1
|
Xiao Y, Huang Y, Jiang J, Chen Y, Wei C. Identification of the prognostic value of Th1/Th2 ratio and a novel prognostic signature in basal-like breast cancer. Hereditas 2023; 160:2. [PMID: 36694223 PMCID: PMC9875389 DOI: 10.1186/s41065-023-00265-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Breast cancer is a heterogeneous group of diseases. The polarization of CD4+ T helper (Th) lymphocytes (mainly Th1 and Th2) may differ in breast cancers with different outcomes, but this has not been fully validated. METHODS This study is a bioinformatic analysis, in which differentially expressed genes (DEGs) were identified in patients with low and high Th1/Th2 ratios. And then, DEG functions, hub genes and independent predictors were determined. RESULTS Low Th1/Th2 ratio was associated with poor outcome in Luminal A and basal-like breast cancer (p < 0.05). GSEA and KEGG analysis of DEGs obtained from comparing low and high Th1/Th2 ratios illuminated downregulation of immune-related gene sets and pathways affecting Th1/Th2 balance toward Th2 polarization (p < 0.05). Survival and Cox analyses of all the DEGs confirmed CCL1 and MYH6 were independent protective factors and IFNK and SOAT2 were independent risk factors for basal-like breast cancer (95%CI: 1.06-2.5, p = 0.026). Then a four-gene signature was constructed and achieved a promising prognostic value (C-index = 0.82; AUC = 0.826). CONCLUSIONS Low Th1/Th2 ratio predicts poor outcome in Luminal A and Basal-like breast cancer, and downregulation of immune-related gene sets and pathways contribute to Th1/Th2 balance toward Th2 polarization. CCL1, MYH6, IFNK, and SOAT2 have an independent prognostic value of survival outcome and might be novel markers in basal-like breast cancer.
Collapse
Affiliation(s)
- Yu Xiao
- grid.256607.00000 0004 1798 2653Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi China ,grid.452847.80000 0004 6068 028XDepartment of Thyroid and Breast Surgery, Shenzhen Second People’s Hospital, Shenzhen, Guangdong China
| | - Yi Huang
- grid.256607.00000 0004 1798 2653Department of Research, Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi China
| | - Jianping Jiang
- grid.256607.00000 0004 1798 2653Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi China
| | - Yan Chen
- grid.256607.00000 0004 1798 2653Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi China
| | - Changyuan Wei
- grid.256607.00000 0004 1798 2653Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi China
| |
Collapse
|
2
|
Cao W, Lu J, Li L, Qiu C, Qin X, Wang T, Li S, Zhang J, Xu J. Activation of the Aryl Hydrocarbon Receptor Ameliorates Acute Rejection of Rat Liver Transplantation by Regulating Treg Proliferation and PD-1 Expression. Transplantation 2022; 106:2172-2181. [PMID: 35706097 DOI: 10.1097/tp.0000000000004205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Aryl hydrocarbon receptor (AhR) plays important roles in modulating immune responses. However, the role of AhR in rat liver transplantation (LT) has not been explored. METHODS Safety and side effects of N -(3,4-dimethoxycinnamonyl) anthranilic acid (3,4-DAA) and 2-methyl-2H-pyrazole-3-carboxylic acid amide (CH223191) were evaluated. We used optimal doses of 2 drugs, 3,4-DAA, a drug used for mediating AhR activation, and CH223191, antagonist of AhR (3,4-DAA, CH223191, and 3,4-DAA + CH223191), intraperitoneally administered to recipients daily to investigate the role of AhR in the rat LT model. The recipient livers were used to observe the pathological changes, the cells infiltrating the graft, and changes of AhR and programmed death-1 (PD-1) by Western blot, real-time polymerase chain reaction, and immunofluorescence assays. The contents of Foxp3 + and PD-1 + T cells in the recipient spleen and peripheral blood mononuclear cells were evaluated by flow cytometry. In vitro, after isolating CD4 + T cells, they were treated with different AhR ligands to observe the differentiation direction and PD-1 expression level. RESULTS The activation of AhR by 3,4-DAA prolonged survival time and ameliorated graft rejection, which were associated with increased expression of AhR and PD-1 in the livers and increased Foxp3 + T cells and PD-1 + T cells in recipient spleens, livers, and peripheral blood mononuclear cells. In vitro, primary T cells incubated with 3,4-DAA mediated increased proportion of Treg and PD-1 + T cells. However, the suppression of AhR with CH223191 reverses these effects, both in the LT model and in vitro. CONCLUSIONS Our results indicated that AhR activation might reduce the occurrence of rat acute rejection by increasing the proportion of Treg and the expression of PD-1.
