1
|
Knudtzon S, Nordengen K, Pålhaugen L, Gísladóttir B, Jarholm J, Bråthen G, Skogseth RE, Waterloo K, Selnes P, Fladby T, Kirsebom BE. Sexual dimorphisms in innate immune activation markers in predementia Alzheimer's disease. Brain Commun 2025; 7:fcaf161. [PMID: 40322776 PMCID: PMC12046404 DOI: 10.1093/braincomms/fcaf161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 04/04/2025] [Accepted: 04/23/2025] [Indexed: 05/08/2025] Open
Abstract
Females have an increased risk of developing Alzheimer's disease (AD). The innate immune system plays a key role in AD pathology, and sex differences in innate immune responses may contribute to differences in disease risk and progression. This study investigated sex differences in innate immune responses among participants without cerebrospinal fluid (CSF) determined amyloid pathology [A-; cognitively normal (CN), n = 83] and those with amyloid pathology (A+, n = 202), further stratified into preclinical (CN with A+, n = 72) and mild cognitive impairment (MCI with A+, n = 130). Participants were drawn from the Norwegian Dementia Disease Initiation cohort (n = 285). We measured plasma glial fibrillary acidic protein (GFAP) and CSF concentrations of nine innate immune markers: soluble triggering receptor expressed on myeloid cells 2 (sTREM2), monocyte chemoattractant protein 1 (MCP-1), fractalkine, chitinase 3-like 1 (YKL-40), clusterin, interferon gamma (IFN-γ), interleukin-6 (IL-6), IL-10, and IL-18. Linear regression was used, adjusted for multiple comparisons using the false discovery rate. In A+ cases (n = 202, females = 105), females had lower MCP-1 (P < 0.01), IL-6 and IL-18 (both P < 0.05) than males, while no sex differences were observed in A- cases (n = 83, females = 39). Among A+ participants, no sex differences were observed in CN cases (n = 72, females = 37), but females (n = 68) with MCI had lower MCP-1 and IL-6 (both P < 0.05) than males (n = 62) with MCI. Moreover, A+ females exhibited stronger positive associations between sTREM2 and clusterin with CSF total tau (P < 0.001; P < 0.05) and Neurofilament light chain (P < 0.01; P < 0.01) than males. These findings suggest sex-specific differences in innate immune responses, which may contribute to disease progression in amyloid-positive individuals.
Collapse
Affiliation(s)
- Stephanie Knudtzon
- Department of Neurology, University Hospital of North Norway, 9038 Tromsø, Norway
- Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Kaja Nordengen
- Department of Neurology, Akershus University Hospital, 1478 Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
| | - Lene Pålhaugen
- Department of Neurology, Akershus University Hospital, 1478 Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
| | - Berglind Gísladóttir
- Department of Neurology, Akershus University Hospital, 1478 Lørenskog, Norway
- Clinical Molecular Biology (EpiGen), Medical Division, Akershus University Hospital and University of Oslo, 1478 Lørenskog, Norway
| | - Jonas Jarholm
- Department of Neurology, Akershus University Hospital, 1478 Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
| | - Geir Bråthen
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Science, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, Trondheim University Hospital, 7491 Trondheim, Norway
| | - Ragnhild Eide Skogseth
- Department of Geriatric Medicine and the Neuro-SysMed Centre, Haraldsplass Deaconess Hospital, 5021 Bergen, Norway
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Knut Waterloo
- Department of Neurology, University Hospital of North Norway, 9038 Tromsø, Norway
- Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Per Selnes
- Department of Neurology, Akershus University Hospital, 1478 Lørenskog, Norway
| | - Tormod Fladby
- Department of Neurology, Akershus University Hospital, 1478 Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
| | - Bjørn-Eivind Kirsebom
- Department of Neurology, University Hospital of North Norway, 9038 Tromsø, Norway
- Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
