1
|
Lee SK, Kwon JH, Jang JW, Bae SH, Yoon SK, Jung ES, Choi JY. The Critical Role of Regulatory T Cells in Immune Tolerance and Rejection Following Liver Transplantation: Interactions With the Gut Microbiome. Transplantation 2025; 109:784-793. [PMID: 39375899 DOI: 10.1097/tp.0000000000005220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Liver transplantation (LT) is the ultimate treatment for patients with end-stage liver disease or early hepatocellular carcinoma. In the context of LT, because of the unique immunological characteristics of human liver allograft, 5%-20% of selected LT recipients can achieve operational tolerance. Nonetheless, there remains a risk of rejection in LT patients. Maintaining immune homeostasis is thus crucial for improving clinical outcomes in these patients. In mechanism, several immune cells, including dendritic cells, Kupffer cells, myeloid-derived suppressor cells, hepatic stellate cells, regulatory B cells, and CD4 + regulatory T cells (Treg), contribute to achieving tolerance following LT. In terms of Treg, it plays a role in successfully minimizing immunosuppression or achieving tolerance post-LT while also reducing the risk of rejection. Furthermore, the gut microbiome modulates systemic immune functions along the gut-liver axis. Recent studies have explored changes in the microbiome and its metabolites under various conditions, including post-LT, acute rejection, and tolerance. Certain functional microbiomes and metabolites exhibit immunomodulatory functions, such as the augmentation of Treg, influencing immune homeostasis. Therefore, understanding the mechanisms of tolerance in LT, the role of Treg in tolerance and rejection, as well as their interactions with gut microbiome, is vital for the management of LT patients.
Collapse
Affiliation(s)
- Soon Kyu Lee
- Division of Hepatology, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung Hyun Kwon
- Division of Hepatology, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeong Won Jang
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Si Hyun Bae
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Kew Yoon
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Sun Jung
- Department of Pathology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jong Young Choi
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
2
|
Shi JH, Line PD, Zhang SJ, Guo WZ. Experimental Liver Surgery for Liver Research: Update, Choice and Translation. J Inflamm Res 2025; 18:4497-4508. [PMID: 40170753 PMCID: PMC11960460 DOI: 10.2147/jir.s506737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/13/2025] [Indexed: 04/03/2025] Open
Abstract
Experimental animal models of liver surgery are crucial for understanding human liver physiology and pathogenesis and identifying novel therapeutic modalities for liver disease. Herein, we update the brief summary of the most widely used experimental models and concepts in hepatic surgery, including hepatic ischemia/reperfusion, partial hepatectomy, liver transplantation, techniques and parameters of vascular perfusion of the liver, and using bile duct ligation as a model of cholestasis for the development of liver fibrosis. We focus on surgical aspects of available models for the study of various forms of liver disease. Furthermore, we summarize the translation of experimental liver surgery by highlighting surgical innovations, exploring key molecular mechanisms, and employing emerging treatment strategies.
Collapse
Affiliation(s)
- Ji-Hua Shi
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Pål-Dag Line
- Department of Transplantation Medicine, Oslo University Hospital, Rikshospitalet and Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Shui-Jun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Wen-Zhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| |
Collapse
|
3
|
Kang M, Park HK, Kim KS, Choi D. Animal models for transplant immunology: bridging bench to bedside. CLINICAL TRANSPLANTATION AND RESEARCH 2024; 38:354-376. [PMID: 39233453 PMCID: PMC11732767 DOI: 10.4285/ctr.24.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 09/06/2024]
Abstract
The progress of transplantation has been propelled forward by animal experiments. Animal models have not only provided opportunities to understand complex immune mechanisms in transplantation but also served as a platform to assess therapeutic interventions. While small animals have been instrumental in uncovering new therapeutic concepts related to immunosuppression and immune tolerance, the progression to human trials has largely been driven by studies in large animals. Recent research has begun to explore the potential of porcine organs to address the shortage of available organs. The consistent progress in transplant immunology research can be attributed to a thorough understanding of animal models. This review provides a comprehensive overview of the available animal models, detailing their modifications, strengths, and weaknesses, as well as their historical applications, to aid researchers in selecting the most suitable model for their specific research needs.
