1
|
Iske J, Zhou H. Editorial: Immunosenescence in organ transplantation. FRONTIERS IN TRANSPLANTATION 2024; 3:1422358. [PMID: 38993765 PMCID: PMC11235217 DOI: 10.3389/frtra.2024.1422358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/28/2024] [Indexed: 07/13/2024]
Affiliation(s)
- Jasper Iske
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Berlin Institutes of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Hao Zhou
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Holdenrieder S, Dos Santos Ferreira CE, Izopet J, Theel ES, Wieser A. Clinical and laboratory considerations: determining an antibody-based composite correlate of risk for reinfection with SARS-CoV-2 or severe COVID-19. Front Public Health 2023; 11:1290402. [PMID: 38222091 PMCID: PMC10788057 DOI: 10.3389/fpubh.2023.1290402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/30/2023] [Indexed: 01/16/2024] Open
Abstract
Much of the global population now has some level of adaptive immunity to SARS-CoV-2 induced by exposure to the virus (natural infection), vaccination, or a combination of both (hybrid immunity). Key questions that subsequently arise relate to the duration and the level of protection an individual might expect based on their infection and vaccination history. A multi-component composite correlate of risk (CoR) could inform individuals and stakeholders about protection and aid decision making. This perspective evaluates the various elements that need to be accommodated in the development of an antibody-based composite CoR for reinfection with SARS-CoV-2 or development of severe COVID-19, including variation in exposure dose, transmission route, viral genetic variation, patient factors, and vaccination status. We provide an overview of antibody dynamics to aid exploration of the specifics of SARS-CoV-2 antibody testing. We further discuss anti-SARS-CoV-2 immunoassays, sample matrices, testing formats, frequency of sampling and the optimal time point for such sampling. While the development of a composite CoR is challenging, we provide our recommendations for each of these key areas and highlight areas that require further work to be undertaken.
Collapse
Affiliation(s)
- Stefan Holdenrieder
- Institute of Laboratory Medicine, German Heart Centre Munich, Technical University Munich, Munich, Germany
| | | | - Jacques Izopet
- Laboratory of Virology, Toulouse University Hospital and INFINITY Toulouse Institute for Infections and Inflammatory Diseases, INSERM UMR 1291 CNRS UMR 5051, University Toulouse III, Toulouse, France
| | - Elitza S. Theel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Andreas Wieser
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Munich, Germany
- Faculty of Medicine, Max Von Pettenkofer Institute, LMU Munich, Munich, Germany
- Immunology, Infection and Pandemic Research, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Munich, Germany
| |
Collapse
|
3
|
Kumar V, Stewart JH. Immunometabolic reprogramming, another cancer hallmark. Front Immunol 2023; 14:1125874. [PMID: 37275901 PMCID: PMC10235624 DOI: 10.3389/fimmu.2023.1125874] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Molecular carcinogenesis is a multistep process that involves acquired abnormalities in key biological processes. The complexity of cancer pathogenesis is best illustrated in the six hallmarks of the cancer: (1) the development of self-sufficient growth signals, (2) the emergence of clones that are resistant to apoptosis, (3) resistance to the antigrowth signals, (4) neo-angiogenesis, (5) the invasion of normal tissue or spread to the distant organs, and (6) limitless replicative potential. It also appears that non-resolving inflammation leads to the dysregulation of immune cell metabolism and subsequent cancer progression. The present article delineates immunometabolic reprogramming as a critical hallmark of cancer by linking chronic inflammation and immunosuppression to cancer growth and metastasis. We propose that targeting tumor immunometabolic reprogramming will lead to the design of novel immunotherapeutic approaches to cancer.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), New Orleans, LA, United States
| | - John H. Stewart
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), New Orleans, LA, United States
- Louisiana State University- Louisiana Children’s Medical Center, Stanley S. Scott, School of Medicine, Louisiana State University Health Science Center (LSUHSC), New Orleans, LA, United States
| |
Collapse
|
4
|
Song C, Zhou Y, Cheng K, Liu F, Cai W, Zhou D, Chen R, Shi H, Fu Z, Chen J, Liu Z. Cellular senescence - Molecular mechanisms of intervertebral disc degeneration from an immune perspective. Biomed Pharmacother 2023; 162:114711. [PMID: 37084562 DOI: 10.1016/j.biopha.2023.114711] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/23/2023] Open
