1
|
Tian Y, Shu J, Huang R, Chu X, Mei X. Protective effect of renal ischemic postconditioning in renal ischemic-reperfusion injury. Transl Androl Urol 2020; 9:1356-1365. [PMID: 32676420 PMCID: PMC7354320 DOI: 10.21037/tau-20-859] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background Renal ischemic postconditioning (RIPo) can protect the kidney from renal ischemia/reperfusion injury (RIRI). However, the underlying molecular mechanisms for RIPo in renal protection remained elusive. This study aimed to investigate the renoprotective effects of RIPo in an RIR rat model. Method The Sprague Dawley (SD) rats were randomly divided into three groups respectively: sham group, the RIRI group and the RIPo group. The levels of proteinuria, blood urea nitrogen (BUN), creatinine (Cr), malondialdehyde (MDA), superoxide dismutase (SOD), lactate dehydrogenase (LDH), reactive oxidative species (ROS), interleukins (IL)-6, IL-1β, and IL-18 were measured by ELISA. Apoptotic cells and caspase-3 positive cells were detected by TUNEL assay and immunohistochemistry, respectively. The protein expressive levels of caspase-3, caspase-9, ATG8, Beclin1, p62, LC3-II, P-P13K, P-AKT and P-mTOR were detected by western blot. Results Our results showed that pretreatment with RIPo significantly reduced ischemic pathological and morphological changes. The levels of proteinuria, BUN, and Cr were also significantly reduced by RIPo pretreatment. Besides, ATG8, LC3-II and Beclin-1 were upregulated in the RIPo group, but p62 was downregulated. Moreover, RIPo pretreatment resulted in higher levels of phosphorylated PI3K, Akt, and mTOR. These results showed that RIPo protects the kidneys of rats from IRI with suppressed apoptosis and activated autophagy. Mechanically, the activated PI3K/AKT/mTOR signaling pathway were activated. Conclusions Collectively, our data demonstrated that RIPo could suppress Inflammatory response, oxidative stress, apoptosis and induce autophagy as well as activate the PI3K/AKT/mTOR pathway, which may play an important role in renal protection against RIRI.
Collapse
Affiliation(s)
- Ying Tian
- Department of Urology Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610039, China
| | - Jia Shu
- Functional Inspection Division, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610039, China
| | - Ruizhen Huang
- Department of Cardiovascular, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610039, China
| | - Xin Chu
- Nursing Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610039, China
| | - Xuefeng Mei
- Department of Urology Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610039, China
| |
Collapse
|
2
|
Repeated remote ischemic preconditioning and isoflurane anesthesia in an experimental model of renal ischemia-reperfusion injury. BMC Anesthesiol 2017; 17:14. [PMID: 28129737 PMCID: PMC5273799 DOI: 10.1186/s12871-017-0310-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 01/23/2017] [Indexed: 11/24/2022] Open
Abstract
Background In animal studies, remote ischemic preconditioning (RIPC) and anesthetic preconditioning are successful in reducing renal ischemia reperfusion injury (IRI), however the protective effect of RIPC may be improved by repeating the RIPC stimulus. Methods Sprague-Dawley rats underwent unilateral nephrectomy followed by 30 min of renal pedicle clamping. Animals were allocated into six groups: sham, control (IRI), RepISO (daily isoflurane anesthesia), RIPC (single dose isoflurane anesthesia and single dose RIPC), RepISO + RIPC (7-day isoflurane anesthesia and single dose RIPC) and RepISO + RepRIPC (7-day isoflurane anesthesia with 7-day RIPC). RIPC was applied by 3×5 min of cuff inflation on both thighs. Serum creatinine and urea levels were measured and histology was obtained at day two. Results RepISO diminished renal IRI, as reflected by a significant reduction in serum creatinine levels as compared to the control group, 170 ± 74 resp. 107 ± 29 μmol/L. The other preconditioning protocols showed similar reduction in serum creatinine levels as compared to the control group. No significant differences were observed between the different preconditioning protocols. For urea levels, only RepISO + RIPC resulted in significantly lower levels as compared to the control group, 14 ± 4 resp. 22 ± 7 mmol/L (p = 0.010). In the preconditioning groups only RepISO showed less histological damage as compared to controls 1.73 ± 1.19 resp. 2.91 ± 1.22 (p = 0.032). Conclusions In this study no additional protective effect of repeated ischemic preconditioning was observed as compared to single dose RIPC. Repeated administration of isoflurane provided stronger protection against renal IRI as compared to single dose isoflurane.
