1
|
Teter B, Morihara T, Lim GP, Chu T, Jones MR, Zuo X, Paul RM, Frautschy SA, Cole GM. Curcumin restores innate immune Alzheimer's disease risk gene expression to ameliorate Alzheimer pathogenesis. Neurobiol Dis 2019; 127:432-448. [PMID: 30951849 PMCID: PMC8092921 DOI: 10.1016/j.nbd.2019.02.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 01/28/2023] Open
Abstract
Alzheimer's disease (AD) genetics implies a causal role for innate immune genes, TREM2 and CD33, products that oppose each other in the downstream Syk tyrosine kinase pathway, activating microglial phagocytosis of amyloid (Aβ). We report effects of low (Curc-lo) and high (Curc-hi) doses of curcumin on neuroinflammation in APPsw transgenic mice. Results showed that Curc-lo decreased CD33 and increased TREM2 expression (predicted to decrease AD risk) and also increased TyroBP, which controls a neuroinflammatory gene network implicated in AD as well as phagocytosis markers CD68 and Arg1. Curc-lo coordinately restored tightly correlated relationships between these genes' expression levels, and decreased expression of genes characteristic of toxic pro-inflammatory M1 microglia (CD11b, iNOS, COX-2, IL1β). In contrast, very high dose curcumin did not show these effects, failed to clear amyloid plaques, and dysregulated gene expression relationships. Curc-lo stimulated microglial migration to and phagocytosis of amyloid plaques both in vivo and in ex vivo assays of sections of human AD brain and of mouse brain. Curcumin also reduced levels of miR-155, a micro-RNA reported to drive a neurodegenerative microglial phenotype. In conditions without amyloid (human microglial cells in vitro, aged wild-type mice), Curc-lo similarly decreased CD33 and increased TREM2. Like curcumin, anti-Aβ antibody (also reported to engage the Syk pathway, increase CD68, and decrease amyloid burden in human and mouse brain) increased TREM2 in APPsw mice and decreased amyloid in human AD sections ex vivo. We conclude that curcumin is an immunomodulatory treatment capable of emulating anti-Aβ vaccine in stimulating phagocytic clearance of amyloid by reducing CD33 and increasing TREM2 and TyroBP, while restoring neuroinflammatory networks implicated in neurodegenerative diseases.
Collapse
Affiliation(s)
- B Teter
- Departments of Neurology, Geriatric Research Education and Clinical Centerand, University of California, Los Angeles (UCLA), United States of America; Departments of Veterans Affairs Greater Los Angeles Healthcare System, Geriatric Research Education and Clinical Center, University of California, Los Angeles (UCLA), United States of America; Alzheimer's Translational Center, Veterans Administration (Research 151), Bldg. 114, Rm. 114-1, 11301 Wilshire Blvd, Los Angeles, CA 90073, United States of America.
| | - T Morihara
- Departments of Neurology, Geriatric Research Education and Clinical Centerand, University of California, Los Angeles (UCLA), United States of America; Departments of Veterans Affairs Greater Los Angeles Healthcare System, Geriatric Research Education and Clinical Center, University of California, Los Angeles (UCLA), United States of America.
| | - G P Lim
- Departments of Neurology, Geriatric Research Education and Clinical Centerand, University of California, Los Angeles (UCLA), United States of America; Departments of Veterans Affairs Greater Los Angeles Healthcare System, Geriatric Research Education and Clinical Center, University of California, Los Angeles (UCLA), United States of America
| | - T Chu
- Departments of Neurology, Geriatric Research Education and Clinical Centerand, University of California, Los Angeles (UCLA), United States of America; Departments of Veterans Affairs Greater Los Angeles Healthcare System, Geriatric Research Education and Clinical Center, University of California, Los Angeles (UCLA), United States of America
| | - M R Jones
- Departments of Neurology, Geriatric Research Education and Clinical Centerand, University of California, Los Angeles (UCLA), United States of America
| | - X Zuo
- Departments of Neurology, Geriatric Research Education and Clinical Centerand, University of California, Los Angeles (UCLA), United States of America; Departments of Veterans Affairs Greater Los Angeles Healthcare System, Geriatric Research Education and Clinical Center, University of California, Los Angeles (UCLA), United States of America
| | - R M Paul
- Departments of Neurology, Geriatric Research Education and Clinical Centerand, University of California, Los Angeles (UCLA), United States of America; Departments of Medicine, University of California, Los Angeles (UCLA), United States of America
| | - S A Frautschy
- Departments of Neurology, Geriatric Research Education and Clinical Centerand, University of California, Los Angeles (UCLA), United States of America; Departments of Medicine, University of California, Los Angeles (UCLA), United States of America; Departments of Veterans Affairs Greater Los Angeles Healthcare System, Geriatric Research Education and Clinical Center, University of California, Los Angeles (UCLA), United States of America.
