1
|
Bayanova M, Bolatov A, Malik D, Zhenissova A, Abdikadirova A, Sapargaliyeva M, Nazarova L, Myrzakhmetova G, Novikova S, Turganbekova A, Pya Y. Whole-Exome Sequencing Followed by dPCR-Based Personalized Genetic Approach in Solid Organ Transplantation: A Study Protocol and Preliminary Results. Methods Protoc 2025; 8:27. [PMID: 40126245 PMCID: PMC11932258 DOI: 10.3390/mps8020027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/21/2025] [Accepted: 02/27/2025] [Indexed: 03/25/2025] Open
Abstract
Genetic profiling and molecular biology methods have made it possible to study the etiology of the end-stage organ disease that led to transplantation, the genetic factors of compatibility and tolerance of the transplant, and the pharmacogenetics of immunosuppressive drugs and allowed for the development of monitoring methods for the early assessment of allograft rejection. This study aims to report the design and baseline characteristics of an integrated personalized genetic approach in solid organ transplantation, including whole-exome sequencing (WES) and the monitoring of dd-cfDNA by dPCR. Preliminary results reported female recipients with male donors undergoing two pediatric and five adult kidney and three heart transplantations. WES revealed a pathogenic mutation in RBM20 and VUS in TTN and PKP2 in heart recipients, while kidney donors presented mutations in UMOD and APOL1 associated with autosomal-dominant kidney diseases, highlighting the risks requiring the long-term monitoring of recipients, donors, and their family members. %dd-cfDNA levels were generally stable but elevated in cadaveric kidney recipient and one pediatric patient with infectious complications and genetic variants in the ABCB1 and ABCC2 genes. These findings highlight the potential of combining genetic and molecular biomarker-based approaches to improve donor-recipient matching, predict complications, and personalize post-transplant care, paving the way for precision medicine in transplantation.
Collapse
Affiliation(s)
- Mirgul Bayanova
- Genetic Unit, Department of Laboratory Medicine, Pathology and Genetics, “University Medical Center” Corporate Fund, Astana 010000, Kazakhstan; (M.B.); (D.M.); (A.Z.); (A.A.); (M.S.); (L.N.)
| | - Aidos Bolatov
- Genetic Unit, Department of Laboratory Medicine, Pathology and Genetics, “University Medical Center” Corporate Fund, Astana 010000, Kazakhstan; (M.B.); (D.M.); (A.Z.); (A.A.); (M.S.); (L.N.)
- School of Medicine, Shenzhen University, Shenzhen 518060, China
- School of Medicine, Astana Medical University, Astana 010000, Kazakhstan
| | - Dias Malik
- Genetic Unit, Department of Laboratory Medicine, Pathology and Genetics, “University Medical Center” Corporate Fund, Astana 010000, Kazakhstan; (M.B.); (D.M.); (A.Z.); (A.A.); (M.S.); (L.N.)
| | - Aida Zhenissova
- Genetic Unit, Department of Laboratory Medicine, Pathology and Genetics, “University Medical Center” Corporate Fund, Astana 010000, Kazakhstan; (M.B.); (D.M.); (A.Z.); (A.A.); (M.S.); (L.N.)
| | - Aizhan Abdikadirova
- Genetic Unit, Department of Laboratory Medicine, Pathology and Genetics, “University Medical Center” Corporate Fund, Astana 010000, Kazakhstan; (M.B.); (D.M.); (A.Z.); (A.A.); (M.S.); (L.N.)
| | - Malika Sapargaliyeva
- Genetic Unit, Department of Laboratory Medicine, Pathology and Genetics, “University Medical Center” Corporate Fund, Astana 010000, Kazakhstan; (M.B.); (D.M.); (A.Z.); (A.A.); (M.S.); (L.N.)
| | - Lyazzat Nazarova
- Genetic Unit, Department of Laboratory Medicine, Pathology and Genetics, “University Medical Center” Corporate Fund, Astana 010000, Kazakhstan; (M.B.); (D.M.); (A.Z.); (A.A.); (M.S.); (L.N.)
