1
|
Forgie K, Watkins A, Du K, Ribano A, Fialka N, Himmat S, Hatami S, Khan M, Wang X, Edgar R, Buswell-Zuk KM, Freed DH, Nagendran J. Perfusate Exchange Does Not Improve Outcomes in 24-hour Ex Situ Lung Perfusion. Transplant Proc 2024; 56:1811-1819. [PMID: 39242310 DOI: 10.1016/j.transproceed.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Reliable 24-hour preservation is required to optimize the rehabilitation potential of Ex Situ Lung Perfusion (ESLP). Other ESLP protocols include fresh perfusate replacement to counteract an accumulation of deleterious by-products. We describe the results of our reliable 24-hour negative pressure ventilation (NPV)-ESLP protocol with satisfactory acute post-transplant outcomes and investigate perfusate exchange (PE) as a modification to enhance prolonged ESLP. METHODS Twelve pig lungs underwent 24 hours of NPV-ESLP using 1.5L of cellular perfusate (500 mL packed red blood cells and 1 L buffered perfusate). The Control (n = 6) had no PE; the PE (n = 6) had 500 mL replaced after 12 hours of NPV-ESLP with 1000 mL fresh perfusate. Three left lungs per group were transplanted. RESULTS Results are reported as Control vs PE (mean ± SEM). Both groups demonstrated stable and acceptable oxygenation during 24 hours of ESLP with final PF ratios of 527.5 ± 42.19 and 488.4 ± 35.38 (P = .25). Final compliance measurements were 20.52 ± 3.59 and 18.55 ± 2.91 (P = .34). There were no significant differences in pulmonary artery pressure after 24 hours of ESLP (10.02 ± 2.69 vs 14.34 ± 1.64, P = .10), and pulmonary vascular resistance only differed significantly at T12 (417.6 ± 53.06 vs 685.4 ± 81.19, P = .02). Percentage weight gain between groups was similar (24.32 ± 8.4 and 45.33 ± 7.76, P = .07). Post-transplant left lung oxygenation was excellent (327.3 ± 14.62 and 313.3 ± 15.38, P = .28). There was no significant difference in % weight gain of lungs post-transplant (22.20 ± 7.22 vs 14.36 ± 9.96, P = .28). CONCLUSION Acceptable lung function was maintained during 24-hour NPV-ESLP and post-transplant regardless of PE.
Collapse
Affiliation(s)
- Keir Forgie
- Department of Surgery, Division of Cardiac Surgery, Faculty of Medicine, University of Alberta, Edmonton, AB, Canada; Mazankowski Alberta Heart Institute, Edmonton, AB, Canada
| | - Abeline Watkins
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Katie Du
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Alynne Ribano
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Nicholas Fialka
- Department of Surgery, Division of Cardiac Surgery, Faculty of Medicine, University of Alberta, Edmonton, AB, Canada; Mazankowski Alberta Heart Institute, Edmonton, AB, Canada
| | - Sayed Himmat
- Department of Surgery, Faculty of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Sanaz Hatami
- Department of Surgery, Faculty of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Mubashir Khan
- Department of Surgery, Faculty of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Xiuhua Wang
- Department of Surgery, Faculty of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Ryan Edgar
- Ray Rajotte Surgical Medical Research Institute (SMRI), Edmonton, AB, Canada
| | | | - Darren H Freed
- Department of Surgery, Division of Cardiac Surgery, Faculty of Medicine, University of Alberta, Edmonton, AB, Canada; Mazankowski Alberta Heart Institute, Edmonton, AB, Canada; Alberta Transplant Institute, Edmonton, AB, Canada; Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada
| | - Jayan Nagendran
- Department of Surgery, Division of Cardiac Surgery, Faculty of Medicine, University of Alberta, Edmonton, AB, Canada; Mazankowski Alberta Heart Institute, Edmonton, AB, Canada; Alberta Transplant Institute, Edmonton, AB, Canada; Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada.
| |
Collapse
|
2
|
Jeon JE, Rajapaksa Y, Keshavjee S, Liu M. Applications of transcriptomics in ischemia reperfusion research in lung transplantation. J Heart Lung Transplant 2024; 43:1501-1513. [PMID: 38513917 DOI: 10.1016/j.healun.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
Ischemia-reperfusion (IR) injury contributes to primary graft dysfunction, a major cause of early mortality after lung transplantation. Transcriptomics uses high-throughput techniques to profile the RNA transcripts within a sample and provides a unique view of the mechanisms underlying various biological processes. This review aims to highlight the applications of transcriptomics in lung IR injury studies, which have thus far revealed inflammatory responses to be the major event activated by IR, identified potential biomarkers and therapeutic targets, and investigated the mechanisms of therapeutic interventions. Ex vivo lung perfusion, together with advanced bioinformatic and transcriptomic techniques, including single-cell RNA-sequencing, microRNA profiling, and multi-omics, continue to expand the capabilities of transcriptomics. In the future, the construction of biospecimen banks and the promotion of international collaborations among clinicians and researchers have the potential to advance our understanding of IR injury and improve the management of lung transplant recipients.
