1
|
Fan J, Ma Z, Zheng Y, Zhang M, Huang L, Liu H. Folate Deficiency Increased Microglial Amyloid-β Phagocytosis via the RAGE Receptor in Chronic Unpredictable Mild-Stress Rat and BV2 Cells. Nutrients 2023; 15:3501. [PMID: 37630692 PMCID: PMC10457913 DOI: 10.3390/nu15163501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Depression is often considered one of the prevalent neuropsychiatric symptoms of Alzheimer's disease (AD). β-amyloid (Aβ) metabolism disorders and impaired microglia phagocytosis are potential pathological mechanisms between depression and AD. Folate deficiency (FD) is a risk factor for depression and AD. In this study, we used a chronic unpredictable mild stress (CUMS) rat model and a model of Aβ phagocytosis by BV2 cells to explore the potential mechanisms by which FD affects depression and AD. The results revealed that FD exacerbated depressive behavior and activated microglia in CUMS rats, leading to an increase in intracellular Aβ and phagocytosis-related receptors for advanced glycation end products (RAGE). Then, in vitro results showed that the expression of the RAGE receptor and M2 phenotype marker (CD206) were upregulated by FD treatment in BV2 cells, leading to an increase in Aβ phagocytosis. However, there was no significant difference in the expression of toll-like receptor 4 (TLR4) and clathrin heavy chain (CHC). Furthermore, when using the RAGE-specific inhibitor FPS-ZM1, there was no significant difference in Aβ uptake between folate-normal (FN) and FD BV2 cell groups. In conclusion, these findings suggest FD may promote microglia phagocytosis Aβ via regulating the expression of RAGE or microglia phenotype under Aβ treatment.
Collapse
Affiliation(s)
- Junting Fan
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Zewei Ma
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Yunqin Zheng
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Meilin Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Li Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Huan Liu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| |
Collapse
|
2
|
Wood OWG, Yeung JHY, Faull RLM, Kwakowsky A. EAAT2 as a therapeutic research target in Alzheimer's disease: A systematic review. Front Neurosci 2022; 16:952096. [PMID: 36033606 PMCID: PMC9399514 DOI: 10.3389/fnins.2022.952096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/14/2022] [Indexed: 11/23/2022] Open
Abstract
Glutamate is the main excitatory neurotransmitter in the human central nervous system, responsible for a wide variety of normal physiological processes. Glutamatergic metabolism and its sequestration are tightly regulated in the normal human brain, and it has been demonstrated that dysregulation of the glutamatergic system can have wide-ranging effects both in acute brain injury and neurodegenerative diseases. The excitatory amino acid transporter 2 (EAAT2) is the dominant glutamatergic transporter in the human brain, responsible for efficient removal of glutamate from the synaptic cleft for recycling within glial cells. As such, it has a key role in maintaining excitatory-inhibitory homeostasis. Animal studies have demonstrated dysregulation or alterations of EAAT2 expression can have implications in neurodegenerative disorders. Despite extensive research into glutamatergic alterations in AD mouse models, there is a lack of studies examining the expression of EAAT2 within the AD human brain. In this systematic review, 29 articles were identified that either analyzed EAAT2 expression in the AD human brain or used a human-derived cell culture. Studies were inconclusive as to whether EAAT2 was upregulated or downregulated in AD. However, changes in localization and correlation between EAAT2 expression and symptomatology was noted. These findings implicate EAAT2 alterations as a key process in AD progression and highlight the need for further research into the characterization of EAAT2 processes in normal physiology and disease in human tissue and to identify compounds that can act as EAAT2 neuromodulators.