| | - Gulzhan Myrzakhmetova
- Clinical Academic Department of Cardiology, “University Medical Center” Corporate Fund, Astana 010000, Kazakhstan;
| | - Svetlana Novikova
- Clinical Academic Department of Cardiac Surgery, “University Medical Center” Corporate Fund, Astana 010000, Kazakhstan; (S.N.); (Y.P.)
| | - Aida Turganbekova
- HLA-Laboratory, Scientific-Production Center of Transfusiology, Astana 010000, Kazakhstan;
| | - Yuriy Pya
- Clinical Academic Department of Cardiac Surgery, “University Medical Center” Corporate Fund, Astana 010000, Kazakhstan; (S.N.); (Y.P.)
| |
Collapse
|
2
|
Tharmaraj D, Mulley WR, Dendle C. Current and emerging tools for simultaneous assessment of infection and rejection risk in transplantation. Front Immunol 2024; 15:1490472. [PMID: 39660122 PMCID: PMC11628869 DOI: 10.3389/fimmu.2024.1490472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/14/2024] [Indexed: 12/12/2024] Open
Abstract
Infection and rejection are major complications that impact transplant longevity and recipient survival. Balancing their risks is a significant challenge for clinicians. Current strategies aimed at interrogating the degree of immune deficiency or activation and their attendant risks of infection and rejection are imprecise. These include immune (cell counts, function and subsets, immunoglobulin levels) and non-immune (drug levels, viral loads) markers. The shared risk factors between infection and rejection and the bidirectional and intricate relationship between both entities further complicate transplant recipient care and decision-making. Understanding the dynamic changes in the underlying net state of immunity and the overall risk of both complications in parallel is key to optimizing outcomes. The allograft biopsy is the current gold standard for the diagnosis of rejection but is associated with inherent risks that warrant careful consideration. Several biomarkers, in particular, donor derived cell-free-DNA and urinary chemokines (CXCL9 and CXCL10), show significant promise in improving subclinical and clinical rejection risk prediction, which may reduce the need for allograft biopsies in some situations. Integrating conventional and emerging risk assessment tools can help stratify the individual's short- and longer-term infection and rejection risks in parallel. Individuals identified as having a low risk of rejection may tolerate immunosuppression wean to reduce medication-related toxicity. Serial monitoring following immunosuppression reduction or escalation with minimally invasive tools can help mitigate infection and rejection risks and allow for timely diagnosis and treatment of these complications, ultimately improving allograft and patient outcomes.
Collapse
Affiliation(s)
- Dhakshayini Tharmaraj
- Department of Nephrology, Monash Health, Clayton, VIC, Australia
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, VIC, Australia
| | - William R. Mulley
- Department of Nephrology, Monash Health, Clayton, VIC, Australia
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, VIC, Australia
| | - Claire Dendle
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, VIC, Australia
- Monash Infectious Diseases, Monash Health, Clayton, VIC, Australia
| |
Collapse
|
3
|
Sindu D, Bay C, Grief K, Walia R, Tokman S. Clinical utility of plasma percent donor-derived cell-free DNA for lung allograft surveillance: A real-world single-center experience. JHLT OPEN 2024; 6:100141. [PMID: 40145063 PMCID: PMC11935403 DOI: 10.1016/j.jhlto.2024.100141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Background Plasma percent donor-derived cell-free DNA (%dd-cfDNA) has been investigated as a biomarker of allograft injury after lung transplantation. We sought to determine the clinical utility of %dd-cfDNA as a screen for acute cellular rejection (ACR) and respiratory infections (RIs) among lung transplant recipients (LTRs). Methods We retrospectively analyzed %dd-cfDNA results from 95 plasma samples collected from 81 bilateral LTRs >45 days after transplant with a paired transbronchial biopsy performed within 24 hours after sample collection. We calculated sensitivity, specificity, negative predictive value (NPV), and positive predictive value of %dd-cfDNA to detect ACR and RIs and used a generalized estimating equation model to compare %dd-cfDNA between groups. Results A dd-cfDNA threshold of 0.5% had low sensitivity to detect ACR among LTRs (41.67%), as did a 70% increase in %dd-cfDNA (50.00%). The NPV was high (88.89% and 87.50%, respectively) but driven by the low prevalence of ACR (12/95 [12.6%]). The area under the receiver operating characteristic curve (AUC) was 0.499 (95% confidence interval [CI] [0.326-0.672]) and 0.360 (95%CI [0.132-0.588]) for the detection of ACR and ACR grade ≥A2, respectively. The adjusted mean %dd-cfDNA trended higher in LTRs with a definite or possible RI (1.218, 95%CI [0.671-2.212]) than in LTRs without microbial isolation (0.731, 95%CI [0.525-1.017], p = 0.059), but was not significantly different from those with microbial colonization (0.873, 95%CI [0.538-1.415], p = 0.390). The AUC for the detection of allograft dysfunction due to ACR and/or RI was 0.573 (95%CI [0.431-0.716]). Conclusions %dd-cfDNA may have limited utility as a screening tool to detect ACR and/or RI among LTRs.