Collapse
Affiliation(s)
- Minseok Kang
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Hwon Kyum Park
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Kyeong Sik Kim
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Dongho Choi
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
- Department of HY-KIST Bio-convergence, Hanyang University, Seoul, Korea
| |
Collapse
|
4
|
Yang Z, Wu L, Hou P, Zhang X, Jiang P, Li M. Prognosis Analysis of Rat Liver Transplantation Under Direct Vision of Single Operator. Transplant Proc 2024; 56:1904-1912. [PMID: 39242317 DOI: 10.1016/j.transproceed.2024.08.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/24/2024] [Indexed: 09/09/2024]
Abstract
OBJECTIVE This study aims to investigate the impact of surgical experimental variables on the prognosis of orthotopic liver transplantation (OLT) in rats, with the goal of enhancing the efficacy of modeling techniques. METHODS Using Kamada's "two-cuff method" of rat orthotopic liver transplantation, 76 pairs of SD-Wistar rats were performed orthotopic liver transplantation from March to September 2023. Thirteen experimental factors during the perioperative period and the survival time of recipient rats were collected and recorded. To explore the surgical factors affecting the prognosis of rat liver transplantation and summarize the surgical techniques. RESULTS The success rate of orthotopic liver transplantation in SD-Wistar rats was 68.4%, with 24 recipients surviving within 3-7 days and 28 recipients surviving more than 1 week. Donor liver perfusion, recipient blood loss, recipient liver blood expulsion, anhepatic phase, suprahepatic inferior vena cava anastomosis time and anesthesia recovery time are related to the survival of recipient rats after liver transplantation. Donor liver perfusion, eliminating blood in recipient liver and intraoperative blood loss of recipient are surgical factors affecting the prognosis of liver transplantation in rats. The survival time of recipient rats with liver perfusion through abdominal aorta, eliminating blood in recipient liver was relatively prolonged after operation. CONCLUSION Under the condition of reasonable control of the anhepatic phase, the perfusion method of the donor liver, whether to eliminate blood in recipient liver, and intraoperative blood loss of recipient are important surgical factors affecting the prognosis of liver transplantation in rats.
Collapse
Affiliation(s)
- Zhiqi Yang
- Third Clinical Medical College of Ningxia Medical University, Yin Chuan, Ningxia Hui Autonomous Region, People's Republic of China; Hepatobiliary Surgery Department of Ningxia Hui Autonomous Region People's Hospital, Yin Chuan, Ningxia Hui Autonomous Region, People's Republic of China.
| | - Lang Wu
- Hepatobiliary Surgery Department of Ningxia Hui Autonomous Region People's Hospital, Yin Chuan, Ningxia Hui Autonomous Region, People's Republic of China.
| | - Peibo Hou
- Third Clinical Medical College of Ningxia Medical University, Yin Chuan, Ningxia Hui Autonomous Region, People's Republic of China.
| | - Xining Zhang
- Hepatobiliary Surgery Department of Ningxia Hui Autonomous Region People's Hospital, Yin Chuan, Ningxia Hui Autonomous Region, People's Republic of China.
| | - Peng Jiang
- Third Clinical Medical College of Ningxia Medical University, Yin Chuan, Ningxia Hui Autonomous Region, People's Republic of China.
| | - Minghao Li
- Third Clinical Medical College of Ningxia Medical University, Yin Chuan, Ningxia Hui Autonomous Region, People's Republic of China; Hepatobiliary Surgery Department of Ningxia Hui Autonomous Region People's Hospital, Yin Chuan, Ningxia Hui Autonomous Region, People's Republic of China.
