with controls. Control group consists of the patient who received a transplant immediately before or after each identified case and did have nil viremia. FINDING Ultimately, 120 cases of BK polyomavirus (BKPyV) were detected and matched with 130 controls. Of these, 54 were adult kidney transplant recipients (KTRs), 43 were pediatric KTRs, and 23 were undergoing hemato-oncologic therapy, of which 20 were undergoing hematopoietic stem cell transplantation. The odds ratio (OR) for overall risk of poorer outcomes in cases versus controls was 16.07 (95% CI: 5.55-46.54). The unfavorable outcome of switching the immunosuppressive drug (ISD) (14/40,35%) was no different from that of those treated with reduced ISD doses (31/71, 43.6%, P = .250). Acute rejection or graft-versus-host disease, previous transplant, and intensity of immunosuppression (4 ISDs plus induction or conditioning) were risk factors for BKPyV-DNAemia (OR: 13.96, 95% CI: 11.25-15.18, P < .001; OR: 6.14, 95% CI: 3.91-8.80, P < .001; OR: 5.53, 95% CI: 3.37-7.30, P < .001, respectively). CONCLUSIONS Despite viremia screening, dose reduction, and change in therapeutic protocol, patients with positive BKPyV-DNAemia present poorer outcomes and unfavorable results.
Collapse
Affiliation(s)
- Julia Garcia Urbán
- Clinical Pharmacology Department, IdiPaz, School of Medicine, La Paz-Cantoblanco-Carlos III University Hospital, Autonomous University of Madrid, Madrid, Spain
| | - Katia Gurrado
- Clinical Pharmacology Department, IdiPaz, School of Medicine, La Paz-Cantoblanco-Carlos III University Hospital, Autonomous University of Madrid, Madrid, Spain
| | - Paola C Brea Rivas
- Clinical Pharmacology Department, IdiPaz, School of Medicine, La Paz-Cantoblanco-Carlos III University Hospital, Autonomous University of Madrid, Madrid, Spain
| | - Dina Abou Elrous
- Clinical Pharmacology Department, IdiPaz, School of Medicine, La Paz-Cantoblanco-Carlos III University Hospital, Autonomous University of Madrid, Madrid, Spain
| | - Mónica Zubimendi Machain
- Clinical Pharmacology Department, IdiPaz, School of Medicine, La Paz-Cantoblanco-Carlos III University Hospital, Autonomous University of Madrid, Madrid, Spain
| | - María Romero Gómez
- Microbiology Department, IdiPaz, La Paz-Cantoblanco-Carlos III University Hospital, Madrid, Spain
| | - Julio García Rodríguez
- Microbiology Department, IdiPaz, La Paz-Cantoblanco-Carlos III University Hospital, Madrid, Spain
| | - Blanca Vicandi Plaza
- Pathological Anatomy Department, IdiPaz, La Paz-Cantoblanco-Carlos III University Hospital, Madrid, Spain
| | - Laura Yébenes Gregorio
- Pathological Anatomy Department, IdiPaz, La Paz-Cantoblanco-Carlos III University Hospital, Madrid, Spain
| | - Eugenia García Fernández
- Pathological Anatomy Department, IdiPaz, La Paz-Cantoblanco-Carlos III University Hospital, Madrid, Spain
| | - Carlos Jiménez Martín
- Nephrology Department, REDinREN, IRSIN, IdiPaz, La Paz-Cantoblanco-Carlos III University Hospital, Madrid, Spain
| | - María-Ovidia López Oliva
- Nephrology Department, REDinREN, IRSIN, IdiPaz, La Paz-Cantoblanco-Carlos III University Hospital, Madrid, Spain
| | - Elena González García
- Nephrology Department, REDinREN, IRSIN, IdiPaz, La Paz-Cantoblanco-Carlos III University Hospital, Madrid, Spain
| | - Gabriel Ledesma Sánchez
- Nephrology Department, REDinREN, IRSIN, IdiPaz, La Paz-Cantoblanco-Carlos III University Hospital, Madrid, Spain
| | - Gilda Carreño Cornejo
- Nephrology Department, REDinREN, IRSIN, IdiPaz, La Paz-Cantoblanco-Carlos III University Hospital, Madrid, Spain
| | - Rafael Selgas Gutiérrez
- Nephrology Department, REDinREN, IRSIN, IdiPaz, La Paz-Cantoblanco-Carlos III University Hospital, Madrid, Spain
| | | | - Marta Melgosa Hijosa