- Department of Neurology, Akershus University Hospital, 1478 Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
| |
Collapse
|
2
|
Wisse LEM, Wuestefeld A, Murray ME, Jagust W, La Joie R. Role of tau versus TDP-43 pathology on medial temporal lobe atrophy in aging and Alzheimer's disease. Alzheimers Dement 2025; 21:e14582. [PMID: 39985478 PMCID: PMC11846482 DOI: 10.1002/alz.14582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/16/2024] [Accepted: 01/12/2025] [Indexed: 02/24/2025]
Abstract
Hippocampal atrophy on magnetic resonance imaging is an important biomarker in Alzheimer's disease (AD). While hippocampal atrophy was thought to result from tau tangles in AD, different neuropathologies can lead to hippocampal atrophy, especially TAR DNA-binding protein 43 (TDP-43) pathology. In this narrative review, we evaluate existing studies on the relative contribution of tau and TDP-43 pathology to medial temporal lobe (MTL) atrophy. We report a clear association of both tau and TDP-43 neuropathology with MTL atrophy, even after correcting for other neuropathologies. Next, we discuss a potential synergism between tau and TDP-43 and the relative timing of the effects of both neuropathologies. Finally, avenues for future research will be discussed. A better understanding of the interplay between tau and TDP-43 neuropathologies and their effect on atrophy will help with the development of more specific biomarkers for limbic-predominant age-related TDP-43 encephalopathy and pinpointing of the optimal timing for testing anti-tau and anti-TDP-43 treatments in trials. HIGHLIGHTS: Both tau and TAR DNA-binding protein 43 (TDP-43) pathology contribute to medial temporal lobe atrophy. There is a positive association between tau and TDP-43 and potentially a synergism. It is unclear if tau and TDP-43 have an additive or synergistic effect on atrophy. The relative timing of the tau and TDP-43 effects on atrophy remains unclear. Clarifying the interplay between tau and TDP-43 will help improve magnetic resonance imaging biomarkers.
Collapse
Affiliation(s)
| | - Anika Wuestefeld
- Clinical Memory Research Unit, Department of Clinical Sciences MalmöLund UniversityLundSweden
| | - Melissa E. Murray
- Department of NeuroscienceMayo Clinic FloridaJacksonvilleFloridaUSA
- Department of Laboratory Medicine and PathologyMayo Clinic FloridaJacksonvilleFloridaUSA
| | - William Jagust
- Department of NeuroscienceUniversity of California BerkeleyBerkeleyCaliforniaUSA
- Molecular Biophysics and Integrated BioimagingLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
3
|
Aumont E, Bedard MA, Bussy A, Arias JF, Tissot C, Hall BJ, Therriault J, Rahmouni N, Stevenson J, Servaes S, Macedo AC, Vitali P, Poltronetti NM, Fliaguine O, Trudel L, Gauthier S, Chakravarty MM, Rosa-Neto P. Hippocampal atrophy over two years in relation to tau, amyloid-β and memory in older adults. Neurobiol Aging 2025; 146:48-57. [PMID: 39631245 DOI: 10.1016/j.neurobiolaging.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/27/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
In this longitudinal brain imaging study, we aimed to characterize hippocampal tau accumulation and subfield atrophy relative to cortical amyloid-β and memory performance. We measured tau-PET in regions associated with Braak stages I to VI, global amyloid-PET burden, hippocampal subfield volumes and memory assessments from 173 participants aged 55-85. Eighty-six of these participants were tested again two years later. Tau-PET change in the Braak II region, corresponding to the hippocampus and the entorhinal cortex, was significantly associated with the cornu ammonis 1 (CA1) atrophy and memory score. This CA1 atrophy did not significantly mediate the association between tau and memory, nor did global amyloid-PET burden correlate with tau-PET changes in the Braak II region. Longitudinal hippocampal tau accumulation is amyloid-β-independent and co-localized with subfield atrophy. As tau-associated memory decline seems to be independent from hippocampal atrophy, other mechanisms could contribute to the deficit.