| |
Collapse
|
5
|
Banerjee A, Das D, Mukherjee S, Maji BK. Comprehensive study of the interplay between immunological and metabolic factors in hepatic steatosis. Int Immunopharmacol 2024; 133:112091. [PMID: 38657500 DOI: 10.1016/j.intimp.2024.112091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
The pathophysiology of hepatic steatosis is thoroughly reviewed in this comprehensive report, with particular attention to the complex interactions between inflammatory pathways, insulin resistance, lipid metabolism, metabolic dysregulation, and immunological responses in the liver including non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), and hepatocellular carcinoma (HCC). The study highlights the role of immune cell regulation in disease progression and explores the potential of immune cell-specific treatments for treating hepatic disorders. The development of liver disorders is significantly influenced by immune cells, including dendritic cells, T cells, and natural killer cells. Clinical investigations show that immune cell-specific treatments can effectively reduce liver fibrosis and inflammation. Future research should focus on finding new immunological targets for therapeutic interventions, as well as addressing the management challenges associated with NAFLD/NASH. Hepatic immune microorganisms also impact liver homeostasis and disorders. Improvements in immune cell regulation and liver transplantation methods give patients hope for better prognoses. Important phases include optimizing the selection of donors for malignancy of the liver, using machine perfusion for organ preservation, and fine-tuning immunosuppressive strategies. For focused treatments in hepatic steatosis, it is imperative to understand the intricate interactions between immune and metabolic variables. Understanding the liver's heterogeneous immune profile, encompassing a range of immune cell subpopulations, is crucial for formulating focused therapeutic interventions. To improve patient care and outcomes in hepatic illnesses, there is an urgent need for further research and innovation. Therefore, to effectively treat hepatic steatosis, it is important to enhance therapeutic techniques and maximize liver transplantation strategies.
Collapse
Affiliation(s)
- Arnab Banerjee
- Department of Physiology (UG & PG), Serampore College, 9 William Carey Road, Serampore, Hooghly 712201, West Bengal, India.
| | - Debasmita Das
- Department of Physiology (UG & PG), Serampore College, 9 William Carey Road, Serampore, Hooghly 712201, West Bengal, India
| | - Sandip Mukherjee
- Department of Physiology (UG & PG), Serampore College, 9 William Carey Road, Serampore, Hooghly 712201, West Bengal, India
| | - Bithin Kumar Maji
- Department of Physiology (UG & PG), Serampore College, 9 William Carey Road, Serampore, Hooghly 712201, West Bengal, India.
| |
Collapse
|
6
|
Pouyabahar D, Chung SW, Pezzutti OI, Perciani CT, Wang X, Ma XZ, Jiang C, Camat D, Chung T, Sekhon M, Manuel J, Chen XC, McGilvray ID, MacParland SA, Bader GD. A rat liver cell atlas reveals intrahepatic myeloid heterogeneity. iScience 2023; 26:108213. [PMID: 38026201 PMCID: PMC10651689 DOI: 10.1016/j.isci.2023.108213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 08/20/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
The large size and vascular accessibility of the laboratory rat (Rattus norvegicus) make it an ideal hepatic animal model for diseases that require surgical manipulation. Often, the disease susceptibility and outcomes of inflammatory pathologies vary significantly between strains. This study uses single-cell transcriptomics to better understand the complex cellular network of the rat liver, as well as to unravel the cellular and molecular sources of inter-strain hepatic variation. We generated single-cell and single-nucleus transcriptomic maps of the livers of healthy Dark Agouti and Lewis rat strains and developed a factor analysis-based bioinformatics analysis pipeline to study data covariates, such as strain and batch. Using this approach, we discovered transcriptomic variation within the hepatocyte and myeloid populations that underlie distinct cell states between rat strains. This finding will help provide a reference for future investigations on strain-dependent outcomes of surgical experiment models.