- Pediatric Nephrology Department, IdiPaz, La Paz-Cantoblanco-Carlos III University Hospital, Madrid, Spain
| | - Carlota Fernández Camblor
- Pediatric Nephrology Department, IdiPaz, La Paz-Cantoblanco-Carlos III University Hospital, Madrid, Spain
| | - Yasmina Mozo Del Castillo
- Pediatric Hematology Oncology Department, IdiPaz, La Paz-Cantoblanco-Carlos III University Hospital, Madrid, Spain
| | - Luisa Sisinni
- Pediatric Hematology Oncology Department, IdiPaz, La Paz-Cantoblanco-Carlos III University Hospital, Madrid, Spain
| | - David Bueno Sánchez
- Pediatric Hematology Oncology Department, IdiPaz, La Paz-Cantoblanco-Carlos III University Hospital, Madrid, Spain
| | - Antonio Pérez-Martínez
- Pediatric Hematology Oncology Department, IdiPaz, La Paz-Cantoblanco-Carlos III University Hospital, Madrid, Spain
| | - Elena Sánchez Zapardiel
- Immunology Department, IdiPaz, La Paz-Cantoblanco-Carlos III University Hospital, Madrid, Spain
| | - Eduardo López Granados
- Immunology Department, IdiPaz, La Paz-Cantoblanco-Carlos III University Hospital, Madrid, Spain
| | - Jaime Monserrat Villatoro
- Clinical Pharmacology Department, IdiPaz, School of Medicine, La Paz-Cantoblanco-Carlos III University Hospital, Autonomous University of Madrid, Madrid, Spain
| | - Rafael Hernández Zabala
- Clinical Pharmacology Department, IdiPaz, School of Medicine, La Paz-Cantoblanco-Carlos III University Hospital, Autonomous University of Madrid, Madrid, Spain
| | - Alberto M Borobia
- Clinical Pharmacology Department, IdiPaz, School of Medicine, La Paz-Cantoblanco-Carlos III University Hospital, Autonomous University of Madrid, Madrid, Spain
| | - Jesús Frías
- Clinical Pharmacology Department, IdiPaz, School of Medicine, La Paz-Cantoblanco-Carlos III University Hospital, Autonomous University of Madrid, Madrid, Spain
| | - Elena Ramírez
- Clinical Pharmacology Department, IdiPaz, School of Medicine, La Paz-Cantoblanco-Carlos III University Hospital, Autonomous University of Madrid, Madrid, Spain
| |
Collapse
|
11
|
Jiang W, Withers B, Sutrave G, Clancy LE, Yong MI, Blyth E. Pathogen-Specific T Cells Beyond CMV, EBV and Adenovirus. Curr Hematol Malig Rep 2020; 14:247-260. [PMID: 31228095 DOI: 10.1007/s11899-019-00521-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Infectious diseases contribute significantly to morbidity and mortality in recipients of allogeneic haematopoietic stem cell transplantation (aHSCT), particularly in the era of highly immunosuppressive transplant regimens and alternate donor transplants. Delayed cellular immune recovery is a major mechanism for the increased risk in these patients. Adoptive cell therapy with ex vivo manipulated pathogen-specific T cells (PSTs) is increasingly taking its place as a treatment strategy using donor-derived or third party-banked cells. RECENT FINDINGS The majority of clinical trial data in the form of early-phase studies has been in the prophylaxis or treatment of cytomegalovirus (CMV), Epstein-Barr virus (EBV) and adenovirus (AdV). Advancements in methods to select and enrich PSTs offer the opportunity to target the less common viral pathogens as well as fungi with this technology. Early clinical studies of PSTs targeting polyomaviruses (BK virus and JC virus), human herpesvirus 6 (HHV6), varicella zoster virus (VZV) and Aspergillus spp. have shown promising results in small numbers of patients. Other potential targets include herpes simplex virus (HSV), respiratory viruses and other invasive fungal species. In this review, we describe the burden of disease of this wider spectrum of pathogens, the progress in the development of manufacturing capability, early clinical results and the opportunities and challenges for implementation in the clinic.