Collapse
Affiliation(s)
- Wanyue Cao
- Department of Hepatobiliary Surgery and Liver Transplantation, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Lu
- Department of Hepatobiliary Surgery and Liver Transplantation, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Li
- Department of Hepatobiliary Surgery and Liver Transplantation, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Qiu
- Department of General Surgery, Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai, China
| | - Xuebin Qin
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA
- Department of Neuroscience, Temple University Lewis Katz School of Medicine, Philadelphia, PA
| | - Tao Wang
- Department of Hepatobiliary Surgery and Liver Transplantation, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shanbao Li
- Department of Hepatobiliary Surgery and Liver Transplantation, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinyan Zhang
- Department of Hepatobiliary Surgery and Liver Transplantation, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junming Xu
- Department of Hepatobiliary Surgery and Liver Transplantation, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Tan L, Xu Y, Lan G, Wang H, Liang Z, Zhang Z, Tian Q, Hou Y, Zhao Y, Xie X. Absence of TSC1 Accelerates CD8 + T cell-mediated Acute Cardiac Allograft Rejection. Aging Dis 2022; 13:1562-1575. [PMID: 36186130 PMCID: PMC9466980 DOI: 10.14336/ad.2022.0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/24/2022] [Indexed: 11/18/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant disease caused by inactivating mutations in TSC1 or TSC2.Patients with TSC often require organ transplantation after organ failure. TSC1 serves as an important control node in immune cell development and responses; however, its effect on T cells in transplant immunity has not yet been explored. Here, we characterized the effect of TSC1 deficiency in T cells on acute allograft rejection using a mouse cardiac transplantation model. We observed compromised allograft survival in mice with TSC1-deficient T cells. Notably, the allografts in mice transferred with TSC1-deficient CD8+T cells showed accelerated acute allograft rejection. TSC1 deficiency triggered the increased accumulation of CD8+ T cells in allografts due to augmented infiltration caused by increased CXCR3 expression levels and elevated in-situ proliferation of TSC1-deficient CD8+ T cells. Compared to CD8+ T cells from wild-type (WT) mice, TSC1-deficient CD8+ T cells exhibited enhanced cell proliferation and increased expression levels of interferon-γ and granzyme B after alloantigen stimulation. Rapamycin, an inhibitor of mammalian target of rapamycin (mTOR), is used to treat patients with TSC and prevent rejection after solid-organ transplantation. Although rapamycin induced most cardiac allografts to survive beyond 100 d in WT mice, rapamycin-treated cardiac allografts in TSC1-deficient mice were rejected within 60 d. These results suggest that TSC1-deficient recipients may be more resistant to rapamycin-mediated immunosuppression during organ transplantation. Collectively, TSC1 significantly accelerates acute allograft rejection by enhancing the alloreactivity of CD8+ T cells, making them more resistant to mTOR inhibitor-mediated immunosuppression.
Collapse
Affiliation(s)
- Liang Tan
- Department of Kidney Transplantation, Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China.
| | - Yanan Xu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Gongbin Lan
- Department of Kidney Transplantation, Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China.
| | - Hongxia Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhanfeng Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Zhaoqi Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Qianchuan Tian
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Yangxiao Hou
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| | - Xubiao Xie
- Department of Kidney Transplantation, Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China.
- Correspondence should be addressed to: Dr. Xubiao Xie, Department of Kidney Transplantation, Second Xiangya Hospital of Central South University, Changsha 410011, China. E-mail: .
| |
Collapse
|
4
|
Chellappa S, Kushekhar K, Hagness M, Horneland R, Taskén K, Aandahl EM. The Presence of Activated T Cell Subsets prior to Transplantation Is Associated with Increased Rejection Risk in Pancreas Transplant Recipients. THE JOURNAL OF IMMUNOLOGY 2021; 207:2501-2511. [PMID: 34607938 DOI: 10.4049/jimmunol.2001103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 09/04/2021] [Indexed: 12/14/2022]
Abstract
Pancreas and islet transplantation (PTx) are currently the only curative treatment options for type 1 diabetes. CD4+ and CD8+ T cells play a pivotal role in graft function, rejection, and survival. However, characterization of immune cell status from patients with and without rejection of the pancreas graft is lacking. We performed multiparameter immune phenotyping of T cells from PTx patients prior to and 1 y post-PTx in nonrejectors and histologically confirmed rejectors. Our results suggest that rejection is associated with presence of elevated levels of activated CD4+ and CD8+ T cells with a gut-homing phenotype both prior to and 1 y post-PTx. The CD4+ and CD8+ T cells were highly differentiated, with elevated levels of type 1 inflammatory markers (T-bet and INF-γ) and cytotoxic components (granzyme B and perforin). Furthermore, we observed increased levels of activated FOXP3+ regulatory T cells in rejectors, which was associated with a hyporesponsive phenotype of activated effector T cells. Finally, activated T and B cell status was correlated in PTx patients, indicating a potential interplay between these cell types. In vitro treatment of healthy CD4+ and CD8+ T cells with tacrolimus abrogated the proliferation and cytokine (INF-γ, IL-2, and TNF-α) secretion associated with the type 1 inflammatory phenotype observed in pre- and post-PTx rejectors. Together, our results suggest the presence of activated CD4+ and CD8+ T cells prior to PTx confer increased risk for rejection. These findings may be used to identify patients that may benefit from more intense immunosuppressive treatment that should be monitored more closely after transplantation.
