1
|
Kassem M, El Habhab A, Kreutter G, Amoura L, Baltzinger P, Abbas M, Sbat N, Zobairi F, Schini-Kerth VB, Kessler L, Toti F. In Vitro Impact of Pro-Senescent Endothelial Microvesicles on Isolated Pancreatic Rat Islets Function. Transplant Proc 2021; 53:1736-1743. [PMID: 33934912 DOI: 10.1016/j.transproceed.2021.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/15/2021] [Accepted: 02/24/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Ischemia-driven islet isolation procedure is one of the limiting causes of pancreatic islet transplantation. Ischemia-reperfusion process is associated with endothelium dysfunction and the release of pro-senescent microvesicles. We investigated whether pro-senescent endothelial microvesicles prompt islet senescence and dysfunction in vitro. MATERIAL AND METHODS Pancreatic islets were isolated from male young rats. Replicative endothelial senescence was induced by serial passaging of primary porcine coronary artery endothelial cells, and microvesicles were isolated either from young passage 1 (P1) or senescent passage 3 (P3) endothelial cells. Islet viability was assessed by fluorescence microscopy, apoptosis by flow cytometry, and Western blot. Function was assessed by insulin secretion and islet senescence markers p53, p21, and p16 by Western blot. Microvesicles were stained by the PKH26 lipid fluorescent probe and their islet integration assessed by microscopy and flow cytometry. RESULTS Regardless of the passage, half microvesicles were integrated in target islets after 24 hours incubation. Insulin secretion significantly decreased after treatment by senescent microvesicles (P3: 1.7 ± 0.2 vs untreated islet: 2.7 ± 0.2, P < .05) without altering the islet viability (89.47% ± 1.69 vs 93.15% ± 0.97) and with no significant apoptosis. Senescent microvesicles significantly doubled the expression of p53, p21, and p16 (P < .05), whereas young microvesicles had no significant effect. CONCLUSION Pro-senescent endothelial microvesicles specifically accelerate the senescence of islets and alter their function. These data suggest that islet isolation contributes to endothelial driven islet senescence.
Collapse
Affiliation(s)
- Mohamad Kassem
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Ali El Habhab
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Guillaume Kreutter
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Lamia Amoura
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Philippe Baltzinger
- Department of Diabetes and Nutrition Endocrinology, University Hospital of Strasbourg, Strasbourg, France
| | - Malak Abbas
- UMR CNRS 7213, Laboratory of Biophotonics and Pharmacology, Faculty of Pharmacy, University of Strasbourg, Illkirch-Graffenstaden, France
| | - Noura Sbat
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Fatiha Zobairi
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Valérie B Schini-Kerth
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Laurence Kessler
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Faculty of Medicine, University of Strasbourg, Strasbourg, France; Department of Diabetes and Nutrition Endocrinology, University Hospital of Strasbourg, Strasbourg, France
| | - Florence Toti
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Faculty of Medicine, University of Strasbourg, Strasbourg, France.