Collapse
Affiliation(s)
- Wei Jiang
- Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.,Westmead Institute of Medical Research, University of Sydney, Sydney, Australia
| | - Barbara Withers
- Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.,Westmead Institute of Medical Research, University of Sydney, Sydney, Australia.,St Vincent's Hospital, Darlinghurst, Australia
| | - Gaurav Sutrave
- Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.,Westmead Institute of Medical Research, University of Sydney, Sydney, Australia.,BMT and Cell Therapies Program, Westmead Hospital, Sydney, Australia
| | - Leighton E Clancy
- Westmead Institute of Medical Research, University of Sydney, Sydney, Australia.,Sydney Cellular Therapies Laboratory, Westmead, Australia
| | - Michelle I Yong
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.,The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Emily Blyth
- Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia. .,Westmead Institute of Medical Research, University of Sydney, Sydney, Australia. .,St Vincent's Hospital, Darlinghurst, Australia. .,BMT and Cell Therapies Program, Westmead Hospital, Sydney, Australia.
| |
Collapse
|
12
|
Jahan S, Scuderi C, Francis L, Neller MA, Rehan S, Crooks P, Ambalathingal GR, Smith C, Khanna R, John GT. T-cell adoptive immunotherapy for BK nephropathy in renal transplantation. Transpl Infect Dis 2020; 22:e13399. [PMID: 32608543 PMCID: PMC7816252 DOI: 10.1111/tid.13399] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 01/02/2023]
Abstract
Introduction BK virus (BKPyV) nephropathy occurs in 1%‐10% of kidney transplant recipients, with suboptimal therapeutic options. Case A 54‐year‐old woman received a transplant in March 2017. BKPyV was detected at 1.5 × 102 copies/mL within a month, necessitating halving of mycophenolate and addition of leflunomide. Allograft histology in December showed polyomavirus nephropathy treated with intravenous immunoglobulin and cessation of mycophenolate. In February 2018, cidofovir and ciprofloxacin were commenced. In April, tacrolimus was reduced while introducing everolimus. A second graft biopsy in August showed increasing polyoma virus infection and a subsequent biopsy in September for worsening renal function showed 30% of tubular reactivity for simian virus 40 (SV40). Allogeneic BKPyV‐reactive T cells were generated from the patient's daughter and infused over 10 sessions starting late September. The fourth allograft biopsy in November 2018 demonstrated involvement of BKPyV in 50% of tubules. Allograft function continued to decline, requiring hemodialysis from December 2018. Allograft nephrectomy after 6 months showed <1% SV40 in preserved tubules and 80% interstitial fibrosis. Discussion We conclude that the T‐cell adoptive immunotherapy reduced BKPyV load significantly despite extensive infection, but attendant fibrosis and tubular atrophy led to graft failure. Early intervention with T‐cell therapy may prove efficacious in BKPyV nephropathy.