Collapse
Affiliation(s)
- Devika Sindu
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Curt Bay
- A. T. Still University, Phoenix, Arizona
| | - Katherine Grief
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Rajat Walia
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
- Creighton University School of Medicine, Phoenix Health Sciences Campus, Phoenix, Arizona
| | - Sofya Tokman
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
- Creighton University School of Medicine, Phoenix Health Sciences Campus, Phoenix, Arizona
| |
Collapse
|
4
|
Cao C, Yuan L, Wang Y, Liu H, Cuello Garcia H, Huang H, Tan W, Zhou Y, Shi H, Jiang T. Analysis of the primary factors influencing donor derived cell-free DNA testing in kidney transplantation. Front Immunol 2024; 15:1435578. [PMID: 39308855 PMCID: PMC11412870 DOI: 10.3389/fimmu.2024.1435578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
The donor-derived cell-free DNA (ddcfDNA) is found in the plasma and urine of kidney transplant recipients and displays notable potential in diagnosing rejection, specifically antibody-mediated rejection (ABMR). Nonetheless, the quantitative methods of ddcfDNA lacking standardization and diverse detection techniques can impact the test outcomes. Besides, both the fraction and absolute values of ddcfDNA have been reported as valuable markers for rejection diagnosis, but they carry distinct meanings and are special in various pathological conditions. Additionally, ddcfDNA is highly sensitive to kidney transplant injury. The various sampling times and combination with other diseases can indeed impact ddcfDNA detection values. This review comprehensively analyses the various factors affecting ddcfDNA detection in kidney transplantation, including the number of SNPs and sequencing depths. Furthermore, different pathological conditions, distinct sampling time points, and the presence of complex heterologous signals can influence ddcfDNA testing results in kidney transplantation. The review also provides insights into ddcfDNA testing on different platforms along with key considerations.
Collapse
Affiliation(s)
- Changling Cao
- Biostatistics, Research & Development (R&D), AlloDx Biotech (Shanghai), Co., Ltd, Shanghai, China
| | - Li Yuan
- Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yinfeng Wang
- Biostatistics, Research & Development (R&D), AlloDx Biotech (Shanghai), Co., Ltd, Shanghai, China
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Haitao Liu
- Medical Department, AlloDx Biotech (Shanghai), Co., Ltd, Shanghai, China
| | | | - Huiqiang Huang
- Biostatistics, Research & Development (R&D), AlloDx Biotech (Shanghai), Co., Ltd, Shanghai, China
| | - Weiqiang Tan
- Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yang Zhou
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Haifeng Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- Medical Department, AlloDx Biotech (Shanghai), Co., Ltd, Shanghai, China
| | - Tingya Jiang
- Medical Department, AlloDx Biotech (Shanghai), Co., Ltd, Shanghai, China
| |
Collapse
|
5
|
Abdulhadi T, Alrata L, Dubrawka C, Amurao G, Kalipatnapu SM, Isaac C, Rodrigues S, Flores KM, Alsabbagh DY, Alomar O, Alhamad T. Donor-derived cell free DNA as a biomarker in kidney transplantation. Pharmacogenomics 2023; 24:771-780. [PMID: 37732393 DOI: 10.2217/pgs-2023-0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023] Open
Abstract
The early detection of acute rejection in the allograft is important as it provides an opportunity for timely therapeutic intervention in order to preserve graft function and achieve longer graft survival. Donor-derived cell-free DNA (dd-cfDNA) has emerged as a new biomarker in the field of kidney transplantation. In this review, we used data from various studies to examine the role of dd-cfDNA in comparison to creatinine and donor-specific antibodies in the early detection of transplant rejection. We also reviewed the use of dd-cfDNA in other organ transplants as well as the challenges and potential future direction for dd-cfDNA as a diagnostic tool.