| |
Collapse
|
2
|
El Habhab A, Altamimy R, Abbas M, Kassem M, Amoura L, Qureshi AW, El Itawi H, Kreutter G, Khemais‐Benkhiat S, Zobairi F, Schini‐Kerth VB, Kessler L, Toti F. Significance of neutrophil microparticles in ischaemia-reperfusion: Pro-inflammatory effectors of endothelial senescence and vascular dysfunction. J Cell Mol Med 2020; 24:7266-7281. [PMID: 32520423 PMCID: PMC7339165 DOI: 10.1111/jcmm.15289] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 02/14/2020] [Accepted: 03/08/2020] [Indexed: 12/15/2022] Open
Abstract
Endothelial senescence is an emerging cause of vascular dysfunction. Because microparticles are effectors of endothelial inflammation and vascular injury after ischaemia-reperfusion, we examined leucocyte-derived microparticles of spleen origin as possible contributors. Microparticles were generated from primary rat splenocytes by either lipopolysaccharide or phorbol-myristate-acetate/calcium ionophore, under conditions mimicking innate and adaptive immune responses. Incubation of primary porcine coronary endothelial cells with either type of microparticles, but not with those from unstimulated splenocytes, leads to a similar threefold raise in senescence-associated β-galactosidase activity within 48 hours, indicating accelerated senescence, to endothelial oxidative stress, and a fivefold and threefold increase in p21 and p16 senescence markers after 24 hours. After 12-hour incubation, the endothelial-dependent relaxation of coronary artery rings was reduced by 50%, at distinct optimal microparticle concentration. In vitro, microparticles were pro-thrombotic by up-regulating the local angiotensin system, by prompting tissue factor activity and a secondary generation of pro-coagulant endothelial microparticles. They initiated an early pro-inflammatory response by inducing phosphorylation of NF-κB, MAP kinases and Akt after 1 hour, and up-regulated VCAM-1 and ICAM-1 at 24 hours. Accordingly, VCAM-1 and COX-2 were also up-regulated in the coronary artery endothelium and eNOS down-regulated. Lipopolysaccharide specifically favoured the shedding of neutrophil- and monocyte-derived microparticles. A 80% immuno-depletion of neutrophil microparticles reduced endothelial senescence by 55%, indicating a key role. Altogether, data suggest that microparticles from activated splenocytes prompt early pro-inflammatory, pro-coagulant and pro-senescent responses in endothelial cells through redox-sensitive pathways. The control of neutrophil shedding could preserve the endothelium at site of ischaemia-reperfusion-driven inflammation and delay its dysfunction.
Collapse
Affiliation(s)
- Ali El Habhab
- INSERM (French National Institute of Health and Medical Research)UMR 1260Regenerative Nanomedicine (RNM)University of StrasbourgIllkirch-GraffenstadenFrance
| | - Raed Altamimy
- INSERM (French National Institute of Health and Medical Research)UMR 1260Regenerative Nanomedicine (RNM)University of StrasbourgIllkirch-GraffenstadenFrance
| | - Malak Abbas
- UMR CNRS 7213Laboratory of Biophotonics and PharmacologyFaculty of PharmacyUniversity of StrasbourgIllkirch-GraffenstadenFrance
| | - Mohamad Kassem
- INSERM (French National Institute of Health and Medical Research)UMR 1260Regenerative Nanomedicine (RNM)University of StrasbourgIllkirch-GraffenstadenFrance
| | - Lamia Amoura
- INSERM (French National Institute of Health and Medical Research)UMR 1260Regenerative Nanomedicine (RNM)University of StrasbourgIllkirch-GraffenstadenFrance
| | - Abdul Wahid Qureshi
- INSERM (French National Institute of Health and Medical Research)UMR 1260Regenerative Nanomedicine (RNM)University of StrasbourgIllkirch-GraffenstadenFrance
| | - Hanine El Itawi
- INSERM (French National Institute of Health and Medical Research)UMR 1260Regenerative Nanomedicine (RNM)University of StrasbourgIllkirch-GraffenstadenFrance
| | - Guillaume Kreutter
- INSERM (French National Institute of Health and Medical Research)UMR 1260Regenerative Nanomedicine (RNM)University of StrasbourgIllkirch-GraffenstadenFrance
| | - Sonia Khemais‐Benkhiat
- UMR CNRS 7213Laboratory of Biophotonics and PharmacologyFaculty of PharmacyUniversity of StrasbourgIllkirch-GraffenstadenFrance
| | - Fatiha Zobairi
- INSERM (French National Institute of Health and Medical Research)UMR 1260Regenerative Nanomedicine (RNM)University of StrasbourgIllkirch-GraffenstadenFrance
- Faculty of MedicineFederation of Translational Medicine (FMTS)StrasbourgFrance
| | - Valérie B. Schini‐Kerth
- INSERM (French National Institute of Health and Medical Research)UMR 1260Regenerative Nanomedicine (RNM)University of StrasbourgIllkirch-GraffenstadenFrance
- Faculty of PharmacyUniversity of StrasbourgIllkirch-GraffenstadenFrance
| | - Laurence Kessler
- INSERM (French National Institute of Health and Medical Research)UMR 1260Regenerative Nanomedicine (RNM)University of StrasbourgIllkirch-GraffenstadenFrance