Collapse
Affiliation(s)
- Sadia Jahan
- Kidney Health Service, Royal Brisbane and Women's Hospital, Herston, Qld, Australia
| | - Carla Scuderi
- Kidney Health Service, Royal Brisbane and Women's Hospital, Herston, Qld, Australia
| | - Leo Francis
- Pathology Department, Royal Brisbane and Women's Hospital, Herston, Qld, Australia
| | - Michelle A Neller
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development, QIMR Berghofer Medical Research Institute, Herston, Qld, Australia
| | - Sweera Rehan
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development, QIMR Berghofer Medical Research Institute, Herston, Qld, Australia
| | - Pauline Crooks
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development, QIMR Berghofer Medical Research Institute, Herston, Qld, Australia
| | - George R Ambalathingal
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development, QIMR Berghofer Medical Research Institute, Herston, Qld, Australia
| | - Corey Smith
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development, QIMR Berghofer Medical Research Institute, Herston, Qld, Australia
| | - Rajiv Khanna
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development, QIMR Berghofer Medical Research Institute, Herston, Qld, Australia
| | - George T John
- Kidney Health Service, Royal Brisbane and Women's Hospital, Herston, Qld, Australia
| |
Collapse
|
13
|
Lee YJ, Glezerman IG, Tamari R, Sauter CS, Prockop SE, Boulad F, Salvatore SP, Seshan SV, Jaimes EA, Giralt SA, Papadopoulos EB, Jakubowski AA, Papanicolaou GA. BK polyoma virus nephropathy in hematopoietic cell transplant recipients. ACTA ACUST UNITED AC 2019. [DOI: 10.1177/2399369319858362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background: The epidemiology of BK polyoma virus nephropathy in hematopoietic cell transplant recipients is poorly characterized. Kidney dysfunction after hematopoietic cell transplant is often attributed to treatment toxicities and kidney biopsies are rarely performed. Methods: We reviewed pathology-confirmed BK polyoma virus nephropathy cases in adult and pediatric patients who had undergone a hematopoietic cell transplant between 1 January 2015 and 31 December 2017 at our institution. Plasma and urine BK polyoma virus was assessed by a quantitative polymerase chain reaction assay and were obtained at the clinician discretion. Glomerular filtration rate was estimated by the Chronic Kidney Disease Epidemiology Collaboration equation. BK polyoma virus nephropathy was scored by the Banff Working Group Proposal. Results: Eight (7 adult and 1 pediatric) cases of BK polyoma virus nephropathy were identified among 685 hematopoietic cell transplant recipients, 14 of whom had undergone a kidney biopsy. Five patients (62.5%) had received a CD34+-selected peripheral blood hematopoietic cell transplant; two had received a cord blood allograft and one an unmodified peripheral blood hematopoietic cell transplant. Two patients developed acute graft-versus-host disease grade II. Early post–hematopoietic cell transplant BK polyoma viruria was documented with onset at a median of 54 days (range, 6–91) post–hematopoietic cell transplant and median urine BK polyoma viral load was 9.6 log10 copies/mL (range, 8.6–10.0). BK polyoma virus nephropathy was diagnosed at a median of 267 days after hematopoietic cell transplant (range, 133–637). At BK polyoma virus nephropathy diagnosis, all patients had decreased renal function with glomerular filtration rate (median 29 mL/min/1.73 m2; range, 9–98 ) and creatinine (median 2.4 mg/dL; range, 0.8–7.5) ; median plasma BK polyoma viral load was 6.3 log10 copies/mL (range, 5.5–7.1) and median CD4+ lymphocyte count was 82 cell/mcL (range, 21–172). Conclusions: We report eight biopsy-proven BK polyoma virus nephropathies in hematopoietic cell transplant recipients from a single center. BK polyoma virus nephropathy should be considered in hematopoietic cell transplant recipients with worsening kidney function and high BK polyoma viremia.