Collapse
|
3
|
Remote ischemic postconditioning protects against renal ischemia/reperfusion injury by activation of T-LAK-cell-originated protein kinase (TOPK)/PTEN/Akt signaling pathway mediated anti-oxidation and anti-inflammation. Int Immunopharmacol 2016; 38:395-401. [PMID: 27355132 DOI: 10.1016/j.intimp.2016.06.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/18/2016] [Accepted: 06/21/2016] [Indexed: 11/21/2022]
Abstract
BACKGROUND Recent clinical and animal studies suggested that remote limb ischemic postconditioning (RIPostC) can invoke potent cardioprotection or neuroprotection. However, the effect and mechanism of RIPostC against renal ischemia/reperfusion injury (IRI) are poorly understood. T-LAK-cell-originated protein kinase (TOPK) is crucial for the proliferation and migration of tumor cells. However, the function of TOPK and the molecular mechanism underlying renal protection remain unknown. Therefore, this study aimed to evaluate the role of TOPK in renoprotection induced by RIPostC. MATERIALS AND METHODS The renal IRI model was induced by left renal pedicle clamping for 45min followed by 24h reperfusion and right nephrectomy. All mice were intraperitoneally injected with vehicle, TOPK inhibitor HI-TOPK-032 or Akt inhibitor LY294002. After 24h reperfusion, renal histology, function, and inflammatory cytokines and oxidative stress were assessed. The proteins were measured by Western blotting. RESULTS The results showed that RIPostC significantly protected the kidneys against IRI. The protective effects were accompanied by the attenuation of renal dysfunction, tubular damage, inflammation and oxidative stress. In addition, RIPostC increased the phosphorylation of TOPK, PTEN, Akt, GSK3β and the nuclear translocation of Nrf2 and decreased the nuclear translocation of NF-κB. However, all of the above renoprotective effects of RIPostC were eliminated either by the inhibition of TOPK or Akt with HI-TOPK-032 or LY294002. CONCLUSIONS The current data reveal that RIPostC protects against renal IRI via activation of TOPK/PTEN/Akt signaling pathway mediated anti-oxidation and anti-inflammation.
Collapse
|
4
|
Koeneman BJ, de Nijs T, Rongen GA, Ketelaars R, Bonenkamp HJ, Koning GG, Schultze Kool LJ. Digital Ischemia in a Young Woman after Minor Wrist Trauma-A Rare Diagnosis and an Innovative Multidisciplinary Treatment. J Vasc Interv Radiol 2016; 27:608-11. [PMID: 27013009 DOI: 10.1016/j.jvir.2015.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/17/2015] [Accepted: 12/19/2015] [Indexed: 10/22/2022] Open
Affiliation(s)
- Bouke J Koeneman
- Department of Internal Medicine Radboudumc Geert Grooteplein 8 Nijmegen 6525GA, The Netherlands
| | - Tjerk de Nijs
- Department of Internal Medicine Radboudumc Geert Grooteplein 8 Nijmegen 6525GA, The Netherlands
| | - Gerard A Rongen
- Department of Internal Medicine Radboudumc Geert Grooteplein 8 Nijmegen 6525GA, The Netherlands
| | - Rein Ketelaars
- Department of Anesthesiology, Pain and Palliative Medicine Radboudumc Geert Grooteplein 8 Nijmegen 6525GA, The Netherlands
| | - Han J Bonenkamp
- Department of Surgery Radboudumc Geert Grooteplein 8 Nijmegen 6525GA, The Netherlands
| | - Giel G Koning
- Department of Surgery Radboudumc Geert Grooteplein 8 Nijmegen 6525GA, The Netherlands
| | - Leo J Schultze Kool
- Interventional Radiology Radboudumc Geert Grooteplein 8 Nijmegen 6525GA, The Netherlands
| |
Collapse
|
5
|
Jonker SJ, Menting TP, Warlé MC, Ritskes-Hoitinga M, Wever KE. Preclinical Evidence for the Efficacy of Ischemic Postconditioning against Renal Ischemia-Reperfusion Injury, a Systematic Review and Meta-Analysis. PLoS One 2016; 11:e0150863. [PMID: 26963819 PMCID: PMC4786316 DOI: 10.1371/journal.pone.0150863] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 02/20/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Renal ischemia-reperfusion injury (IRI) is a major cause of kidney damage after e.g. renal surgery and transplantation. Ischemic postconditioning (IPoC) is a promising treatment strategy for renal IRI, but early clinical trials have not yet replicated the promising results found in animal studies. METHOD We present a systematic review, quality assessment and meta-analysis of the preclinical evidence for renal IPoC, and identify factors which modify its efficacy. RESULTS We identified 39 publications studying >250 control animals undergoing renal IRI only and >290 animals undergoing renal IRI and IPoC. Healthy, male rats undergoing warm ischemia were used in the vast majority of studies. Four studies applied remote IPoC, all others used local IPoC. Meta-analysis showed that both local and remote IPoC ameliorated renal damage after IRI for the outcome measures serum creatinine, blood urea nitrogen and renal histology. Subgroup analysis indicated that IPoC efficacy increased with the duration of index ischemia. Measures to reduce bias were insufficiently reported. CONCLUSION High efficacy of IPoC is observed in animal models, but factors pertaining to the internal and external validity of these studies may hamper the translation of IPoC to the clinical setting. The external validity of future animal studies should be increased by including females, comorbid animals, and transplantation models, in order to better inform clinical trial design. The severity of renal damage should be taken into account in the design and analysis of future clinical trials.