- Department of Diabetes and Nutrition EndocrinologyUniversity Hospital of StrasbourgStrasbourgFrance
- Faculty of MedicineFederation of Translational Medicine (FMTS)StrasbourgFrance
| | - Florence Toti
- INSERM (French National Institute of Health and Medical Research)UMR 1260Regenerative Nanomedicine (RNM)University of StrasbourgIllkirch-GraffenstadenFrance
- Faculty of PharmacyUniversity of StrasbourgIllkirch-GraffenstadenFrance
| |
Collapse
|
3
|
Amoura L, El-Ghazouani FZ, Kassem M, El Habhab A, Kreutter G, Sahraoui S, Bosco D, Jessel N, Berney T, Benhamou PY, Toti F, Kessler L. Assessment of plasma microvesicles to monitor pancreatic islet graft dysfunction: Beta cell- and leukocyte-derived microvesicles as specific features in a pilot longitudinal study. Am J Transplant 2020; 20:40-51. [PMID: 31319009 DOI: 10.1111/ajt.15534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 06/28/2019] [Accepted: 07/09/2019] [Indexed: 01/25/2023]
Abstract
Markers of early pancreatic islet graft dysfunction and its causes are lacking. We monitored 19 type 1 diabetes islet-transplanted patients for up to 36 months following last islet injection. Patients were categorized as Partial (PS) or complete (S) Success, or Graft Failure (F), using the β-score as an indicator of graft function. F was the subset reference of maximum worsened graft outcome. To identify the immune, pancreatic, and liver contribution to the graft dysfunction, the cell origin and concentration of circulating microvesicles (MVs) were assessed, including MVs from insulin-secreting β-cells typified by polysialic acid of neural cell adhesion molecule (PSA-NCAM), and data were compared with values of the β-score. Similar ranges of PSA-NCAM+ -MVs were found in healthy volunteers and S patients, indicating minimal cell damage. In PS, a 2-fold elevation in PSA-NCAM+ -MVs preceded each β-score drop along with a concomitant rise in insulin needs, suggesting β-cell damage or altered function. Significant elevation of liver asialoglycoprotein receptor (ASGPR)+ -MVs, endothelial CD105+ -MVs, neutrophil CD66b+ -MVs, monocyte CD 14+ -MVs, and T4 lymphocyte CD4+ -MVs occurred before each β-score drop, CD8+ -MVs increased only in F, and B lymphocyte CD19+ -MVs remained undetectable. In conclusion, PSA-NCAM+ -MVs are noninvasive early markers of transplant dysfunction, while ASGPR+ -MVs signal host tissue remodeling. Leukocyte MVs could identify the cause of graft dysfunction.
Collapse
Affiliation(s)
- Lamia Amoura
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg, France.,CLINICA Group, Contract Research Organization, Alger, Algeria
| | - Fatiha Z El-Ghazouani
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg, France
| | - Mohamad Kassem
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg, France
| | - Ali El Habhab
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg, France
| | - Guillaume Kreutter
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg, France
| | - Salah Sahraoui
- CLINICA Group, Contract Research Organization, Alger, Algeria
| | - Domenico Bosco
- Department of Surgery, Islet Isolation, and Transplantation, University Hospitals, Geneva, Switzerland
| | - Nadia Jessel
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg, France
| | - Thierry Berney
- Department of Surgery, Islet Isolation, and Transplantation, University Hospitals, Geneva, Switzerland
| | - Pierre-Yves Benhamou
- Department of Endocrinology, Diabetes, and Nutrition, Grenoble Alpes University, Grenoble, France.,Laboratory of Fundamental and Applied Bioenergetics Grenoble, Inserm U1055, Grenoble, France
| | - Florence Toti
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg, France
| | - Laurence Kessler
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg, France.,Department of Endocrinology, Diabetes and Nutrition, University Hospital of Strasbourg, Strasbourg, France.,Faculty of Medicine, Federation of Translational Medicine (FMTS), Strasbourg, France
| | | |
Collapse
|
4
|
Shantsila E, Montoro-García S, Gallego P, Lip GYH. Circulating microparticles: challenges and perspectives of flow cytometric assessment. Thromb Haemost 2017; 111:1009-14. [DOI: 10.1160/th13-11-0937] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 01/07/2014] [Indexed: 12/18/2022]
Abstract
SummaryCirculating blood microparticles are likely to play a significant role as messengers of biological information. Their accurate quantification and characterisation is challenging and needs to be carefully designed with preferable usage of fresh minimally-processed blood samples. Utilisation of flow cytometers specifically designed for analysis of small-size particles is likely to provide considerable methodological advantages and should be the preferable option. This viewpoint manuscript provides a critical summary of the key methodological aspects of microparticle analysis.Note: The review process for this viewpoint article was fully handled by Christian Weber, Editor in Chief.