Collapse
Affiliation(s)
- Oliver W. G. Wood
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Jason H. Y. Yeung
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Richard L. M. Faull
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Andrea Kwakowsky
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Pharmacology and Therapeutics, Galway Neuroscience Centre, School of Medicine, Ollscoil na Gaillimhe – University of Galway, Galway, Ireland
- *Correspondence: Andrea Kwakowsky
| |
Collapse
|
3
|
Mesdom P, Colle R, Lebigot E, Trabado S, Deflesselle E, Fève B, Becquemont L, Corruble E, Verstuyft C. Human Dermal Fibroblast: A Promising Cellular Model to Study Biological Mechanisms of Major Depression and Antidepressant Drug Response. Curr Neuropharmacol 2020; 18:301-318. [PMID: 31631822 PMCID: PMC7327943 DOI: 10.2174/1570159x17666191021141057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/15/2019] [Accepted: 10/19/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Human dermal fibroblasts (HDF) can be used as a cellular model relatively easily and without genetic engineering. Therefore, HDF represent an interesting tool to study several human diseases including psychiatric disorders. Despite major depressive disorder (MDD) being the second cause of disability in the world, the efficacy of antidepressant drug (AD) treatment is not sufficient and the underlying mechanisms of MDD and the mechanisms of action of AD are poorly understood. OBJECTIVE The aim of this review is to highlight the potential of HDF in the study of cellular mechanisms involved in MDD pathophysiology and in the action of AD response. METHODS The first part is a systematic review following PRISMA guidelines on the use of HDF in MDD research. The second part reports the mechanisms and molecules both present in HDF and relevant regarding MDD pathophysiology and AD mechanisms of action. RESULTS HDFs from MDD patients have been investigated in a relatively small number of works and most of them focused on the adrenergic pathway and metabolism-related gene expression as compared to HDF from healthy controls. The second part listed an important number of papers demonstrating the presence of many molecular processes in HDF, involved in MDD and AD mechanisms of action. CONCLUSION The imbalance in the number of papers between the two parts highlights the great and still underused potential of HDF, which stands out as a very promising tool in our understanding of MDD and AD mechanisms of action.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Céline Verstuyft
- Address correspondence to this author at the Laboratoire de Pharmacologie, Salle 416, Bâtiment Université, Hôpital du Kremlin Bicêtre, 78 rue du Général Leclerc, 94275 Le Kremlin-Bicêtre, France; Tel: +33145213588; E-mail:
| |
Collapse
|
4
|
Interaction of DCF1 with ATP1B1 induces impairment in astrocyte structural plasticity via the P38 signaling pathway. Exp Neurol 2018; 302:214-229. [DOI: 10.1016/j.expneurol.2018.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/16/2017] [Accepted: 01/08/2018] [Indexed: 12/18/2022]
|
5
|
Huang S, Tong H, Lei M, Zhou M, Guo W, Li G, Tang X, Li Z, Mo M, Zhang X, Chen X, Cen L, Wei L, Xiao Y, Li K, Huang Q, Yang X, Liu W, Zhang L, Qu S, Li S, Xu P. Astrocytic glutamatergic transporters are involved in Aβ-induced synaptic dysfunction. Brain Res 2017; 1678:129-137. [PMID: 29066369 DOI: 10.1016/j.brainres.2017.10.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 01/15/2023]
Abstract
In Alzheimer's disease (AD), dementia severity correlates most strongly with decreased synapse density in the hippocampus and cerebral cortex. Although studies in rodents have established that hippocampal long-term potentiation (LTP) is inhibited by soluble oligomers of beta-amyloid (Aβ), the synaptic mechanisms remain unclear. Here, field excitatory postsynaptic potentials (fEPSP) recordings were made in the CA1 region of mouse hippocampal slices. The medium of APP-expressing CHO cells, which contain soluble forms of Aβ including small oligomers, inhibited LTP and facilitated long-term depression (LTD), thus making the LTP/LTD curve shift toward the right. This phenomenon could be mimicked by the non-selective glutamate transporter inhibitor, DL-TBOA. More specifically, the Aβ impaired LTP and facilitated LTD were occluded by the selective astrocytic glutamate transporter inhibitors, TFB-TBOA. In cultured astrocytes, the Aβ oligomers also decrease astrocytic glutamate transporters (EAAT1, EAAT2) expression. We conclude that soluble Aβ oligomers decrease the activation of astrocytic glutamate transporters, thereby impairing synaptic plasticity.
Collapse
Affiliation(s)
- Shuxuan Huang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Huichun Tong
- Clinical Medicine Research Centre, Shunde Hospital, Southern Medical University, Foshan, Guangdong 528300, China; Department of Neurology, Shunde Hospital, Southern Medical University, Foshan, Guangdong 528300, China
| | - Ming Lei
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China; Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Miaomiao Zhou
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Wenyuan Guo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Guihua Li
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Xiaolu Tang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Zhe Li
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Mingshu Mo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Xiuping Zhang
- Teaching Center of Experimental Medicine, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiang Chen
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Luan Cen
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Lei Wei
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510082, China
| | - Yousheng Xiao
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Kaiping Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Qinghui Huang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China; State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Xinling Yang
- Department of Neurology, The Third Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Weiguo Liu
- Department of Geroatric&Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Li Zhang
- Department of Geroatric&Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shaogang Qu
- Clinical Medicine Research Centre, Shunde Hospital, Southern Medical University, Foshan, Guangdong 528300, China; Department of Neurology, Shunde Hospital, Southern Medical University, Foshan, Guangdong 528300, China.
| | - Shaomin Li
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China; Ann Romney Center for Neurologic Disease, Brigham and Women's Hospital of Harvard Medical School, Boston, MA 02115, USA.