Collapse
Affiliation(s)
- Tarek Abdulhadi
- Department of Medicine, Division of Nephrology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Louai Alrata
- Department of Medicine, Division of Nephrology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Casey Dubrawka
- Department of Pharmacy, Barnes Jewish Hospital, St. Louis, MO 63110, USA
| | - Gwendolyn Amurao
- Department of Medicine, Division of Nephrology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sri Mahathi Kalipatnapu
- Department of Medicine, Division of Nephrology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Che Isaac
- Department of Medicine, Division of Nephrology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shelden Rodrigues
- Department of Medicine, Division of Nephrology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Karen Marie Flores
- Department of Medicine, Division of Nephrology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dema Yaseen Alsabbagh
- Department of Medicine, Division of Nephrology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Omar Alomar
- Department of Medicine, Division of Nephrology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tarek Alhamad
- Department of Medicine, Division of Nephrology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Transplant Epidemiology Research Collaboration (TERC), Institute of Public Health, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
6
|
Graver AS, Lee D, Power DA, Whitlam JB. Understanding Donor-derived Cell-free DNA in Kidney Transplantation: An Overview and Case-based Guide for Clinicians. Transplantation 2023; 107:1675-1686. [PMID: 36579675 DOI: 10.1097/tp.0000000000004482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Kidney transplant recipients undergo lifelong monitoring of allograft function and evaluation for transplant complications. The current monitoring paradigm utilizes blood, urine, and tissue markers that are insensitive, nonspecific, or invasive to obtain. As a result, problems are detected late, after significant damage has accrued, and often beyond the time at which complete resolution is possible. Indeed, most kidney transplants eventually fail, usually because of chronic rejection and other undetected injury. There is a clear need for a transplant-specific biomarker that enables a proactive approach to monitoring via early detection of reversible pathology. A biomarker that supports timely and personalized treatment would assist in achieving the ultimate goal of improving allograft survival and limiting therapeutic toxicity to the recipient. Donor-derived cell-free DNA (ddcfDNA) has been proposed as one such transplant biomarker. Although the test is presently utilized most in the United States, it is conceivable that its use will become more widespread. This review covers aspects of ddcfDNA that support informed use of the test by general nephrologists, including the basic biology of ddcfDNA, methodological nuances of testing, and general recommendations for use in the kidney transplant population. Clinical contexts are used to illustrate evidence-supported interpretation of ddcfDNA results and subsequent management. Finally, knowledge gaps and areas for further study are discussed.