Collapse
|
5
|
Olland A, Reeb J, Leclerq A, Renaud-Picard B, Falcoz PE, Kessler R, Schini-Kerth V, Kessler L, Toti F, Massard G. Microparticles: A new insight into lung primary graft dysfunction? Hum Immunol 2016; 77:1101-1107. [PMID: 27381358 DOI: 10.1016/j.humimm.2016.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 04/17/2016] [Accepted: 07/01/2016] [Indexed: 10/21/2022]
Abstract
Lung transplantation is the only life-saving treatment for end stage respiratory disease. The immediate outcome is still hampered by primary graft dysfunction. The latter is a form of acute lung injury occurring within the 30min following the unclamping of the pulmonary artery that prompts ischemia reperfusion injury. Severe forms may need prolonged mechanical ventilation and extra-corporeal membrane oxygenation. Overall, primary graft dysfunction accounts for at least one third of the deaths during the first post-operative month. Despite increasing experience and knowledge on the underlying cellular events, there is still a lack of an early marker of ischemia reperfusion graft injuries. Microparticles are plasma membrane vesicles that are released from damaged or stressed cells in biological fluids and remodeling tissues, among which the lung parenchyma during acute or chronic injury. We recently evidenced alveolar microparticles as surrogate markers of strong ischemia injury in ex-vivo reperfusion experimental models. We propose herein new insights on how microparticles may be helpful to evaluate the extent of lung ischemia reperfusion injuries and predict the occurrence of primary graft dysfunction.
Collapse
Affiliation(s)
- Anne Olland
- Lung Transplantation Group, University Hospital Strasbourg, Strasbourg France; EA 7293 SVTT 'Stress Vasculaire et Tissulaire en Transplantation', Translational Medecine Federation, University of Strasbourg, Strasbourg, France.
| | - Jérémie Reeb
- Lung Transplantation Group, University Hospital Strasbourg, Strasbourg France; EA 7293 SVTT 'Stress Vasculaire et Tissulaire en Transplantation', Translational Medecine Federation, University of Strasbourg, Strasbourg, France
| | - Alexandre Leclerq
- Lung Transplantation Group, University Hospital Strasbourg, Strasbourg France; EA 7293 SVTT 'Stress Vasculaire et Tissulaire en Transplantation', Translational Medecine Federation, University of Strasbourg, Strasbourg, France
| | - Benjamin Renaud-Picard
- Lung Transplantation Group, University Hospital Strasbourg, Strasbourg France; EA 7293 SVTT 'Stress Vasculaire et Tissulaire en Transplantation', Translational Medecine Federation, University of Strasbourg, Strasbourg, France
| | - Pierre-Emmanuel Falcoz
- Lung Transplantation Group, University Hospital Strasbourg, Strasbourg France; EA 7293 SVTT 'Stress Vasculaire et Tissulaire en Transplantation', Translational Medecine Federation, University of Strasbourg, Strasbourg, France
| | - Romain Kessler
- Lung Transplantation Group, University Hospital Strasbourg, Strasbourg France; EA 7293 SVTT 'Stress Vasculaire et Tissulaire en Transplantation', Translational Medecine Federation, University of Strasbourg, Strasbourg, France
| | - Valérie Schini-Kerth
- UMR CNRS 7213, Biophotonique and Pharmacology Laboratory, Pharmacology School, University of Strasbourg, Strasbourg, France
| | - Laurence Kessler
- Lung Transplantation Group, University Hospital Strasbourg, Strasbourg France; EA 7293 SVTT 'Stress Vasculaire et Tissulaire en Transplantation', Translational Medecine Federation, University of Strasbourg, Strasbourg, France
| | - Florence Toti
- UMR CNRS 7213, Biophotonique and Pharmacology Laboratory, Pharmacology School, University of Strasbourg, Strasbourg, France
| | - Gilbert Massard
- Labex Transplantex, Translational Medecine Federation, University of Strasbourg, Strasbourg, France; Lung Transplantation Group, University Hospital Strasbourg, Strasbourg France; EA 7293 SVTT 'Stress Vasculaire et Tissulaire en Transplantation', Translational Medecine Federation, University of Strasbourg, Strasbourg, France
| |
Collapse
|
6
|