Abstract
Intervertebral disc degeneration (IVDD) is a frequent and intractable chronic condition in orthopedics that causes enormous discomfort in patients' lives and thoughts, as well as a significant economic burden on society and the nation. As a result, understanding the pathophysiology of IVDD is critical. The pathophysiology of IVDD has been linked to numerous variables, including oxidative stress, apoptosis, matrix metalloproteinases, and inflammatory factors. Cellular senescence has recently attracted a lot of attention in the study of age-related diseases. It has been discovered that IVDD is intimately linked to human senescence, in which nucleus pulposus cell senescence may play a significant role. Previously, our group did a comprehensive and systematic clarification of the pathogenesis of IVDD from an immune perspective and discovered that the fundamental pathogenesis of IVDD is inflammatory upregulation and nucleus pulposus cell death caused by an imbalance in the immune microenvironment. In this review, we will treat nucleus pulposus cell senescence as a novelty point to clarify the pathophysiology of IVDD and further explore the probable relationship between senescence and immunity along with the dysregulation of the immunological microenvironment to propose new therapeutic approaches for IVDD.
Collapse
Affiliation(s)
- Chao Song
- Department of Orthopedics and Traumatology (Trauma and Bonesetting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, China
| | - Yan Zhou
- Luzhou Longmatan District People's Hospital, Luzhou 646000, Sichuan Province, China
| | - Kang Cheng
- Department of Orthopedics and Traumatology (Trauma and Bonesetting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, China
| | - Fei Liu
- Department of Orthopedics and Traumatology (Trauma and Bonesetting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, China
| | - Weiye Cai
- Department of Orthopedics and Traumatology (Trauma and Bonesetting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, China
| | - Daqian Zhou
- Department of Orthopedics and Traumatology (Trauma and Bonesetting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, China
| | - Rui Chen
- Department of Orthopedics and Traumatology (Trauma and Bonesetting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, China
| | - Houyin Shi
- Department of Orthopedics and Traumatology (Trauma and Bonesetting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, China.
| | - Zhijiang Fu
- Department of Orthopedics and Traumatology (Trauma and Bonesetting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, China.
| | - Jingwen Chen
- Department of Orthopedics and Traumatology (Trauma and Bonesetting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, China.
| | - Zongchao Liu
- Department of Orthopedics and Traumatology (Trauma and Bonesetting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, China; Luzhou Longmatan District People's Hospital, Luzhou 646000, Sichuan Province, China.
| |
Collapse
|
5
|
Song C, Cai W, Liu F, Cheng K, Guo D, Liu Z. An in-depth analysis of the immunomodulatory mechanisms of intervertebral disc degeneration. JOR Spine 2022; 5:e1233. [PMID: 36601372 PMCID: PMC9799087 DOI: 10.1002/jsp2.1233] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/29/2022] [Accepted: 10/20/2022] [Indexed: 12/13/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is the pathological basis of disc herniation, spinal stenosis, and other related diseases, and the lower back pain it produces lays a heavy financial burden on individuals and society. Thus, it is essential to comprehend IVDD's pathophysiology. Numerous factors, such as inflammatory factors, oxidative stress, apoptosis, matrix metalloproteinases, are linked to IVDD pathogenesis. Despite the fact that many researches has provided explanations for the pathophysiology of IVDD, these studies are typically singular, restricted, and isolated, expound only on one or two components, and do not systematically analyze and summarize the numerous influencing elements. In addition, we discovered that the incidence of many chronic diseases in the field of orthopedics may be thoroughly and systematically defined in terms of immunological systems. In order to provide a theoretical foundation for an in-depth understanding of the pathological process of IVDD and the formulation of more effective prevention and treatment measures, this review provides a comprehensive and systematic account of the pathogenesis of IVDD from the physical to the molecular barriers of the intervertebral disc, from the nucleus pulposus tissue to the cellular to the immune-molecular level.