Collapse
Affiliation(s)
- Stalin Chellappa
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,K.G. Jebsen Centre for Cancer Immunotherapy, Institute for Clinical Medicine, University of Oslo, Oslo University Hospital, Oslo, Norway; and
| | - Kushi Kushekhar
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,K.G. Jebsen Centre for Cancer Immunotherapy, Institute for Clinical Medicine, University of Oslo, Oslo University Hospital, Oslo, Norway; and
| | - Morten Hagness
- Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Rune Horneland
- Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Kjetil Taskén
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,K.G. Jebsen Centre for Cancer Immunotherapy, Institute for Clinical Medicine, University of Oslo, Oslo University Hospital, Oslo, Norway; and
| | - Einar Martin Aandahl
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; .,K.G. Jebsen Centre for Cancer Immunotherapy, Institute for Clinical Medicine, University of Oslo, Oslo University Hospital, Oslo, Norway; and.,Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| |
Collapse
|
5
|
Ma Y, Yan G, Guo J, Li F, Zheng H, Wang C, Chen Y, Ye Y, Dai H, Qi Z, Zhuang G. Berberine Prolongs Mouse Heart Allograft Survival by Activating T Cell Apoptosis via the Mitochondrial Pathway. Front Immunol 2021; 12:616074. [PMID: 33732240 PMCID: PMC7959711 DOI: 10.3389/fimmu.2021.616074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/18/2021] [Indexed: 11/25/2022] Open
Abstract
Berberine, which is a traditional Chinese medicine can inhibit tumorigenesis by inducing tumor cell apoptosis. However, the immunoregulatory of effects berberine on T cells remains poorly understood. Here, we first examined whether berberine can prolong allograft survival by regulating the recruitment and function of T cells. Using a major histocompatibility complex complete mismatch mouse heterotopic cardiac transplantation model, we found that the administration of moderate doses (5 mg/kg) of berberine significantly prolonged heart allograft survival to 19 days and elicited no obvious berberine-related toxicity. Compared to that with normal saline treatment, berberine treatment decreased alloreactive T cells in recipient splenocytes and lymph node cells. It also inhibited the activation, proliferation, and function of alloreactive T cells. Most importantly, berberine treatment protected myocardial cells by decreasing CD4+ and CD8+ T cell infiltration and by inhibiting T cell function in allografts. In vivo and in vitro assays revealed that berberine treatment eliminated alloreactive T lymphocytes via the mitochondrial apoptosis pathway, which was validated by transcriptome sequencing. Taken together, we demonstrated that berberine prolongs allograft survival by inducing apoptosis of alloreactive T cells. Thus, our study provides more evidence supporting the potential use of berberine in translational medicine.
Collapse
Affiliation(s)
- Yunhan Ma
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Organ Transplantation Institute, Xiamen University, Xiamen, China
| | - Guoliang Yan
- School of Medicine, Xiamen University, Xiamen, China
| | - Junjun Guo
- School of Medicine, Xiamen University, Xiamen, China
| | - Fujun Li
- Department of Anesthesiology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haiping Zheng
- School of Medicine, Xiamen University, Xiamen, China
| | - Chenxi Wang
- School of Medicine, Xiamen University, Xiamen, China
| | - Yingyu Chen
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Organ Transplantation Institute, Xiamen University, Xiamen, China
| | - Yuhan Ye
- Department of Pathology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| | - Helong Dai
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China.,Clinical Immunology Center, Central South University, Changsha, China
| | - Zhongquan Qi
- Medical College, Guangxi University, Nanning, China
| | - Guohong Zhuang
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Organ Transplantation Institute, Xiamen University, Xiamen, China
| |
Collapse
|
6
|
Crepeau RL, Ford ML. Programmed T cell differentiation: Implications for transplantation. Cell Immunol 2020; 351:104099. [PMID: 32247511 DOI: 10.1016/j.cellimm.2020.104099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 12/27/2022]
Abstract
While T cells play a critical role in protective immunity against infection, they are also responsible for graft rejection in the setting of transplantation. T cell differentiation is regulated by both intrinsic transcriptional pathways as well as extrinsic factors such as antigen encounter and the cytokine milieu. Herein, we review recent discoveries in the transcriptional regulation of T cell differentiation and their impact on the field of transplantation. Recent studies uncovering context-dependent differentiation programs that differ in the setting of infection or transplantation will also be discussed. Understanding the key transcriptional pathways that underlie T cell responses in transplantation has important clinical implications, including development of novel therapeutic agents to mitigate graft rejection.
Collapse
Affiliation(s)
- Rebecca L Crepeau
- Emory Transplant Center, Department of Surgery, Emory University, 101 Woodruff Circle, Suite 5208, Atlanta, GA 30322, United States
| | - Mandy L Ford
- Emory Transplant Center, Department of Surgery, Emory University, 101 Woodruff Circle, Suite 5208, Atlanta, GA 30322, United States.
| |
Collapse
|
7
|
T-bet or IFNγ Neutralization for Blocking Islet Allograft Rejection? Transplantation 2018; 102:1409-1410. [PMID: 29781951 DOI: 10.1097/tp.0000000000002262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|