Collapse
Affiliation(s)
- Simone J. Jonker
- SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE), Radboud university medical center, Nijmegen, The Netherlands
| | - Theo P. Menting
- Department of surgery, Radboud university medical center, Nijmegen, The Netherlands
| | - Michiel C. Warlé
- Department of surgery, Radboud university medical center, Nijmegen, The Netherlands
| | - Merel Ritskes-Hoitinga
- SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE), Radboud university medical center, Nijmegen, The Netherlands
| | - Kimberley E. Wever
- SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE), Radboud university medical center, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
6
|
Kierulf-Lassen C, Kristensen MLV, Birn H, Jespersen B, Nørregaard R. No Effect of Remote Ischemic Conditioning Strategies on Recovery from Renal Ischemia-Reperfusion Injury and Protective Molecular Mediators. PLoS One 2015; 10:e0146109. [PMID: 26720280 PMCID: PMC4697851 DOI: 10.1371/journal.pone.0146109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/14/2015] [Indexed: 01/31/2023] Open
Abstract
Ischemia-reperfusion injury (IRI) is the major cause of acute kidney injury. Remote ischemic conditioning (rIC) performed as brief intermittent sub-lethal ischemia and reperfusion episodes in a distant organ may protect the kidney against IRI. Here we investigated the renal effects of rIC applied either prior to (remote ischemic preconditioning; rIPC) or during (remote ischemic perconditioning; rIPerC) sustained ischemic kidney injury in rats. The effects were evaluated as differences in creatinine clearance (CrCl) rate, tissue tubular damage marker expression, and potential kidney recovery mediators. One week after undergoing right-sided nephrectomy, rats were randomly divided into four groups: sham (n = 7), ischemia and reperfusion (IR; n = 10), IR+rIPC (n = 10), and IR+rIPerC (n = 10). The rIC was performed as four repeated episodes of 5-minute clamping of the infrarenal aorta followed by 5-minute release either before or during 37 minutes of left renal artery clamping representing the IRI. Urine and blood were sampled prior to ischemia as well as 3 and 7 days after reperfusion. The kidney was harvested for mRNA and protein isolation. Seven days after IRI, the CrCl change from baseline values was similar in the IR (δ: 0.74 mL/min/kg [-0.45 to 1.94]), IR+rIPC (δ: 0.21 mL/min/kg [-0.75 to 1.17], p > 0.9999), and IR+rIPerC (δ: 0.41 mL/min/kg [-0.43 to 1.25], p > 0.9999) groups. Kidney function recovery was associated with a significant up-regulation of phosphorylated protein kinase B (pAkt), extracellular regulated kinase 1/2 (pERK1/2), and heat shock proteins (HSPs) pHSP27, HSP32, and HSP70, but rIC was not associated with any significant differences in tubular damage, inflammatory, or fibrosis marker expression. In our study, rIC did not protect the kidney against IRI. However, on days 3-7 after IRI, all groups recovered renal function. This was associated with pAkt and pERK1/2 up-regulation and increased HSP expression at day 7.
Collapse
Affiliation(s)
- Casper Kierulf-Lassen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
- * E-mail:
| | | | - Henrik Birn
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Bente Jespersen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
7
|
Kierulf-Lassen C, Nieuwenhuijs-Moeke GJ, Krogstrup NV, Oltean M, Jespersen B, Dor FJMF. Molecular Mechanisms of Renal Ischemic Conditioning Strategies. Eur Surg Res 2015; 55:151-83. [PMID: 26330099 DOI: 10.1159/000437352] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/02/2015] [Indexed: 11/19/2022]
Abstract
Ischemia-reperfusion injury is the leading cause of acute kidney injury in a variety of clinical settings such as renal transplantation and hypovolemic and/or septic shock. Strategies to reduce ischemia-reperfusion injury are obviously clinically relevant. Ischemic conditioning is an inherent part of the renal defense mechanism against ischemia and can be triggered by short periods of intermittent ischemia and reperfusion. Understanding the signaling transduction pathways of renal ischemic conditioning can promote further clinical translation and pharmacological advancements in this era. This review summarizes research on the molecular mechanisms underlying both local and remote ischemic pre-, per- and postconditioning of the kidney. The different types of conditioning strategies in the kidney recruit similar powerful pro-survival mechanisms. Likewise, renal ischemic conditioning mobilizes many of the same protective signaling pathways as in other organs, but differences are recognized.