Collapse
Affiliation(s)
- Chao Song
- Department of Orthopedics and Traumatology (Trauma and Bonesetting)The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical UniversityLuzhouChina
| | - Weiye Cai
- Department of Orthopedics and Traumatology (Trauma and Bonesetting)The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical UniversityLuzhouChina
| | - Fei Liu
- Department of Orthopedics and Traumatology (Trauma and Bonesetting)The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical UniversityLuzhouChina
| | - Kang Cheng
- Department of Orthopedics and Traumatology (Trauma and Bonesetting)The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical UniversityLuzhouChina
| | - Daru Guo
- Department of Orthopedics and Traumatology (Trauma and Bonesetting)The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical UniversityLuzhouChina
| | - Zongchao Liu
- Department of Orthopedics and Traumatology (Trauma and Bonesetting)The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical UniversityLuzhouChina
| |
Collapse
|
6
|
Leonhard J, Schaier M, Kälble F, Eckstein V, Zeier M, Steinborn A. Chronic Kidney Failure Provokes the Enrichment of Terminally Differentiated CD8 + T Cells, Impairing Cytotoxic Mechanisms After Kidney Transplantation. Front Immunol 2022; 13:752570. [PMID: 35592311 PMCID: PMC9110814 DOI: 10.3389/fimmu.2022.752570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Abstract
Chronic kidney failure (KF) provokes the development of immune senescent CD8+ cytotoxic T cells, affecting the occurrence of graft rejection, viral infections, and malignancies after kidney transplantation. In this study, we analyzed the impact of KF, subsequent dialysis treatment, and kidney transplantation on the differentiation of CD8+CD31+CD45RA+CCR7+ recent thymic emigrant (CCR7+ RTE) Tregs/Tresps into CD8+CD31-CD45RA- memory (CD31- memory) Tregs/Tresps and its effect on the release of cytokines, Fas receptor, Fas ligand as well as cytotoxic mediators by naïve, central memory (CM), effector memory (EM), and terminally differentiated effector memory (TEMRA) Tresps. We found that normal age-dependent differentiation of CD8+ Tregs/Tresps generally differs in the way that TEMRA cells only arise in Tresps. Compared to healthy controls, KF patients revealed an age-independently decreased frequency of CCR7+ RTE Tregs/Tresps, but increased frequencies of CCR7+ MN Tregs/Tresps and CD31- memory Tregs/Tresps, suggesting an increased differentiation via CD31+CD45RA- memory (CD31+ memory) Tregs/Tresps into CD31- memory Tregs/Tresps. Intensified differentiation via CD31+ memory Tresps increased the emergence of apoptosis-resistant CM Tresps with strong Fas ligand-mediated cytotoxicity. CCR7+ RTE Tresp proliferation generated TEMRA Tresps, secreting high levels of cytotoxic mediators. In dialysis and transplant patients, CD31+ TEMRA Tregs/Tresps accumulated, proposing an impaired CCR7+ RTE Treg/Tresp differentiation via CD31+ memory Tregs/Tresps into CD31- memory Tregs/Tresps. Increased percentages of CD31- TEMRA Tresps, but not of CD31- TEMRA Tregs, were observed in all patient groups, indicating impaired proliferation of CCR7+ RTE Tresps, but not of CCR7+ RTE Tregs, into CD31- memory Tregs/Tresps. In transplant patients, CCR7+ RTE Tregs accumulated, while frequencies of CCR7+ RTE Tresps were decreased, suggesting that the immunosuppressive therapy only prevented excessive CCR7+ RTE Treg differentiation but not that of CCR7+ RTE Tresps. Presumably, this caused the accumulation of TEMRA Tresps with decreased release of cytotoxic mediators, such as perforin. In conclusion, we propose that chronic KF affects both the differentiation of CD8+ Tregs and CD8+ Tresps. However, the immunosuppressive therapy after transplantation may successfully prevent excessive Treg differentiation, but not as suffciently that of Tresps. Therefore, the risk for graft rejection may be reduced, while the susceptibility for infections and malignancies may be increased in these patients.