Epithelial and Erythrocyte Microvesicles From Bronchoalveolar Lavage Fluid Are Elevated and Associated With Outcome in Chronic Lung Allograft Dysfunction. Transplantation 2016; 99:2394-400. [PMID: 26451527 DOI: 10.1097/tp.0000000000000881] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Chronic lung allograft dysfunction (CLAD) is the major outcome limitation for lung transplant recipients (LTR) after the first year, and therapies targeting immunological pathways show only limited success. Because microvesicles (MV) are biomarkers of endothelial dysfunction and coagulation but are also involved in immunological responses, we hypothesized that MV, found in bronchoalveolar lavage (BAL) fluids (BALF) of LTR at CLAD diagnosis, are elevated and potential prognostic biomarkers. METHODS The BALF was collected from 37 LTR at time point of CLAD diagnosis and 37 LTR without any complication at routinely performed BAL. The MV concentration and origin were determined by flow cytometry by detection of different antigens. Patient- and transplant-related risk factors were included in a retrospective statistical analysis. RESULTS The BALF-MV levels of epithelial and red blood cell (RBC) origin were significantly higher in CLAD patients (mean: 1533/μL and 158/μL) compared to controls (436/μL, 57/μL). The LTR with high levels of epithelial MV >580/μL showed a significantly shorter overall survival at 4 years after BAL (39.5%) compared to patients with low MV (66.4%) and this proofed to be an independent prognostic factor in multivariate Cox analysis (hazards ratio = 3.05). Furthermore, LTR with high levels of RBC MV ≥225/μL were also associated with worse disease-specific survival, with probabilities at 4 years after BAL of 85.8% vs. 36.0%. CONCLUSIONS Epithelial and RBC BALF-MV are elevated at CLAD diagnosis, have a potential as biomarkers, and support the hypothesis of a pathway, including activation of coagulation and complement, endothelial barrier dysfunction, and microangiopathy.
Collapse
|
7
|
Ling ZL, Combes V, Grau GE, King NJC. Microparticles as immune regulators in infectious disease - an opinion. Front Immunol 2011; 2:67. [PMID: 22566856 PMCID: PMC3342294 DOI: 10.3389/fimmu.2011.00067] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 11/11/2011] [Indexed: 01/06/2023] Open
Abstract
Despite their clear relationship to immunology, few existing studies have examined the potential role of microparticles (MP) in infectious disease. MP have a different size range from exosomes and apoptotic bodies, with which they are often grouped and arise by different mechanisms in association with inflammatory cytokine action or stress on the source cell. Infection with pathogens usually leads to the expression of a range of inflammatory cytokines and chemokines, as well as significant stress in both infected and uninfected cells. It is thus reasonable to infer that infection-associated inflammation also leads to MP production. MP are produced by most of the major cell types in the immune system, and appear to be involved at both innate and adaptive levels, potentially serving different functions in each. Thus, they do not appear to have a universal function; instead their functions are source- or stimulus-dependent, although likely to be primarily either pro- or anti-inflammatory. We argue that in infectious diseases, MP may be able to deliver antigen, derived from the biological cargo acquired from their cells of origin, to antigen-presenting cells. Another potential benefit of MP would be to transfer and/or disseminate phenotype and function to target cells. However, MP may also potentially be manipulated, particularly by intracellular pathogens, for survival advantage.
Collapse
Affiliation(s)
- Zheng Lung Ling
- Discipline of Pathology, Bosch Institute, School of Medical Sciences, Sydney Medical School, University of Sydney Sydney, NSW, Australia
| | | | | | | |
Collapse
|
8
|
Relevance of Measuring Circulating Microparticles During Organ and Stem-Cell Transplantation. Transplantation 2011; 92:265-6. [DOI: 10.1097/tp.0b013e318223309d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|