| | - G M Cole
- Departments of Neurology, Geriatric Research Education and Clinical Centerand, University of California, Los Angeles (UCLA), United States of America; Departments of Medicine, University of California, Los Angeles (UCLA), United States of America; Departments of Veterans Affairs Greater Los Angeles Healthcare System, Geriatric Research Education and Clinical Center, University of California, Los Angeles (UCLA), United States of America.
| |
Collapse
|
2
|
Cribbs DH, Berchtold NC, Perreau V, Coleman PD, Rogers J, Tenner AJ, Cotman CW. Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study. J Neuroinflammation 2012; 9:179. [PMID: 22824372 PMCID: PMC3419089 DOI: 10.1186/1742-2094-9-179] [Citation(s) in RCA: 370] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 07/23/2012] [Indexed: 12/16/2022] Open
Abstract
Background This study undertakes a systematic and comprehensive analysis of brain gene expression profiles of immune/inflammation-related genes in aging and Alzheimer’s disease (AD). Methods In a well-powered microarray study of young (20 to 59 years), aged (60 to 99 years), and AD (74 to 95 years) cases, gene responses were assessed in the hippocampus, entorhinal cortex, superior frontal gyrus, and post-central gyrus. Results Several novel concepts emerge. First, immune/inflammation-related genes showed major changes in gene expression over the course of cognitively normal aging, with the extent of gene response far greater in aging than in AD. Of the 759 immune-related probesets interrogated on the microarray, approximately 40% were significantly altered in the SFG, PCG and HC with increasing age, with the majority upregulated (64 to 86%). In contrast, far fewer immune/inflammation genes were significantly changed in the transition to AD (approximately 6% of immune-related probesets), with gene responses primarily restricted to the SFG and HC. Second, relatively few significant changes in immune/inflammation genes were detected in the EC either in aging or AD, although many genes in the EC showed similar trends in responses as in the other brain regions. Third, immune/inflammation genes undergo gender-specific patterns of response in aging and AD, with the most pronounced differences emerging in aging. Finally, there was widespread upregulation of genes reflecting activation of microglia and perivascular macrophages in the aging brain, coupled with a downregulation of select factors (TOLLIP, fractalkine) that when present curtail microglial/macrophage activation. Notably, essentially all pathways of the innate immune system were upregulated in aging, including numerous complement components, genes involved in toll-like receptor signaling and inflammasome signaling, as well as genes coding for immunoglobulin (Fc) receptors and human leukocyte antigens I and II. Conclusions Unexpectedly, the extent of innate immune gene upregulation in AD was modest relative to the robust response apparent in the aged brain, consistent with the emerging idea of a critical involvement of inflammation in the earliest stages, perhaps even in the preclinical stage, of AD. Ultimately, our data suggest that an important strategy to maintain cognitive health and resilience involves reducing chronic innate immune activation that should be initiated in late midlife.
Collapse
Affiliation(s)
- David H Cribbs
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, 1226 Gillespie NRF, Irvine, CA 92697, USA.
| | | | | | | | | | | | | |
Collapse
|
3
|
Frautschy SA, Cole GM. Why pleiotropic interventions are needed for Alzheimer's disease. Mol Neurobiol 2010; 41:392-409. [PMID: 20437209 PMCID: PMC2876259 DOI: 10.1007/s12035-010-8137-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 04/06/2010] [Indexed: 01/19/2023]
Abstract
Alzheimer's disease (AD) involves a complex pathological cascade thought to be initially triggered by the accumulation of beta-amyloid (Abeta) peptide aggregates or aberrant amyloid precursor protein (APP) processing. Much is known of the factors initiating the disease process decades prior to the onset of cognitive deficits, but an unclear understanding of events immediately preceding and precipitating cognitive decline is a major factor limiting the rapid development of adequate prevention and treatment strategies. Multiple pathways are known to contribute to cognitive deficits by disruption of neuronal signal transduction pathways involved in memory. These pathways are altered by aberrant signaling, inflammation, oxidative damage, tau pathology, neuron loss, and synapse loss. We need to develop stage-specific interventions that not only block causal events in pathogenesis (aberrant tau phosphorylation, Abeta production and accumulation, and oxidative damage), but also address damage from these pathways that will not be reversed by targeting prodromal pathways. This approach would not only focus on blocking early events in pathogenesis, but also adequately correct for loss of synapses, substrates for neuroprotective pathways (e.g., docosahexaenoic acid), defects in energy metabolism, and adverse consequences of inappropriate compensatory responses (aberrant sprouting). Monotherapy targeting early single steps in this complicated cascade may explain disappointments in trials with agents inhibiting production, clearance, or aggregation of the initiating Abeta peptide or its aggregates. Both plaque and tangle pathogenesis have already reached AD levels in the more vulnerable brain regions during the "prodromal" period prior to conversion to "mild cognitive impairment (MCI)." Furthermore, many of the pathological events are no longer proceeding in series, but are going on in parallel. By the MCI stage, we stand a greater chance of success by considering pleiotropic drugs or cocktails that can independently limit the parallel steps of the AD cascade at all stages, but that do not completely inhibit the constitutive normal functions of these pathways. Based on this hypothesis, efforts in our laboratories have focused on the pleiotropic activities of omega-3 fatty acids and the anti-inflammatory, antioxidant, and anti-amyloid activity of curcumin in multiple models that cover many steps of the AD pathogenic cascade (Cole and Frautschy, Alzheimers Dement 2:284-286, 2006).