Collapse
Affiliation(s)
- Jonas Leonhard
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany.,Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Matthias Schaier
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Florian Kälble
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Volker Eckstein
- Department of Internal Medicine V (Hematology), University of Heidelberg, Heidelberg, Germany
| | - Martin Zeier
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Andrea Steinborn
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
7
|
Bell MR, Kutzler MA. An old problem with new solutions: Strategies to improve vaccine efficacy in the elderly. Adv Drug Deliv Rev 2022; 183:114175. [PMID: 35202770 DOI: 10.1016/j.addr.2022.114175] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 11/01/2022]
Abstract
Vaccination is the most effective measure to protect against infections. However, with increasing age, there is a progressive decline in the ability of the immune system to both protect against infection and develop protective immunity from vaccination. This age-related decline of the immune system is due to age-related changes in both the innate and adaptive immune systems. With an aging world population and increased risk of pandemics, there is a need to continue to develop strategies to increase vaccine responses in the elderly. Here, the major age-related changes that occur in both the innate and adaptive immune responses that impair the response to vaccination in the elderly will be highlighted. Existing and future strategies to improve vaccine efficacy in the elderly will then be discussed, including adjuvants, delivery methods, and formulation. These strategies provide mechanisms to improve the efficacy of existing vaccines and develop novel vaccines for the elderly.
Collapse
|
8
|
Abstract
Exhaustion of T cells occurs in response to long-term exposure to self and foreign antigens. It limits T cell capacity to proliferate and produce cytokines, leading to an impaired ability to clear chronic infections or eradicate tumors. T-cell exhaustion is associated with a specific transcriptional, epigenetic, and metabolic program and characteristic cell surface markers' expression. Recent studies have begun to elucidate the role of T-cell exhaustion in transplant. Higher levels of exhausted T cells have been associated with better graft function in kidney transplant recipients. In contrast, reinvigorating exhausted T cells by immune checkpoint blockade therapies, while promoting tumor clearance, increases the risk of acute rejection. Lymphocyte depletion and high alloantigen load have been identified as major drivers of T-cell exhaustion. This could account, at least in part, for the reduced rates of acute rejection in organ transplant recipients induced with thymoglobulin and for the pro-tolerogenic effects of a large organ such as the liver. Among the drugs that are widely used for maintenance immunosuppression, calcineurin inhibitors have a contrasting inhibitory effect on exhaustion of T cells, while the influence of mTOR inhibitors is still unclear. Harnessing or encouraging the natural processes of exhaustion may provide a novel strategy to promote graft survival and transplantation tolerance.