Collapse
Affiliation(s)
- Etienne Aumont
- NeuroQAM Research Centre, Université du Québec à Montréal (UQAM), Montreal, QC H2X 3P2, Canada; McGill University Research Centre for Studies in Aging, McGill University, Montréal, QC H4H 1R3, Canada; Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
| | - Marc-André Bedard
- NeuroQAM Research Centre, Université du Québec à Montréal (UQAM), Montreal, QC H2X 3P2, Canada; McGill University Research Centre for Studies in Aging, McGill University, Montréal, QC H4H 1R3, Canada; Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
| | - Aurélie Bussy
- Cerebral Imaging Center, Douglas Research Center, Montreal, QC H4H 1R3, Canada; Computational Brain Anatomy (CoBrALab) Laboratory, Montreal, QC H4H 1R3, Canada
| | - Jaime Fernandez Arias
- McGill University Research Centre for Studies in Aging, McGill University, Montréal, QC H4H 1R3, Canada; Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada; Department of neurology and neurosurgery, McGill University, Montréal, QC H3A 1A1, Canada
| | - Cecile Tissot
- McGill University Research Centre for Studies in Aging, McGill University, Montréal, QC H4H 1R3, Canada; Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada; Department of neurology and neurosurgery, McGill University, Montréal, QC H3A 1A1, Canada; Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Brandon J Hall
- McGill University Research Centre for Studies in Aging, McGill University, Montréal, QC H4H 1R3, Canada; Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada; Department of neurology and neurosurgery, McGill University, Montréal, QC H3A 1A1, Canada
| | - Joseph Therriault
- McGill University Research Centre for Studies in Aging, McGill University, Montréal, QC H4H 1R3, Canada; Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada; Department of neurology and neurosurgery, McGill University, Montréal, QC H3A 1A1, Canada
| | - Nesrine Rahmouni
- McGill University Research Centre for Studies in Aging, McGill University, Montréal, QC H4H 1R3, Canada; Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada; Department of neurology and neurosurgery, McGill University, Montréal, QC H3A 1A1, Canada
| | - Jenna Stevenson
- McGill University Research Centre for Studies in Aging, McGill University, Montréal, QC H4H 1R3, Canada; Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada; Department of neurology and neurosurgery, McGill University, Montréal, QC H3A 1A1, Canada
| | - Stijn Servaes
- McGill University Research Centre for Studies in Aging, McGill University, Montréal, QC H4H 1R3, Canada; Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada; Department of neurology and neurosurgery, McGill University, Montréal, QC H3A 1A1, Canada
| | - Arthur C Macedo
- McGill University Research Centre for Studies in Aging, McGill University, Montréal, QC H4H 1R3, Canada; Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada; Department of neurology and neurosurgery, McGill University, Montréal, QC H3A 1A1, Canada
| | - Paolo Vitali
- McGill University Research Centre for Studies in Aging, McGill University, Montréal, QC H4H 1R3, Canada; Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada; Department of neurology and neurosurgery, McGill University, Montréal, QC H3A 1A1, Canada
| | | | - Olga Fliaguine
- NeuroQAM Research Centre, Université du Québec à Montréal (UQAM), Montreal, QC H2X 3P2, Canada
| | - Lydia Trudel
- McGill University Research Centre for Studies in Aging, McGill University, Montréal, QC H4H 1R3, Canada; Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada; Department of neurology and neurosurgery, McGill University, Montréal, QC H3A 1A1, Canada
| | - Serge Gauthier
- McGill University Research Centre for Studies in Aging, McGill University, Montréal, QC H4H 1R3, Canada; Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada; Department of neurology and neurosurgery, McGill University, Montréal, QC H3A 1A1, Canada
| | - Mallar M Chakravarty
- Cerebral Imaging Center, Douglas Research Center, Montreal, QC H4H 1R3, Canada; Computational Brain Anatomy (CoBrALab) Laboratory, Montreal, QC H4H 1R3, Canada; Department of Psychiatry, McGill University, Montreal, QC H3A 1A1, Canada
| | - Pedro Rosa-Neto
- McGill University Research Centre for Studies in Aging, McGill University, Montréal, QC H4H 1R3, Canada; Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada; Department of neurology and neurosurgery, McGill University, Montréal, QC H3A 1A1, Canada.