Collapse
Affiliation(s)
- Alison S Graver
- Kidney Transplant Service, Department of Nephrology, Austin Health, Heidelberg, VIC, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| | - Darren Lee
- Kidney Transplant Service, Department of Nephrology, Austin Health, Heidelberg, VIC, Australia
- Department of Renal Medicine, Eastern Health Clinical School, Monash University, Box Hill, VIC, Australia
| | - David A Power
- Kidney Transplant Service, Department of Nephrology, Austin Health, Heidelberg, VIC, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| | - John B Whitlam
- Kidney Transplant Service, Department of Nephrology, Austin Health, Heidelberg, VIC, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, Australia
| |
Collapse
|
7
|
First Booster of SARS-COV-2 mRNA Vaccine Is Not Associated With Alloimmunization and Subclinical Injury of Kidney Allograft. Transplantation 2023; 107:e62-e64. [PMID: 36314999 DOI: 10.1097/tp.0000000000004421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Mayer KA, Omic H, Weseslindtner L, Doberer K, Reindl-Schwaighofer R, Viard T, Tillgren A, Haindl S, Casas S, Eskandary F, Heinzel A, Kozakowski N, Kikić Ž, Böhmig GA, Eder M. Levels of donor-derived cell-free DNA and chemokines in BK polyomavirus-associated nephropathy. Clin Transplant 2022; 36:e14785. [PMID: 35894263 PMCID: PMC10078585 DOI: 10.1111/ctr.14785] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND BK polyomavirus-associated nephropathy (BKPyVAN) carries a risk of irreversible allograft injury. While detection of BK viremia and biopsy assessment are the current diagnostic gold standard, the diagnostic value of biomarkers reflecting tissue injury (donor-derived cell-free DNA [dd-cfDNA]) or immune activation (C-X-C motif chemokine ligand [CXCL]9 and CXCL10) remains poorly defined. METHODS For this retrospective study, 19 cases of BKPyVAN were selected from the Vienna transplant cohort (biopsies performed between 2012 and 2019). Eight patients with T cell-mediated rejection (TCMR), 17 with antibody-mediated rejection (ABMR) and 10 patients without polyomavirus nephropathy or rejection served as controls. Fractions of dd-cfDNA were quantified using next-generation sequencing and CXCL9 and CXCL10 were detected using multiplex immunoassays. RESULTS BKPyVAN was associated with a slight increase in dd-cfDNA (median; interquartile range: .38% [.27%-1.2%] vs. .21% [.12%-.34%] in non-rejecting control patients; p = .005). Levels were far lower than in ABMR (1.2% [.82%-2.5%]; p = .004]), but not different from TCMR (.54% [.26%-3.56%]; p = .52). Within the BKPyVAN cohort, we found no relationship between dd-cfDNA levels and the extent of tubulo-interstitial infiltrates, BKPyVAN class and BK viremia/viruria, respectively. In some contrast to dd-cfDNA, concentrations of urinary CXCL9 and CXCL10 exceeded those detected in ABMR, but similar increases were also found in TCMR. CONCLUSION BKPyVAN can induce moderate increases in dd-cfDNA and concomitant high urinary excretion of chemokines, but this pattern may be indistinguishable from that of TCMR. Our results argue against a significant value of these biomarkers to reliably distinguish BKPyVAN from rejection.
Collapse
Affiliation(s)
- Katharina A Mayer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Haris Omic
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | | | - Konstantin Doberer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Roman Reindl-Schwaighofer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thierry Viard
- CareDx Inc., Brisbane, San Francisco, California, USA
| | | | - Susanne Haindl
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Silvia Casas
- CareDx Inc., Brisbane, San Francisco, California, USA
| | - Farsad Eskandary
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Andreas Heinzel
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | | | - Željko Kikić
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Georg A Böhmig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Eder
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Sedej I, Štalekar M, Tušek Žnidarič M, Goričar K, Kojc N, Kogovšek P, Dolžan V, Arnol M, Lenassi M. Extracellular vesicle-bound DNA in urine is indicative of kidney allograft injury. J Extracell Vesicles 2022; 11:e12268. [PMID: 36149031 PMCID: PMC9503341 DOI: 10.1002/jev2.12268] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/29/2022] [Accepted: 09/09/2022] [Indexed: 11/11/2022] Open
Abstract
Extracellular vesicle‐bound DNA (evDNA) is an understudied extracellular vesicle (EV) cargo, particularly in cancer‐unrelated research. Although evDNA has been detected in urine, little is known about its characteristics, localization, and biomarker potential for kidney pathologies. To address this, we enriched EVs from urine of well‐characterized kidney transplant recipients undergoing allograft biopsy, characterized their evDNA and its association to allograft injury. The SEC‐based method enriched pure EVs from urine of kidney transplant recipients, regardless of the allograft injury. Urinary evDNA represented up to 29.2 ± 8% (mean ± SD) of cell‐free DNA (cfDNA) and correlated with cfDNA in several characteristics but was less fragmented (P < 0.001). Importantly, using DNase treatment and immunogold labelling TEM, we demonstrated that evDNA was bound to the surface of urinary EVs. Normalised evDNA yield (P = 0.042) and evDNA copy number (P = 0.027) significantly differed between patients with normal histology, rejection injury and non‐rejection injury, the later groups having significantly larger uEVs (mean diameter, P = 0.045) and more DNA bound per uEV. ddDNA is detectable in uEV samples of kidney allograft recipients, but its quantity is highly variable. In a proof‐of‐principle study, several evDNA characteristics correlated with clinical and histological parameters (P = 0.040), supporting that the potential of evDNA as a biomarker for kidney allograft injury should be further investigated.