Collapse
Affiliation(s)
- Jamie E Jeon
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Yasal Rajapaksa
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Guinn MT, Fernandez R, Lau S, Loor G. Transcriptomic Signatures in Lung Allografts and Their Therapeutic Implications. Biomedicines 2024; 12:1793. [PMID: 39200257 PMCID: PMC11351513 DOI: 10.3390/biomedicines12081793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/20/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Ex vivo lung perfusion (EVLP) is a well-established method of lung preservation in clinical transplantation. Transcriptomic analyses of cells and tissues uncover gene expression patterns which reveal granular molecular pathways and cellular programs under various conditions. Coupling EVLP and transcriptomics may provide insights into lung allograft physiology at a molecular level with the potential to develop targeted therapies to enhance or repair the donor lung. This review examines the current landscape of transcriptional analysis of lung allografts in the context of state-of-the-art therapeutics that have been developed to optimize lung allograft function.
Collapse
Affiliation(s)
- Michael Tyler Guinn
- Division of Cardiothoracic Transplantation and Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (M.T.G.)
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Ramiro Fernandez
- Division of Cardiothoracic Transplantation and Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (M.T.G.)
| | - Sean Lau
- Department of Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Gabriel Loor
- Division of Cardiothoracic Transplantation and Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (M.T.G.)
| |
Collapse
|
4
|
Iskender I. Technical Advances Targeting Multiday Preservation of Isolated Ex Vivo Lung Perfusion. Transplantation 2024; 108:1319-1332. [PMID: 38499501 DOI: 10.1097/tp.0000000000004992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Indications for ex vivo lung perfusion (EVLP) have evolved from assessment of questionable donor lungs to treatment of some pathologies and the logistics. Yet up to 3 quarters of donor lungs remain discarded across the globe. Multiday preservation of discarded human lungs on EVLP platforms would improve donor lung utilization rates via application of sophisticated treatment modalities, which could eventually result in zero waitlist mortality. The purpose of this article is to summarize advances made on the technical aspects of the protocols in achieving a stable multiday preservation of isolated EVLP. Based on the evidence derived from large animal and/or human studies, the following advances have been considered important in achieving this goal: ability to reposition donor lungs during EVLP; perfusate adsorption/filtration modalities; perfusate enrichment with plasma and/or donor whole blood, nutrients, vitamins, and amino acids; low-flow, pulsatile, and subnormothermic perfusion; positive outflow pressure; injury specific personalized ventilation strategies; and negative pressure ventilation. Combination of some of these advances in an automatized EVLP device capable of managing perfusate biochemistry and ventilation would likely speed up the processes of achieving multiday preservation of isolated EVLP.
Collapse
Affiliation(s)
- Ilker Iskender
- Department of Cardiac Surgery, East Limburg Hospital, Genk, Belgium
| |
Collapse
|
5
|
Nykänen AI, Keshavjee S, Liu M. Creating superior lungs for transplantation with next-generation gene therapy during ex vivo lung perfusion. J Heart Lung Transplant 2024; 43:838-848. [PMID: 38310996 DOI: 10.1016/j.healun.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/23/2023] [Accepted: 01/29/2024] [Indexed: 02/06/2024] Open
Abstract
Engineering donor organs to better tolerate the harmful non-immunological and immunological responses inherently related to solid organ transplantation would improve transplant outcomes. Our enhanced knowledge of ischemia-reperfusion injury, alloimmune responses and pathological fibroproliferation after organ transplantation, and the advanced toolkit available for gene therapies, have brought this goal closer to clinical reality. Ex vivo organ perfusion has evolved rapidly especially in the field of lung transplantation, where clinicians routinely use ex vivo lung perfusion (EVLP) to confirm the quality of marginal donor lungs before transplantation, enabling safe transplantation of organs originally considered unusable. EVLP would also be an attractive platform to deliver gene therapies, as treatments could be administered to an isolated organ before transplantation, thereby providing a window for sophisticated organ engineering while minimizing off-target effects to the recipient. Here, we review the status of lung transplant first-generation gene therapies that focus on inducing transgene expression in the target cells. We also highlight recent advances in next-generation gene therapies, that enable gene editing and epigenetic engineering, that could be used to permanently change the donor organ genome and to induce widespread transcriptional gene expression modulation in the donor lung. In a future vision, dedicated organ repair and engineering centers will use gene editing and epigenetic engineering, to not only increase the donor organ pool, but to create superior organs that will function better and longer in the recipient.