Collapse
Affiliation(s)
- Yeon Joo Lee
- Infectious Diseases Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Ilya G Glezerman
- Weill Cornell Medical College, New York, NY, USA
- Renal Services, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Roni Tamari
- Weill Cornell Medical College, New York, NY, USA
- Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Craig S Sauter
- Weill Cornell Medical College, New York, NY, USA
- Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Susan E Prockop
- Weill Cornell Medical College, New York, NY, USA
- Pediatric Bone Marrow Transplantation Service, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Farid Boulad
- Weill Cornell Medical College, New York, NY, USA
- Pediatric Bone Marrow Transplantation Service, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - Edgar A Jaimes
- Weill Cornell Medical College, New York, NY, USA
- Renal Services, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sergio A Giralt
- Weill Cornell Medical College, New York, NY, USA
- Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Esperanza B Papadopoulos
- Weill Cornell Medical College, New York, NY, USA
- Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ann A Jakubowski
- Weill Cornell Medical College, New York, NY, USA
- Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Genovefa A Papanicolaou
- Infectious Diseases Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
14
|
An immunoinformatic approach to universal therapeutic vaccine design against BK virus. Vaccine 2019; 37:3457-3463. [PMID: 31097352 DOI: 10.1016/j.vaccine.2019.04.096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/10/2019] [Accepted: 04/30/2019] [Indexed: 12/28/2022]
Abstract
In kidney transplant recipients (KTRs) long-term immunosuppression leads to BK virus (BKV) reactivation, with an increased incidence of BKV-associated pathologies and allograft rejection. The current approaches to limit BKV infection include a reduction in immunosuppression and use of anti-BKV drugs, which are clinically sub-optimal and lead to undesirable therapeutic outcomes. Here, we adopted an immune-based approach to augment the endogenous BKV specific T-cells. Using reverse vaccinology based in silico analyses, we designed a peptide-based multi-epitope vaccine for BKV (MVBKV). A major advantage of our approach is that the selected epitopes show an affinity towards all the 12 superfamilies of HLA class I alleles and 27 reference alleles of HLA class II. This suggests MVBKV's universal nature and its potential effectiveness in a wide-population base. To improve MVBKV's immunogenic properties, a synthetic Toll-like Receptor (TLR) 4 peptide ligand (RS09) was added to the final vaccine construct. The sequences of the individual epitopes were molecularly linked to form a 3D-stable synthetic protein. Overall, our immunoinformatic-based approach led to the design of a new MVBKV vaccine, which remains to be validated experimentally.
Collapse
|
15
|
Dawson NA, Lamarche C, Hoeppli RE, Bergqvist P, Fung VC, McIver E, Huang Q, Gillies J, Speck M, Orban PC, Bush JW, Mojibian M, Levings MK. Systematic testing and specificity mapping of alloantigen-specific chimeric antigen receptors in regulatory T cells. JCI Insight 2019; 4:123672. [PMID: 30753169 DOI: 10.1172/jci.insight.123672] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 02/05/2019] [Indexed: 12/19/2022] Open
Abstract
Chimeric antigen receptor (CAR) technology can be used to engineer the antigen specificity of regulatory T cells (Tregs) and improve their potency as an adoptive cell therapy in multiple disease models. As synthetic receptors, CARs carry the risk of immunogenicity, particularly when derived from nonhuman antibodies. Using an HLA-A*02:01-specific CAR (A2-CAR) encoding a single-chain variable fragment (Fv) derived from a mouse antibody, we developed a panel of 20 humanized A2-CARs (hA2-CARs). Systematic testing demonstrated variations in expression, and ability to bind HLA-A*02:01 and stimulate human Treg suppression in vitro. In addition, we developed a new method to comprehensively map the alloantigen specificity of CARs, revealing that humanization reduced HLA-A cross-reactivity. In vivo bioluminescence imaging showed rapid trafficking and persistence of hA2-CAR Tregs in A2-expressing allografts, with eventual migration to draining lymph nodes. Adoptive transfer of hA2-CAR Tregs suppressed HLA-A2+ cell-mediated xenogeneic graft-versus-host disease and diminished rejection of human HLA-A2+ skin allografts. These data provide a platform for systematic development and specificity testing of humanized alloantigen-specific CARs that can be used to engineer specificity and homing of therapeutic Tregs.