Collapse
Affiliation(s)
- Ivana Sedej
- Department of Nephrology, Division of Internal Medicine, University Medical Center Ljubljana, Ljubljana, Slovenia.,Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Štalekar
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Magda Tušek Žnidarič
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Katja Goričar
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nika Kojc
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Polona Kogovšek
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Vita Dolžan
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Miha Arnol
- Department of Nephrology, Division of Internal Medicine, University Medical Center Ljubljana, Ljubljana, Slovenia.,Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Metka Lenassi
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
10
|
Grothgar E, Goerlich N, Samans B, Skopnik CM, Metzke D, Klocke J, Prskalo L, Freund P, Wagner L, Duerr M, Matz M, Olek S, Budde K, Paliege A, Enghard P. Urinary CD8+HLA-DR+ T Cell Abundance Non-invasively Predicts Kidney Transplant Rejection. Front Med (Lausanne) 2022; 9:928516. [PMID: 35911418 PMCID: PMC9334669 DOI: 10.3389/fmed.2022.928516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/23/2022] [Indexed: 12/05/2022] Open
Abstract
Early detection of kidney transplant (KT) rejection remains a challenge in patient care. Non-invasive biomarkers hold high potential to detect rejection, adjust immunosuppression, and monitor KT patients. So far, no approach has fully satisfied requirements to innovate routine monitoring of KT patients. In this two-center study we analyzed a total of 380 urine samples. T cells and tubular epithelial cells were quantified in KT patients with graft deterioration using flow cytometry. Epigenetic urine cell quantification was used to confirm flow cytometric results. Moreover, a cohort of KT patients was followed up during the first year after transplantation, tracking cell subsets over time. Abundance of urinary cell counts differed in patients with and without rejection. Most strikingly, various T cell subsets were enriched in patients with T cell-mediated rejection (TCMR) compared to patients without TCMR. Among T cell subsets, CD8+HLA-DR+ T cells were most distinctive (AUC = 0.91, Spec.: 95.9%, Sens.: 76.5%). Epigenetic analysis confirmed T cell and tubular epithelial cell quantities as determined by flow cytometry. Urinary T cell abundance in new KT patients decreased during their first year after transplantation. In conclusion urinary T cells reflect intrarenal inflammation in TCMR. T cell subsets yield high potential to monitor KT patients and detect rejection. Hereby we present a promising biomarker to non-invasively diagnose TCMR.
Collapse
Affiliation(s)
- Emil Grothgar
- Department of Nephrology and Intensive Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Nina Goerlich
- Department of Nephrology and Intensive Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Berlin Institute of Health (BIH) at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Bjoern Samans
- Ivana Türbachova Laboratory for Epigenetics, Precision for Medicine GmbH, Berlin, Germany
| | - Christopher M. Skopnik
- Department of Nephrology and Intensive Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Diana Metzke
- Department of Nephrology and Intensive Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Jan Klocke
- Department of Nephrology and Intensive Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Luka Prskalo
- Department of Nephrology and Intensive Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Paul Freund
- Department of Nephrology and Intensive Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Leonie Wagner
- Department of Nephrology and Intensive Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Michael Duerr
- Department of Nephrology and Intensive Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Mareen Matz
- Berlin Institute of Health (BIH) at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Sven Olek
- Ivana Türbachova Laboratory for Epigenetics, Precision for Medicine GmbH, Berlin, Germany
| | - Klemens Budde
- Department of Nephrology and Intensive Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Philipp Enghard
- Department of Nephrology and Intensive Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| |
Collapse
|
11
|