Collapse
Affiliation(s)
- Antti I Nykänen
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Cardiothoracic Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Shaf Keshavjee
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Thoracic Surgery, Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
De Wolf J, Gouin C, Jouneau L, Glorion M, Premachandra A, Pascale F, Huriet M, Estephan J, Leplat JJ, Egidy G, Richard C, Gelin V, Urien C, Roux A, Le Guen M, Schwartz-Cornil I, Sage E. Prolonged dialysis during ex vivo lung perfusion promotes inflammatory responses. Front Immunol 2024; 15:1365964. [PMID: 38585271 PMCID: PMC10995259 DOI: 10.3389/fimmu.2024.1365964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/04/2024] [Indexed: 04/09/2024] Open
Abstract
Ex-vivo lung perfusion (EVLP) has extended the number of transplantable lungs by reconditioning marginal organs. However, EVLP is performed at 37°C without homeostatic regulation leading to metabolic wastes' accumulation in the perfusate and, as a corrective measure, the costly perfusate is repeatedly replaced during the standard of care procedure. As an interesting alternative, a hemodialyzer could be placed on the EVLP circuit, which was previously shown to rebalance the perfusate composition and to maintain lung function and viability without appearing to impact the global gene expression in the lung. Here, we assessed the biological effects of a hemodialyzer during EVLP by performing biochemical and refined functional genomic analyses over a 12h procedure in a pig model. We found that dialysis stabilized electrolytic and metabolic parameters of the perfusate but enhanced the gene expression and protein accumulation of several inflammatory cytokines and promoted a genomic profile predicting higher endothelial activation already at 6h and higher immune cytokine signaling at 12h. Therefore, epuration of EVLP with a dialyzer, while correcting features of the perfusate composition and maintaining the respiratory function, promotes inflammatory responses in the tissue. This finding suggests that modifying the metabolite composition of the perfusate by dialysis during EVLP can have detrimental effects on the tissue response and that this strategy should not be transferred as such to the clinic.
Collapse
Affiliation(s)
- Julien De Wolf
- Department of Thoracic Surgery and Lung Transplantation, Foch Hospital, Suresnes, France
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Carla Gouin
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Luc Jouneau
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Matthieu Glorion
- Department of Thoracic Surgery and Lung Transplantation, Foch Hospital, Suresnes, France
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | | | - Florentina Pascale
- Department of Thoracic Surgery and Lung Transplantation, Foch Hospital, Suresnes, France
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Maxime Huriet
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Jérôme Estephan
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | | | - Giorgia Egidy
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Christophe Richard
- Université Paris-Saclay, UVSQ, INRAE, BREED, MIMA2, CIMA, Jouy-en-Josas, France
| | - Valérie Gelin
- Université Paris-Saclay, UVSQ, INRAE, BREED, MIMA2, CIMA, Jouy-en-Josas, France
| | - Céline Urien
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Antoine Roux
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
- Department of Pulmonology, Foch Hospital, Suresnes, France
| | - Morgan Le Guen
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
- Department of Anesthesiology, Foch Hospital, Suresnes, France
| | | | - Edouard Sage
- Department of Thoracic Surgery and Lung Transplantation, Foch Hospital, Suresnes, France
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| |
Collapse
|
7
|
Sakanoue I, Okamoto T, Ayyat KS, Yun JJ, Farver CF, Fujioka H, Date H, McCurry KR. Intermittent Ex Vivo Lung Perfusion in a Porcine Model for Prolonged Lung Preservation. Transplantation 2024; 108:669-678. [PMID: 37726888 DOI: 10.1097/tp.0000000000004802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
BACKGROUND Ex vivo lung perfusion expands the lung transplant donor pool and extends preservation time beyond cold static preservation. We hypothesized that repeated regular ex vivo lung perfusion would better maintain lung grafts. METHODS Ten pig lungs were randomized into 2 groups. The control underwent 16 h of cold ischemic time and 2 h of cellular ex vivo lung perfusion. The intermittent ex vivo lung perfusion group underwent cold ischemic time for 4 h, ex vivo lung perfusion (first) for 2 h, cold ischemic time for 10 h, and 2 h of ex vivo lung perfusion (second). Lungs were assessed, and transplant suitability was determined after 2 h of ex vivo lung perfusion. RESULTS The second ex vivo lung perfusion was significantly associated with better oxygenation, limited extravascular water, higher adenosine triphosphate, reduced intraalveolar edema, and well-preserved mitochondria compared with the control, despite proinflammatory cytokine elevation. No significant difference was observed in the first and second perfusion regarding oxygenation and adenosine triphosphate, whereas the second was associated with lower dynamic compliance and higher extravascular lung water than the first. Transplant suitability was 100% for the first and 60% for the second ex vivo lung perfusion, and 0% for the control. CONCLUSIONS The second ex vivo lung perfusion had a slight deterioration in graft function compared to the first. Intermittent ex vivo lung perfusion created a better condition for lung grafts than cold static preservation, despite cytokine elevation. These results suggested that intermittent ex vivo lung perfusion may help prolong lung preservation.
