1
|
Piemonti L. The Last Mile in Beta-Cell Replacement Therapy for Type 1 Diabetes: Time to Grow Up. Transpl Int 2025; 38:14565. [PMID: 40236754 PMCID: PMC11998595 DOI: 10.3389/ti.2025.14565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 03/21/2025] [Indexed: 04/17/2025]
Abstract
Beta cell replacement therapy for type 1 diabetes (T1D) is undergoing a transformative shift, driven by advances in stem cell biology, gene editing, and tissue engineering. While islet transplantation has demonstrated proof-of-concept success in restoring endogenous insulin production, its clinical impact remains limited by donor scarcity, immune rejection, and procedural complexities. The emergence of stem cell-derived beta-like cells represents a paradigm shift, with initial clinical trials showing promising insulin secretion in vivo. However, translating these breakthroughs into scalable, widely accessible treatments poses significant challenges. Drawing parallels to space exploration, this paper argues that while scientific feasibility has been demonstrated, true accessibility remains elusive. Without a strategic shift, beta cell therapy risks becoming an elite intervention, restricted by cost and infrastructure. Lessons from gene and cell therapies for rare diseases highlight the dangers of unsustainable pricing and limited market viability. To bridge the "last mile" a Quality by Design approach is proposed, emphasizing scalability, ease of use, and economic feasibility from the outset. By emphasizing practical implementation over academic achievements, corporate interests, market economics, or patent constraints, beta cell therapy can progress from proof-of-concept to a viable, widely accessible treatment.
Collapse
Affiliation(s)
- Lorenzo Piemonti
- Unit of Regenerative Medicine and Organ Transplants, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
2
|
Witkowski P, Wojcik N, Appelbaum N, Fung JJ, Barth RN, Ricordi C. Demise of cadaveric islet transplantation in the USA: Quo Vadis, 1 year after BLA approval and 24 years after the Edmonton breakthrough? FRONTIERS IN TRANSPLANTATION 2025; 4:1491568. [PMID: 39949592 PMCID: PMC11822476 DOI: 10.3389/frtra.2025.1491568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/10/2025] [Indexed: 02/16/2025]
Abstract
More than a year after the Biological License Application (BLA) approval for CellTrans, cadaveric islet transplantation remains in demise in the United States (U.S.). While the therapy is unavailable to Americans, it is already a standard of care procedure in other countries, including Canada, Australia, and many in Europe. This article discusses the challenges stemming from an outdated regulatory framework in the U.S. concerning cadaveric islet transplantation. It also presents advocacy efforts by the transplant community for appropriate regulatory adjustments and discusses future perspectives.
Collapse
Affiliation(s)
- Piotr Witkowski
- The Transplantation Institute, University of Chicago, Chicago, IL, United States
| | - Nicole Wojcik
- The Transplantation Institute, University of Chicago, Chicago, IL, United States
| | - Nathan Appelbaum
- The Transplantation Institute, University of Chicago, Chicago, IL, United States
| | - John J. Fung
- The Transplantation Institute, University of Chicago, Chicago, IL, United States
| | - Rolf N. Barth
- The Transplantation Institute, University of Chicago, Chicago, IL, United States
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami, Miami, FL, United States
| |
Collapse
|
3
|
Raoufinia R, Rahimi HR, Saburi E, Moghbeli M. Advances and challenges of the cell-based therapies among diabetic patients. J Transl Med 2024; 22:435. [PMID: 38720379 PMCID: PMC11077715 DOI: 10.1186/s12967-024-05226-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Diabetes mellitus is a significant global public health challenge, with a rising prevalence and associated morbidity and mortality. Cell therapy has evolved over time and holds great potential in diabetes treatment. In the present review, we discussed the recent progresses in cell-based therapies for diabetes that provides an overview of islet and stem cell transplantation technologies used in clinical settings, highlighting their strengths and limitations. We also discussed immunomodulatory strategies employed in cell therapies. Therefore, this review highlights key progresses that pave the way to design transformative treatments to improve the life quality among diabetic patients.
Collapse
Affiliation(s)
- Ramin Raoufinia
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Rahimi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Saburi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Witkowski P, Philipson LH, Buse JB, Robertson RP, Alejandro R, Bellin MD, Kandeel F, Baidal D, Gaglia JL, Posselt AM, Anteby R, Bachul PJ, Al-Salmay Y, Jayant K, Perez-Gutierrez A, Barth RN, Fung JJ, Ricordi C. Islets Transplantation at a Crossroads - Need for Urgent Regulatory Update in the United States: Perspective Presented During the Scientific Sessions 2021 at the American Diabetes Association Congress. Front Endocrinol (Lausanne) 2022; 12:789526. [PMID: 35069442 PMCID: PMC8772267 DOI: 10.3389/fendo.2021.789526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022] Open
Abstract
Clinical islet allotransplantation has been successfully regulated as tissue/organ for transplantation in number of countries and is recognized as a safe and efficacious therapy for selected patients with type 1 diabetes mellitus. However, in the United States, the FDA considers pancreatic islets as a biologic drug, and islet transplantation has not yet shifted from the experimental to the clinical arena for last 20 years. In order to transplant islets, the FDA requires a valid Biological License Application (BLA) in place. The BLA process is costly and lengthy. However, despite the application of drug manufacturing technology and regulations, the final islet product sterility and potency cannot be confirmed, even when islets meet all the predetermined release criteria. Therefore, further regulation of islets as drugs is obsolete and will continue to hinder clinical application of islet transplantation in the US. The Organ Procurement and Transplantation Network together with the United Network for Organ Sharing have developed separately from the FDA and BLA regulatory framework for human organs under the Human Resources & Services Administration to assure safety and efficacy of transplantation. Based on similar biologic characteristics of islets and human organs, we propose inclusion of islets into the existing regulatory framework for organs for transplantation, along with continued FDA oversight for islet processing, as it is for other cell/tissue products exempt from BLA. This approach would reassure islet quality, efficacy and access for Americans with diabetes to this effective procedure.
Collapse
Affiliation(s)
- Piotr Witkowski
- Transplantation Institute, Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Louis H. Philipson
- Section of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Chicago, Chicago, IL, United States
- Kovler Diabetes Center, University of Chicago, Chicago, IL, United States
| | - John B. Buse
- Division of Endocrinology, Department of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - R. Paul Robertson
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Washington, Seattle, WA, United States
| | - Rodolfo Alejandro
- Diabetes Research Institute and Cell Transplant Center, University of Miami, Miami, FL, United States
| | - Melena D. Bellin
- Department of Pediatrics, Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Fouad Kandeel
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - David Baidal
- Diabetes Research Institute and Cell Transplant Center, University of Miami, Miami, FL, United States
| | - Jason L. Gaglia
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, United States
| | - Andrew M. Posselt
- Division of Transplantation, Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Roi Anteby
- Harvard School of Public Health, Harvard University, Boston, MA, United States
| | - Piotr J. Bachul
- Transplantation Institute, Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Yaser Al-Salmay
- Transplantation Institute, Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Kumar Jayant
- Transplantation Institute, Department of Surgery, University of Chicago, Chicago, IL, United States
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Angelica Perez-Gutierrez
- Transplantation Institute, Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Rolf N. Barth
- Transplantation Institute, Department of Surgery, University of Chicago, Chicago, IL, United States
| | - John J. Fung
- Transplantation Institute, Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Camillo Ricordi
- Diabetes Research Institute and Cell Transplant Center, University of Miami, Miami, FL, United States
| |
Collapse
|