Collapse
|
8
|
Rongen GA. High Dose Meclizine Prevents Renal Ischemia–Reperfusion Injury in Healthy Male Mice. EBioMedicine 2015; 2:1012-3. [PMID: 26501091 PMCID: PMC4588439 DOI: 10.1016/j.ebiom.2015.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
9
|
Guo Q, Du X, Zhao Y, Zhang D, Yue L, Wang Z. Ischemic postconditioning prevents renal ischemia reperfusion injury through the induction of heat shock proteins in rats. Mol Med Rep 2014; 10:2875-81. [PMID: 25322861 PMCID: PMC4227421 DOI: 10.3892/mmr.2014.2641] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 06/20/2014] [Indexed: 01/09/2023] Open
Abstract
Ischemic postconditioning (IPo) attenuates ischemia-reperfusion injuries (IRI) in various organs, of both animals and humans. This study tested the hypothesis that IPo attenuates renal IRI through the upregulation of heat shock protein (HSP)70, HSP27 and heme oxygenase-1 (HO-1, also known as HSP 32) expression. Adult Sprague Dawley rats were subjected to bilateral renal ischemia for 45 min followed by reperfusion for up to 48 h. One group of rats received IPo prior to restoring full perfusion. Another group was administered 100 mg/kg HSP inhibitor quercetin, injected intraperitoneally 1 h prior to ischemia. Control rats received sham operations. Renal IR resulted in severe morphological and pathological changes, with increased serum creatinine and blood urea nitrogen concentrations. IR resulted in increased inflammation by inducing plasma tumor necrosis factor-α and renal nuclear factor kappa-light-chain-enhancer of activated B cells expression. IR also increased lipid peroxidation, as indicated by elevated malondialdehyde content, reduced superoxide dismutase activity and increased renal apoptosis. Renal HSP70, HSP27 and HO-1 mRNA and protein levels were increased by IR and further elevated by IPo. IPo attenuated these changes observed in pathology, lipid peroxidation, apoptosis and inflammation. Quercetin treatment abolished all the protective effects of IPo. In conclusion, this study showed that IPo can attenuate lipid peroxidation, apoptosis and inflammation as well as renal IRI by upregulating the expression of HSP70, HSP27 and HO-1.
Collapse
Affiliation(s)
- Qiongmei Guo
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Xuefang Du
- Department of Anesthesiology, Xingtai Eye Hospital, Xingtai, Hebei 054001, P.R. China
| | - Yanli Zhao
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Dong Zhang
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Lihui Yue
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Zhenxian Wang
- Department of Urinary Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
10
|
Candilio L, Malik A, Hausenloy DJ. Protection of organs other than the heart by remote ischemic conditioning. J Cardiovasc Med (Hagerstown) 2013; 14:193-205. [PMID: 23079610 DOI: 10.2459/jcm.0b013e328359dd7b] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Organ or tissue dysfunction due to acute ischemia-reperfusion injury (IRI) is the leading cause of death and disability worldwide. Acute IRI induces cell injury and death in a wide variety of organs and tissues in a large number of different clinical settings. One novel therapeutic noninvasive intervention, capable of conferring multiorgan protection against acute IRI, is 'remote ischemic conditioning' (RIC). This describes an endogenous protective response to acute IRI, which is triggered by the application of one or more brief cycles of nonlethal ischemia and reperfusion to one particular organ or tissue. Originally discovered as a therapeutic strategy for protecting the myocardium against acute IRI, it has been subsequently demonstrated that RIC may confer protection against acute IRI in a number of different noncardiac organs and tissues including the kidneys, lungs, liver, skin flaps, ovaries, intestine, stomach and pancreas. The discovery that RIC can be induced noninvasively by applying the RIC stimulus to the skeletal tissue of the upper or lower limb has facilitated its application to a number of clinical settings in which organs and tissues are at high risk of acute IRI. In this article, we review the experimental studies that have investigated RIC in organs and tissues other than the heart, and we explore the therapeutic potential of RIC in preventing organ and tissue dysfunction induced by acute IRI.
Collapse
Affiliation(s)
- Luciano Candilio
- Hatter Cardiovascular Institute, University College London, London, UK
| | | | | |
Collapse
|