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China.
| |
Collapse
|
6
|
Multifunctional liposomes interact with Abeta in human biological fluids: Therapeutic implications for Alzheimer's disease. Neurochem Int 2017; 108:60-65. [DOI: 10.1016/j.neuint.2017.02.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 12/16/2022]
|
7
|
Injected Amyloid Beta in the Olfactory Bulb Transfers to Other Brain Regions via Neural Connections in Mice. Mol Neurobiol 2017; 55:1703-1713. [DOI: 10.1007/s12035-017-0446-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/06/2017] [Indexed: 01/30/2023]
|
8
|
Nardo L, Re F, Brioschi S, Cazzaniga E, Orlando A, Minniti S, Lamperti M, Gregori M, Cassina V, Brogioli D, Salerno D, Mantegazza F. Fluorimetric detection of the earliest events in amyloid β oligomerization and its inhibition by pharmacologically active liposomes. Biochim Biophys Acta Gen Subj 2016; 1860:746-56. [DOI: 10.1016/j.bbagen.2016.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 12/04/2015] [Accepted: 01/06/2016] [Indexed: 02/05/2023]
|
9
|
Lei M, Xu H, Li Z, Wang Z, O'Malley TT, Zhang D, Walsh DM, Xu P, Selkoe DJ, Li S. Soluble Aβ oligomers impair hippocampal LTP by disrupting glutamatergic/GABAergic balance. Neurobiol Dis 2015; 85:111-121. [PMID: 26525100 DOI: 10.1016/j.nbd.2015.10.019] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/01/2015] [Accepted: 10/21/2015] [Indexed: 02/06/2023] Open
Abstract
Epileptic activity may be more prevalent in early stage Alzheimer's disease (AD) than previously believed. Several studies report spontaneous seizures and interictal discharges in mouse models of AD undergoing age-related Aβ accumulation. The mechanism by which Aβ-induced neuronal excitability can trigger epileptiform activity remains unknown. Here, we systematically examined field excitatory postsynaptic potentials (fEPSP) in stratum radiatum and population spikes (PSs) in the adjacent stratum pyramidale of CA1 in wild-type mouse hippocampal slices. Soluble Aβ oligomers (oAβ) blocked hippocampal LTP and EPSP-spike (E-S) potentiation, and these effects were occluded by prior treatment with the glutamate uptake inhibitor TBOA. In accord, oAβ elevated glutamate levels in the hippocampal slice medium. Recording the PS revealed that oAβ increased PS frequency and reduced LTP, and this LTP deficit was occluded by pretreatment with the GABAA antagonist picrotoxin. Whole-cell recordings showed that oAβ significantly increased spontaneous EPSC frequency. Decreasing neuronal activity by increasing GABA tone or partially blocking NMDAR activity prevented oAβ impairment of hippocampal LTP. Finally, treating slices with two antiepileptic drugs rescued the LTP inhibition induced by oAβ. We conclude that soluble Aβ oligomers at the low nanomolar levels present in AD brain increase neuronal excitability by disrupting glutamatergic/GABAergic balance, thereby impairing synaptic plasticity.
Collapse
Affiliation(s)
- Ming Lei
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Huixin Xu
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zhangyuan Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zemin Wang
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Tiernan T O'Malley
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dainan Zhang
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dominic M Walsh
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangdong 510120, China.
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shaomin Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Wang ZC, Zhao J, Li S. Dysregulation of synaptic and extrasynaptic N-methyl-D-aspartate receptors induced by amyloid-β. Neurosci Bull 2013; 29:752-60. [PMID: 24136243 DOI: 10.1007/s12264-013-1383-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 02/25/2013] [Indexed: 02/07/2023] Open
Abstract
The toxicity of amyloid-beta (Aβ) is strongly associated with Alzheimer's disease (AD), which has a high incidence in the elderly worldwide. Recent evidence showed that alteration in the activity of N-methyl-D-aspartate receptors (NMDARs) plays a key role in Aβ-induced neurotoxicity. However, the activation of synaptic and extrasynaptic NMDARs has distinct consequences for plasticity, gene regulation, neuronal death, and Aβ production. This review focuses on the dysregulation of synaptic and extrasynaptic NMDARs induced by Aβ. On one hand, Aβ downregulates the synaptic NMDAR response by promoting NMDAR endocytosis, leading to either neurotoxicity or neuroprotection. On the other hand, Aβ enhances the activation of extrasynaptic NMDARs by decreasing neuronal glutamate uptake and inducing glutamate spillover, subsequently causing neurotoxicity. In addition, selective enhancement of synaptic activity by low doses of NMDA, or reduction of extrasynaptic activity by memantine, a non-competitive NMDAR antagonist, halts Aβ-induced neurotoxicity. Therefore, future neuroprotective drugs for AD should aim at both the enhancement of synaptic activity and the disruption of extrasynaptic NMDAR-dependent death signaling.
Collapse
Affiliation(s)
- Zhi-Cong Wang
- Department of Physiology, Dalian Medical University, Dalian, 116044, China
| | | | | |
Collapse
|