Collapse
Affiliation(s)
- Delaram Pouyabahar
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Sai W. Chung
- Ajmera Transplant Centre, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Olivia I. Pezzutti
- Ajmera Transplant Centre, Toronto General Hospital Research Institute, Toronto, ON, Canada
| | - Catia T. Perciani
- Ajmera Transplant Centre, Toronto General Hospital Research Institute, Toronto, ON, Canada
| | - Xinle Wang
- Ajmera Transplant Centre, Toronto General Hospital Research Institute, Toronto, ON, Canada
| | - Xue-Zhong Ma
- Ajmera Transplant Centre, Toronto General Hospital Research Institute, Toronto, ON, Canada
| | - Chao Jiang
- Ajmera Transplant Centre, Toronto General Hospital Research Institute, Toronto, ON, Canada
| | - Damra Camat
- Ajmera Transplant Centre, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Trevor Chung
- Ajmera Transplant Centre, Toronto General Hospital Research Institute, Toronto, ON, Canada
| | - Manmeet Sekhon
- Ajmera Transplant Centre, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Justin Manuel
- Ajmera Transplant Centre, Toronto General Hospital Research Institute, Toronto, ON, Canada
| | - Xu-Chun Chen
- Ajmera Transplant Centre, Toronto General Hospital Research Institute, Toronto, ON, Canada
| | - Ian D. McGilvray
- Ajmera Transplant Centre, Toronto General Hospital Research Institute, Toronto, ON, Canada
| | - Sonya A. MacParland
- Ajmera Transplant Centre, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Gary D. Bader
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
- Princess Margaret Research Institute, University Health Network, Toronto, ON, Canada
- The Multiscale Human Program, Canadian Institute for Advanced Research, Toronto, ON, Canada
| |
Collapse
|
7
|
Cao W, Lu J, Li S, Song F, Xu J. Transcriptomic analysis of graft liver provides insight into the immune response of rat liver transplantation. Front Immunol 2022; 13:947437. [DOI: 10.3389/fimmu.2022.947437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022] Open
Abstract
BackgroundAs an “immune-privileged organ”, the liver has higher rates of both spontaneous tolerance and operational tolerance after being transplanted compared with other solid organs. Also, a large number of patients still need to take long-term immunosuppression regimens. Liver transplantation (LT) rejection involves varieties of pathophysiological processes and cell types, and a deeper understanding of LT immune response is urgently needed.MethodsHomogenic and allogeneic rat LT models were established, and recipient tissue was collected on postoperative day 7. The degree of LT rejection was evaluated by liver pathological changes and liver function. Differentially expressed genes (DEGs) were detected by transcriptome sequencing and confirmed by reverse transcription-polymerase chain reaction. The functional properties of DEGs were characterized by the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome pathway analyses. The cells infiltrating the graft and recipient spleen and peripheral blood were evaluated by immunofluorescence and flow cytometry.ResultA total of 1,465 DEGs were screened, including 1,177 up-regulated genes and 288 down-regulated genes. GO enrichment and KEGG pathway analysis indicated that DEGs were involved in several immunobiological processes, including T cell activation, Th1, Th2 and Th17 cell differentiation, cytokine-cytokine receptor interaction and other immune processes. Reactome results showed that PD-1 signaling was enriched. Further research confirmed that mRNA expression of multiple immune cell markers increased and markers of T cell exhaustion significantly changed. Flow cytometry showed that the proportion of Treg decreased, and that of PD-1+CD4+ T cells and PD-1+CD8+ T cells increased in the allogeneic group.ConclusionUsing an omic approach, we revealed that the development of LT rejection involved multiple immune cells, activation of various immune pathways, and specific alterations of immune checkpoints, which would benefit risk assessment in the clinic and understanding of pathogenesis regarding LT tolerance. Further clinical validations are warranted for our findings.