Collapse
|
9
|
Wang L, Rondaan C, de Joode AAE, Raveling-Eelsing E, Bos NA, Westra J. Changes in T and B cell subsets in end stage renal disease patients before and after kidney transplantation. IMMUNITY & AGEING 2021; 18:43. [PMID: 34749733 PMCID: PMC8574047 DOI: 10.1186/s12979-021-00254-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/28/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND The incidence of kidney transplantation performed in elderly patients has increased steadily recently. Higher risk of infection and mortality, but lower rate of rejection, are reported in older kidney transplant patients. This study aims to analyze the effect of transplantation on aging of T and B cells in kidney transplant patients, with the emphasis on age and Cytomegalovirus (CMV) latency. RESULTS We included 36 patients before and after (median 2.7 years) kidney transplantation and 27 age- and sex-matched healthy controls (HC). T and B cell subsets were measured by flow cytometry, with a focus on aged T cells (CD28-), and age associated B cells (ABCs, CD19 + CD21-CD11c+). Three years after transplantation a significant increase of total T cells among the lymphocytes was found compared to pre-transplantation and HC. Among the T cells CD4+ cells were decreased, especially naïve CD4+ cells and regulatory T cells. Total CD8+ cell proportions were increased, and proportions of naïve CD8+ cells were significantly decreased after transplantation, while CD8+ effector memory T cells re-expressing CD45RA were increased. CD28- T cells were significantly higher compared to HC after transplantation, especially in CMV seropositive patients. B cells were significantly decreased, while among B cells memory B cells and especially ABCs were increased after transplantation. CONCLUSIONS After transplantation T and B cell subsets change towards more terminally differentiated memory cells compared to age-matched HC. Proportions of aged T cells and ABCs were associated with CMV serostatus.
Collapse
Affiliation(s)
- Lei Wang
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, NL, The Netherlands
| | - Christien Rondaan
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anoek A E de Joode
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Elisabeth Raveling-Eelsing
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, NL, The Netherlands
| | - Nicolaas A Bos
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, NL, The Netherlands
| | - Johanna Westra
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, NL, The Netherlands.
| |
Collapse
|
10
|
Fedulkina VA, Vatazin AV, Kildyushevskiy AV, Zulkarnayev AB, Gubina DV, Fedulkina MP. Immunosenescence as a reason of individualizing immunosuppressive therapy in kidney transplantation. RUSSIAN JOURNAL OF TRANSPLANTOLOGY AND ARTIFICIAL ORGANS 2021. [DOI: 10.15825/1995-1191-2021-3-171-179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transplantation in elderly patients is obviously more challenging due to existing underlying diseases, changes in pharmacokinetics of immunosuppressive drugs, polypragmasy, and transformation of immunoreactivity (immunosenescence). Our review presents data on modification of adaptive and innate immunity during aging. It also considers the possibility of both reduced and adapted immunosuppressive therapy in elderly renal transplant recipients in achieving an optimal balance between efficacy and complications.
Collapse
Affiliation(s)
| | - A. V. Vatazin
- Vladimirsky Moscow Regional Research Clinical Institute
| | | | | | - D. V. Gubina
- Vladimirsky Moscow Regional Research Clinical Institute
| | | |
Collapse
|
11
|
Martin DE, Torrance BL, Haynes L, Bartley JM. Targeting Aging: Lessons Learned From Immunometabolism and Cellular Senescence. Front Immunol 2021; 12:714742. [PMID: 34367184 PMCID: PMC8334863 DOI: 10.3389/fimmu.2021.714742] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022] Open
Abstract
It is well known that aging is associated with dysregulated metabolism. This is seen both in terms of systemic metabolism, as well as at the cellular level with clear mitochondrial dysfunction. More recently, the importance of cellular metabolism in immune cells, or immunometabolism, has been highlighted as a major modifier of immune cell function. Indeed, T cell activation, differentiation, and effector function partly depend on alterations in metabolic pathways with different cell types and functionality favoring either glycolysis or oxidative phosphorylation. While immune system dysfunction with aging is well described, what remains less elucidated is how the integral networks that control immune cell metabolism are specifically affected by age. In recent years, this significant gap has been identified and work has begun to investigate the various ways immunometabolism could be impacted by both chronological age and age-associated symptoms, such as the systemic accumulation of senescent cells. Here, in this mini-review, we will examine immunometabolism with a focus on T cells, aging, and interventions, such as mTOR modulators and senolytics. This review also covers a timely perspective on how immunometabolism may be an ideal target for immunomodulation with aging.
Collapse
Affiliation(s)
| | | | | | - Jenna M. Bartley
- Center on Aging and Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, United States
| |
Collapse
|