Collapse
Affiliation(s)
- Nicholas Aj Dawson
- Department of Medicine and.,BC Children's Hospital Research Institute (BCCHR), Vancouver, British Columbia, Canada
| | - Caroline Lamarche
- Department of Surgery, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute (BCCHR), Vancouver, British Columbia, Canada
| | - Romy E Hoeppli
- Department of Surgery, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute (BCCHR), Vancouver, British Columbia, Canada
| | - Peter Bergqvist
- Centre for Drug and Research and Development, Vancouver, British Columbia, Canada
| | - Vivian Cw Fung
- Department of Surgery, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute (BCCHR), Vancouver, British Columbia, Canada
| | - Emma McIver
- Department of Surgery, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute (BCCHR), Vancouver, British Columbia, Canada
| | - Qing Huang
- Department of Surgery, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute (BCCHR), Vancouver, British Columbia, Canada
| | - Jana Gillies
- Department of Surgery, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute (BCCHR), Vancouver, British Columbia, Canada
| | - Madeleine Speck
- Department of Surgery, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute (BCCHR), Vancouver, British Columbia, Canada
| | - Paul C Orban
- Department of Surgery, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute (BCCHR), Vancouver, British Columbia, Canada
| | - Jonathan W Bush
- BC Children's Hospital Research Institute (BCCHR), Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine and
| | - Majid Mojibian
- Department of Surgery, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute (BCCHR), Vancouver, British Columbia, Canada
| | - Megan K Levings
- Department of Surgery, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute (BCCHR), Vancouver, British Columbia, Canada.,School of Biomedical Engineering, UBC, Vancouver, British Columbia, Canada
| |
Collapse
|
16
|
Boudreau G, Carli C, Lamarche C, Rulleau C, Bonnaure G, Néron S, Delisle JS. Leukoreduction system chambers are a reliable cellular source for the manufacturing of T-cell therapeutics. Transfusion 2018; 59:1300-1311. [DOI: 10.1111/trf.15121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/15/2018] [Accepted: 11/21/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Gabrielle Boudreau
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont; Montréal Québec Canada
| | - Cédric Carli
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont; Montréal Québec Canada
| | - Caroline Lamarche
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont; Montréal Québec Canada
| | - Caroline Rulleau
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont; Montréal Québec Canada
| | - Guillaume Bonnaure
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont; Montréal Québec Canada
- Medical Affairs and Innovation; Héma-Québec; Québec Québec Canada
| | - Sonia Néron
- Medical Affairs and Innovation; Héma-Québec; Québec Québec Canada
- Department of Biochemistry, Microbiology and Bio-informatics; Université Laval; Québec Québec Canada
| | - Jean-Sébastien Delisle
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont; Montréal Québec Canada
- Hematology-Oncology Division; Hôpital Maisonneuve-Rosemont; Montréal Québec Canada
- Department of Medicine; Université de Montréal; Montreal Québec Canada
| |
Collapse
|
17
|
Blazquez-Navarro A, Schachtner T, Stervbo U, Sefrin A, Stein M, Westhoff TH, Reinke P, Klipp E, Babel N, Neumann AU, Or-Guil M. Differential T cell response against BK virus regulatory and structural antigens: A viral dynamics modelling approach. PLoS Comput Biol 2018; 14:e1005998. [PMID: 29746472 PMCID: PMC5944912 DOI: 10.1371/journal.pcbi.1005998] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 01/24/2018] [Indexed: 12/26/2022] Open
Abstract
BK virus (BKV) associated nephropathy affects 1-10% of kidney transplant recipients, leading to graft failure in about 50% of cases. Immune responses against different BKV antigens have been shown to have a prognostic value for disease development. Data currently suggest that the structural antigens and regulatory antigens of BKV might each trigger a different mode of action of the immune response. To study the influence of different modes of action of the cellular immune response on BKV clearance dynamics, we have analysed the kinetics of BKV plasma load and anti-BKV T cell response (Elispot) in six patients with BKV associated nephropathy using ODE modelling. The results show that only a small number of hypotheses on the mode of action are compatible with the empirical data. The hypothesis with the highest empirical support is that structural antigens trigger blocking of virus production from infected cells, whereas regulatory antigens trigger an acceleration of death of infected cells. These differential modes of action could be important for our understanding of BKV resolution, as according to the hypothesis, only regulatory antigens would trigger a fast and continuous clearance of the viral load. Other hypotheses showed a lower degree of empirical support, but could potentially explain the clearing mechanisms of individual patients. Our results highlight the heterogeneity of the dynamics, including the delay between immune response against structural versus regulatory antigens, and its relevance for BKV clearance. Our modelling approach is the first that studies the process of BKV clearance by bringing together viral and immune kinetics and can provide a framework for personalised hypotheses generation on the interrelations between cellular immunity and viral dynamics.