Collapse
|
8
|
Annual Meeting of the Canadian Association for the Study of the Liver (CASL), the Canadian Network on Hepatitis C (CanHepC), the Canadian Association of Hepatology Nurses (CAHN), and the Canadian NASH Network 2022 Abstracts. CANADIAN LIVER JOURNAL 2022; 5:169-317. [PMID: 35991483 PMCID: PMC9236590 DOI: 10.3138/canlivj.5.2.abst] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 09/17/2023]
|
9
|
Cao H, Wu L, Tian X, Zheng W, Yuan M, Li X, Tian X, Wang Y, Song H, Shen Z. HO-1/BMMSC perfusion using a normothermic machine perfusion system reduces the acute rejection of DCD liver transplantation by regulating NKT cell co-inhibitory receptors in rats. Stem Cell Res Ther 2021; 12:587. [PMID: 34819139 PMCID: PMC8611848 DOI: 10.1186/s13287-021-02647-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 10/31/2021] [Indexed: 01/14/2023] Open
Abstract
Background Liver transplantation (LT) is required in many end-stage liver diseases. Donation after cardiac death (DCD) livers are often used, and treatment of acute rejection (ACR) requires the use of immunosuppressive drugs that are associated with complications. Bone marrow mesenchymal stem cells (BMMSCs) are used in treatment following LT; however, they have limitations, including low colonization in the liver. An optimized BMMSC application method is required to suppress ACR. Methods BMMSCs were isolated and modified with the heme oxygenase 1 (HO-1) gene. HO-1/BMMSCs were perfused into donor liver in vitro using a normothermic machine perfusion (NMP) system, followed by LT into rats. The severity of ACR was evaluated based on liver histopathology. Gene chip technology was used to detect differential gene expression, and flow cytometry to analyze changes in natural killer (NK) T cells. Results NMP induced BMMSCs to colonize the donor liver during in vitro preservation. The survival of HO-1/BMMSCs in liver grafts was significantly longer than that of unmodified BMMSCs. When the donor liver contained HO-1/BMMSCs, the local immunosuppressive effect was improved and prolonged, ACR was controlled, and survival time was significantly prolonged. The application of HO-1/BMMSCs reduced the number of NKT cells in liver grafts, increased the expression of NKT cell co-inhibitory receptors, and reduced NKT cell expression of interferon-γ. Conclusions NK cell and CD8+ T cell activation was inhibited by application of HO-1/BMMSCs, which reduced ACR of transplanted liver. This approach could be developed to enhance the success rate of LT. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02647-5.
Collapse
Affiliation(s)
- Huan Cao
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Longlong Wu
- School of Medicine, Nankai University, Tianjin, People's Republic of China
| | - Xuan Tian
- School of Medicine, Nankai University, Tianjin, People's Republic of China
| | - Weiping Zheng
- Department of Organ Transplantation, Tianjin First Central Hospital, No. 24 Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China.,NHC Key Laboratory of Critical Care Medicine, Tianjin, 300192, People's Republic of China
| | - Mengshu Yuan
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Xiang Li
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Xiaorong Tian
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Yuxin Wang
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Hongli Song
- Department of Organ Transplantation, Tianjin First Central Hospital, No. 24 Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China. .,Tianjin Key Laboratory of Organ Transplantation, Tianjin, People's Republic of China.
| | - Zhongyang Shen
- Department of Organ Transplantation, Tianjin First Central Hospital, No. 24 Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China. .,Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin, People's Republic of China.
| |
Collapse
|
10
|
Annual Meeting of the Canadian Association for the Study of the Liver (CASL), the Canadian Network on Hepatitis C (CANHEPC) and the Canadian Association of Hepatology Nurses (CAHN) 2021 Abstracts. CANADIAN LIVER JOURNAL 2021; 4:113-248. [PMID: 35991765 PMCID: PMC9204943 DOI: 10.3138/canlivj.4.2.abst] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 11/06/2023]
|