Collapse
Affiliation(s)
- Ichiro Sakanoue
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, OH
- Department of Inflammation and Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Department of Thoracic Surgery, Kyoto University, Kyoto, Japan
| | - Toshihiro Okamoto
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, OH
- Department of Inflammation and Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Transplant Center, Cleveland Clinic, Cleveland, OH
| | - Kamal S Ayyat
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, OH
- Department of Inflammation and Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - James J Yun
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, OH
- Transplant Center, Cleveland Clinic, Cleveland, OH
| | - Carol F Farver
- Department of Pathology, Cleveland Clinic, Cleveland, OH
| | - Hisashi Fujioka
- Cryo-Electron Microscopy Core, Case Western Reserve University, Cleveland, OH
| | - Hiroshi Date
- Department of Thoracic Surgery, Kyoto University, Kyoto, Japan
| | - Kenneth R McCurry
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, OH
- Department of Inflammation and Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Transplant Center, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
8
|
Gouin C, Vu Manh TP, Jouneau L, Bevilacqua C, De Wolf J, Glorion M, Hannouche L, Urien C, Estephan J, Roux A, Magnan A, Le Guen M, Da Costa B, Chevalier C, Descamps D, Schwartz-Cornil I, Dalod M, Sage E. Cell type- and time-dependent biological responses in ex vivo perfused lung grafts. Front Immunol 2023; 14:1142228. [PMID: 37465668 PMCID: PMC10351384 DOI: 10.3389/fimmu.2023.1142228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023] Open
Abstract
In response to the increasing demand for lung transplantation, ex vivo lung perfusion (EVLP) has extended the number of suitable donor lungs by rehabilitating marginal organs. However despite an expanding use in clinical practice, the responses of the different lung cell types to EVLP are not known. In order to advance our mechanistic understanding and establish a refine tool for improvement of EVLP, we conducted a pioneer study involving single cell RNA-seq on human lungs declined for transplantation. Functional enrichment analyses were performed upon integration of data sets generated at 4 h (clinical duration) and 10 h (prolonged duration) from two human lungs processed to EVLP. Pathways related to inflammation were predicted activated in epithelial and blood endothelial cells, in monocyte-derived macrophages and temporally at 4 h in alveolar macrophages. Pathways related to cytoskeleton signaling/organization were predicted reduced in most cell types mainly at 10 h. We identified a division of labor between cell types for the selected expression of cytokine and chemokine genes that varied according to time. Immune cells including CD4+ and CD8+ T cells, NK cells, mast cells and conventional dendritic cells displayed gene expression patterns indicating blunted activation, already at 4 h in several instances and further more at 10 h. Therefore despite inducing inflammatory responses, EVLP appears to dampen the activation of major lung immune cell types, what may be beneficial to the outcome of transplantation. Our results also support that therapeutics approaches aiming at reducing inflammation upon EVLP should target both the alveolar and vascular compartments.