Collapse
Affiliation(s)
- Arturo Blazquez-Navarro
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin, Berlin, Germany
- Systems Immunology Lab, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Schachtner
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin, Berlin, Germany
- Department of Nephrology and Internal Intensive Care, Charité-Universitätsmedizin, Berlin, Germany
| | - Ulrik Stervbo
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin, Berlin, Germany
- Medical Clinic I, Marien Hospital Herne, Ruhr University Bochum, Herne, Germany
| | - Anett Sefrin
- Department of Nephrology and Internal Intensive Care, Charité-Universitätsmedizin, Berlin, Germany
| | - Maik Stein
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin, Berlin, Germany
| | - Timm H Westhoff
- Medical Clinic I, Marien Hospital Herne, Ruhr University Bochum, Herne, Germany
| | - Petra Reinke
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin, Berlin, Germany
- Department of Nephrology and Internal Intensive Care, Charité-Universitätsmedizin, Berlin, Germany
| | - Edda Klipp
- Theoretical Biophysics Group, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nina Babel
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin, Berlin, Germany
- Medical Clinic I, Marien Hospital Herne, Ruhr University Bochum, Herne, Germany
| | - Avidan U Neumann
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin, Berlin, Germany
- Institute of Environmental Medicine, UNIKA-T, Helmholtz Zentrum München, Augsburg, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
| | - Michal Or-Guil
- Systems Immunology Lab, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
18
|
Davies SI, Muranski P. T cell therapies for human polyomavirus diseases. Cytotherapy 2017; 19:1302-1316. [PMID: 28927823 DOI: 10.1016/j.jcyt.2017.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 08/10/2017] [Indexed: 12/24/2022]
Abstract
Rapid restoration of virus-specific T immunity via adoptive transfer of ex vivo generated T cells has been proven as a powerful therapy for patients with advanced cancers and refractory viral infections such as cytomegalovirus (CMV) and Epstein-Barr virus (EBV). BK virus (BKV), John Cunningham virus (JCV), and Merkel cell carcinoma virus (MCV) are the members of the rapidly growing human polyomavirus (hPyV) family that commonly infects most healthy humans. These viruses have a clearly established potential for causing severe end-organ damage or malignant transformation, especially in individuals with weakened immunity who are unable to mount or regain endogenous T-cell responses as a result of underlying leukemia or iatrogenic immunosuppression in autoimmunity, bone marrow and solid organ transplant settings. Here we will discuss recent advances in using T-cell-based immunotherapies to save patients suffering from PyV-associated diseases including hemorrhagic cystitis, BKV virus-associated nephropathy, and JC-associated progressive multifocal leukoencephalopathy (PML). We will also review progress in the understanding of Merkel cell carcinoma (MCC) as a virally driven tumor that is amenable to immune intervention and can be targeted with adoptively transferred T cells specific for viral oncoproteins.
Collapse
Affiliation(s)
- Sarah I Davies
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Pawel Muranski
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Columbia Center for Translational Immunology, Division of Hematology and Oncology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|