Collapse
Affiliation(s)
- Sally A Frautschy
- Geriatric Research and Clinical Center, Greater Los Angeles Healthcare System, Veteran's Administration, Los Angeles, USA.
| | | |
Collapse
|
4
|
Cole GM, Frautschy SA. Mechanisms of action of non-steroidal anti-inflammatory drugs for the prevention of Alzheimer's disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2010; 9:140-8. [PMID: 20205646 PMCID: PMC4312283 DOI: 10.2174/187152710791011991] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 02/22/2010] [Indexed: 01/05/2023]
Abstract
Alzheimer's disease (AD) is accompanied by an activation of the innate immune system, and many epidemiological studies have shown reduced risk for dementia or AD associated with chronic consumption of non-steroidal anti-inflammatory drugs (NSAIDs). These observations led to animal model studies to test the hypothesis that NSAIDs can be disease-modifying for some aspects of AD pathogenesis. NSAIDs cannot only suppress inflammatory targets, which could contribute to neuroprotection, they also slow amyloid deposition by mechanisms that remain unclear. Several large clinical trials with NSAID therapies with AD subjects have failed, and cyclooxygenase-2 does not appear to be a useful target for disease modifying therapy. However, there may be apolipoprotein E E4 pharmacogenomic effects and a real but delayed positive signal in a large primary prevention trial with naproxen. This encourages researchers to re-address possible mechanisms for a stage-dependent NSAID efficacy, the subject of this review.
Collapse
Affiliation(s)
- Greg M. Cole
- Geriatric Research and Education Center, Greater Los Angeles Healthcare System, Veteran’s Administration, North Hills, CA 91343, USA
- Departments of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90048, USA
- Neurology, University of California, Los Angeles, CA 90048, USA
| | - Sally A. Frautschy
- Geriatric Research and Education Center, Greater Los Angeles Healthcare System, Veteran’s Administration, North Hills, CA 91343, USA
- Departments of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90048, USA
- Neurology, University of California, Los Angeles, CA 90048, USA
| |
Collapse
|
5
|
Sultana R, Banks WA, Butterfield DA. Decreased levels of PSD95 and two associated proteins and increased levels of BCl2 and caspase 3 in hippocampus from subjects with amnestic mild cognitive impairment: Insights into their potential roles for loss of synapses and memory, accumulation of Abeta, and neurodegeneration in a prodromal stage of Alzheimer's disease. J Neurosci Res 2010; 88:469-77. [PMID: 19774677 DOI: 10.1002/jnr.22227] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and is pathologically characterized by senile plaques, neurofibrillary tangles, synaptic disruption and loss, and progressive neuronal deficits. The exact mechanism(s) of AD pathogenesis largely remain unknown. With advances in technology diagnosis of a pre-AD stage referred to as amnestic mild cognitive impairment (MCI) has become possible. Amnestic MCI is characterized clinically by memory deficit, but normal activities of daily living and no dementia. In the present study, compared to controls, we observed in hippocampus from subjects with MCI a significantly decreased level of PSD95, a key synaptic protein, and also decreased levels of two proteins associated with PSD95, the N-methyl-D-aspartate receptor, subunit 2A (NR2A) and the low-density lipoprotein receptor-1 (LRP1). PSD95 and NR2A are involved in long-term potentiation, a key component of memory formation, and LRP1 is involved in efflux of amyloid beta-peptide (1-42). Abeta (1-42) conceivably is critical to the pathogenesis of MCI and AD, including the oxidative stress under which brain in both conditions exist. The data obtained from the current study suggest a possible involvement of these proteins in synaptic alterations, apoptosis and consequent decrements in learning and memory associated with the progression of MCI to AD.
Collapse
|
6
|
Neugroschl J, Sano M. An update on treatment and prevention strategies for Alzheimer's disease. Curr Neurol Neurosci Rep 2009; 9:368-76. [PMID: 19664366 PMCID: PMC6485240 DOI: 10.1007/s11910-009-0054-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the aging of the population, the incidence and prevalence of Alzheimer's disease will grow, increasing the burden on individuals and society. While ameliorating symptoms, the currently available treatments approved by the US Food and Drug Administration do not halt progression or cure the illness. This article discusses recent data on treatment strategies targeting amyloid and tau pathology. Novel therapeutic strategies such as inhibitors of receptors for advanced glycation end products (RAGE), potential mitochondrial modification with Dimebon, anti-inflammatory approaches, and cholesterol-lowering agents are also reviewed. An update on results from pharmacologic and nonpharmacologic prevention trials is provided.
Collapse
Affiliation(s)
- Judith Neugroschl
- James J. Peters Veterans Affairs Medical Center, Bronx, NY 10468, USA
| | | |
Collapse
|