Collapse
Affiliation(s)
- Carla Gouin
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Thien-Phong Vu Manh
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Luc Jouneau
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Université Paris-Saclay, INRAE, UVSQ, BREED, 78350, Jouy-en-Josas, France
| | - Claudia Bevilacqua
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Julien De Wolf
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Department of Thoracic Surgery and Lung Transplantation, Foch Hospital, Suresnes, France
| | - Matthieu Glorion
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Department of Thoracic Surgery and Lung Transplantation, Foch Hospital, Suresnes, France
| | - Laurent Hannouche
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Céline Urien
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Jérôme Estephan
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Antoine Roux
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Department of Pulmonology, Foch Hospital, Suresnes, France
| | - Antoine Magnan
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Department of Pulmonology, Foch Hospital, Suresnes, France
| | - Morgan Le Guen
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Department of Anesthesiology, Foch Hospital, Suresnes, France
| | - Bruno Da Costa
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | | | - Delphyne Descamps
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | | | - Marc Dalod
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Edouard Sage
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Department of Thoracic Surgery and Lung Transplantation, Foch Hospital, Suresnes, France
| |
Collapse
|
9
|
Diagnostic and Therapeutic Implications of Ex Vivo Lung Perfusion in Lung Transplantation: Potential Benefits and Inherent Limitations. Transplantation 2023; 107:105-116. [PMID: 36508647 DOI: 10.1097/tp.0000000000004414] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ex vivo lung perfusion (EVLP), a technique in which isolated lungs are continually ventilated and perfused at normothermic temperature, is emerging as a promising platform to optimize donor lung quality and increase the lung graft pool. Over the past few decades, the EVLP technique has become recognized as a significant achievement and gained much attention in the field of lung transplantation. EVLP has been demonstrated to be an effective platform for various targeted therapies to optimize donor lung function before transplantation. Additionally, some physical parameters during EVLP and biological markers in the EVLP perfusate can be used to evaluate graft function before transplantation and predict posttransplant outcomes. However, despite its advantages, the clinical practice of EVLP continuously encounters multiple challenges associated with both intrinsic and extrinsic limitations. It is of utmost importance to address the advantages and disadvantages of EVLP for its broader clinical usage. Here, the pros and cons of EVLP are comprehensively discussed, with a focus on its benefits and potential approaches for overcoming the remaining limitations. Directions for future research to fully explore the clinical potential of EVLP in lung transplantation are also discussed.
Collapse
|
10
|
Yu J, Zhang N, Zhang Z, Li Y, Gao J, Chen C, Wen Z. Exploring predisposing factors and pathogenesis contributing to injuries of donor lungs. Expert Rev Respir Med 2022; 16:1191-1203. [PMID: 36480922 DOI: 10.1080/17476348.2022.2157264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Lung transplantation (LTx) remains the only therapeutic strategy for patients with incurable lung diseases. However, its use has been severely limited by the narrow donor pool and potential concerns of inferior quality of donor lungs, which are more susceptible to external influence than other transplant organs. Multiple insults, including various causes of death and a series of perimortem events, may act together on donor lungs and eventually culminate in primary graft dysfunction (PGD) after transplantation as well as other poor short-term outcomes. AREAS COVERED This review focuses on the predisposing factors contributing to injuries to the donor lungs, specifically focusing on the pathogenesis of these injuries and their impact on post-transplant outcomes. Additionally, various maneuvers to mitigate donor lung injuries have been proposed. EXPERT OPINION The selection criteria for eligible donors vary and may be poor discriminators of lung injury. Not all transplanted lungs are in ideal condition. With the rapidly increasing waiting list for LTx, the trend of using marginal donors has become more apparent, underscoring the need to gain a deeper understanding of donor lung injuries and discover more donor resources.
Collapse
Affiliation(s)
- Jing Yu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, Zhejiang, China
| | - Nan Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, Zhejiang, China
| | - Zhiyuan Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, Zhejiang, China
| | - Yuping Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, Zhejiang, China
| | - Jiameng Gao
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, Zhejiang, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, Zhejiang, China
| | - Zongmei Wen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, Zhejiang, China
| |
Collapse
|
11
|
Current Status and Future Perspectives on Machine Perfusion: A Treatment Platform to Restore and Regenerate Injured Lungs Using Cell and Cytokine Adsorption Therapy. Cells 2021; 11:cells11010091. [PMID: 35011653 PMCID: PMC8750486 DOI: 10.3390/cells11010091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 02/06/2023] Open
Abstract
Since its advent in the 1990′s, ex vivo lung perfusion (EVLP) has been studied and implemented as a tool to evaluate the quality of a donor organ prior to transplantation. It provides an invaluable window of opportunity for therapeutic intervention to render marginal lungs viable for transplantation. This ultimately aligns with the need of the lung transplant field to increase the number of available donor organs given critical shortages. As transplantation is the only option for patients with end-stage lung disease, advancements in technology are needed to decrease wait-list time and mortality. This review summarizes the results from the application of EVLP as a therapeutic intervention and focuses on the use of the platform with regard to cell therapies, cell product therapies, and cytokine filtration among other technologies. This review will summarize both the clinical and translational science being conducted in these aspects and will highlight the opportunities for EVLP to be developed as a powerful tool to increase the donor lung supply.
Collapse
|