Hamidian Jahromi A, Horen SR, Johannesson L. Plasma Cell-Free DNA as a Novel Method for Early Detection of Acute Rejection in Uterine Transplant. EXP CLIN TRANSPLANT 2022; 20:440-441. [PMID: 34981709 DOI: 10.6002/ect.2021.0237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Alireza Hamidian Jahromi
- From the Plastic and Reconstructive Surgery Department, Temple University Hospitals, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
12
|
Chopra B, Sureshkumar KK. Emerging role of cell-free DNA in kidney transplantation. World J Exp Med 2021; 11:55-65. [PMID: 34877265 PMCID: PMC8611196 DOI: 10.5493/wjem.v11.i5.55] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/01/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023] Open
Abstract
Monitoring kidney transplants for rejection conventionally includes serum creatinine, immunosuppressive drug levels, proteinuria, and donor-specific antibody (DSA). Serum creatinine is a late marker of allograft injury, and the predictive ability of DSA regarding risk of rejection is variable. Histological analysis of an allograft biopsy is the standard method for diagnosing rejection but is invasive, inconvenient, and carries risk of complications. There has been a long quest to find a perfect biomarker that noninvasively predicts tissue injury caused by rejection at an early stage, so that diagnosis and treatment could be pursued without delay in order to minimize irreversible damage to the allograft. In this review, we discuss relatively novel research on identifying biomarkers of tissue injury, specifically elaborating on donor-derived cell-free DNA, and its clinical utility.
Collapse
Affiliation(s)
- Bhavna Chopra
- Nephrology and Hypertension, Allegheny General Hospital, Pittsburgh, PA 15212, United States
| | - Kalathil K Sureshkumar
- Division of Nephrology, Department of Medicine, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, United State
| |
Collapse
|
13
|
Mayer KA, Doberer K, Tillgren A, Viard T, Haindl S, Krivanec S, Reindl-Schwaighofer R, Eder M, Eskandary F, Casas S, Wahrmann M, Regele H, Böhmig GA. Diagnostic value of donor-derived cell-free DNA to predict antibody-mediated rejection in donor-specific antibody-positive renal allograft recipients. Transpl Int 2021; 34:1689-1702. [PMID: 34448270 PMCID: PMC8456909 DOI: 10.1111/tri.13970] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 11/28/2022]
Abstract
Circulating donor‐specific antibodies (DSA) do not necessarily indicate antibody‐mediated rejection (ABMR). Here, we evaluated the diagnostic value of donor‐derived cell‐free DNA (dd‐cfDNA) as an add‐on to DSA detection. The study included two independent cohorts of DSA+ kidney allograft recipients, 45 subclinical cases identified by cross‐sectional antibody screening (cohort 1), and 30 recipients subjected to indication biopsies (cohort 2). About 50% of the DSA+ recipients had ABMR and displayed higher dd‐cfDNA levels than DSA+ABMR− recipients (cohort 1: 1.90% [median; IQR: 0.78–3.90%] vs. 0.52% [0.35–0.72%]; P < 0.001); (cohort 2: 1.20% [0.82–2.50%] vs. 0.59% [0.28–2.05%]; P = 0.086). Receiver operating characteristic (ROC) analysis revealed an area under the curve (AUC) of 0.89 and 0.69 for dd‐cfDNA, and 0.88 and 0.77 for DSA mean fluorescence intensity (MFI), respectively. In combined models, adding dd‐cfDNA to DSA‐MFI or vice versa significantly improved the diagnostic accuracy. Limited diagnostic performance of dd‐cfDNA in cohort 2 was related to the frequent finding of other types of graft injury among ABMR− recipients, like T cell‐mediated rejection or glomerulonephritis. For dd‐cfDNA in relation to injury of any cause an AUC of 0.97 was calculated. Monitoring of dd‐cfDNA in DSA+ patients may be a useful tool to detect ABMR and other types of injury.
Collapse
Affiliation(s)
- Katharina A Mayer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Konstantin Doberer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | | | | | - Susanne Haindl
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Sebastian Krivanec
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Roman Reindl-Schwaighofer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Eder
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Farsad Eskandary
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Silvia Casas
- CareDx Inc., Brisbane, South San Francisco, CA, USA
| | - Markus Wahrmann
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Heinz Regele
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Georg A Böhmig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|