| |
Collapse
|
4
|
Knudtzon SL, Nordengen K, Grøntvedt GR, Jarholm J, Eliassen IV, Selnes P, Pålhaugen L, Espenes J, Gísladóttir B, Waterloo K, Fladby T, Kirsebom BE. Age-adjusted CSF t-tau and NfL do not improve diagnostic accuracy for prodromal Alzheimer's disease. Neurobiol Aging 2024; 141:74-84. [PMID: 38838442 DOI: 10.1016/j.neurobiolaging.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/01/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
Cerebrospinal fluid total-tau (t-tau) and neurofilament light chain (NfL) are biomarkers of neurodegeneration and are increased in Alzheimer's disease (AD). In order to adjust for age-related increases in t-tau and NfL, cross-sectional age-adjusted norms were developed based on amyloid negative cognitively normal (CN) adults aged 41-78 years (CN, n = 137). The age-adjusted norms for t-tau and NfL did not improve receiver operating curve based diagnostic accuracies in individuals with mild cognitive impairment (MCI) due to AD (AD-MCI, n = 144). Furthermore, while NfL was correlated with higher age in AD-MCI, no significant correlation was found for t-tau. The cox proportional hazard models, applied in 429 participants with baseline t-tau and NfL, showed higher hazard ratio of progression to MCI or dementia without age-adjustments (HR = 3.39 for t-tau and HR = 3.17 for NfL), as compared to using our norms (HR = 2.29 for t-tau and HR = 1.89 for NfL). Our results indicate that utilizing normative reference data could obscure significant age-related increases in these markers associated with neurodegeneration and AD leading to a potential loss of overall diagnostic accuracy.
Collapse
Affiliation(s)
- Stephanie Lindgård Knudtzon
- Department of Neurology, University Hospital of North Norway, Tromsø, Norway; Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway.
| | - Kaja Nordengen
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gøril Rolfseng Grøntvedt
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, University Hospital of Trondheim, Trondheim, Norway
| | - Jonas Jarholm
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingvild Vøllo Eliassen
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Per Selnes
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
| | - Lene Pålhaugen
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jacob Espenes
- Department of Neurology, University Hospital of North Norway, Tromsø, Norway; Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Berglind Gísladóttir
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway; Clinical Molecular Biology (EpiGen), Medical Division, Akershus University Hospital and University of Oslo, Oslo, Norway
| | - Knut Waterloo
- Department of Neurology, University Hospital of North Norway, Tromsø, Norway; Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Tormod Fladby
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Bjørn-Eivind Kirsebom
- Department of Neurology, University Hospital of North Norway, Tromsø, Norway; Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
5
|
Al-Ezzi A, Arechavala RJ, Butler R, Nolty A, Kang JJ, Shimojo S, Wu DA, Fonteh AN, Kleinman MT, Kloner RA, Arakaki X. Disrupted brain functional connectivity as early signature in cognitively healthy individuals with pathological CSF amyloid/tau. Commun Biol 2024; 7:1037. [PMID: 39179782 PMCID: PMC11344156 DOI: 10.1038/s42003-024-06673-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/01/2024] [Indexed: 08/26/2024] Open
Abstract
Alterations in functional connectivity (FC) have been observed in individuals with Alzheimer's disease (AD) with elevated amyloid (Aβ) and tau. However, it is not yet known whether directed FC is already influenced by Aβ and tau load in cognitively healthy (CH) individuals. A 21-channel electroencephalogram (EEG) was used from 46 CHs classified based on cerebrospinal fluid (CSF) Aβ tau ratio: pathological (CH-PAT) or normal (CH-NAT). Directed FC was estimated with Partial Directed Coherence in frontal, temporal, parietal, central, and occipital regions. We also examined the correlations between directed FC and various functional metrics, including neuropsychology, cognitive reserve, MRI volumetrics, and heart rate variability between both groups. Compared to CH-NATs, the CH-PATs showed decreased FC from the temporal regions, indicating a loss of relative functional importance of the temporal regions. In addition, frontal regions showed enhanced FC in the CH-PATs compared to CH-NATs, suggesting neural compensation for the damage caused by the pathology. Moreover, CH-PATs showed greater FC in the frontal and occipital regions than CH-NATs. Our findings provide a useful and non-invasive method for EEG-based analysis to identify alterations in brain connectivity in CHs with a pathological versus normal CSF Aβ/tau.
Collapse
Affiliation(s)
- Abdulhakim Al-Ezzi
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, USA.
| | - Rebecca J Arechavala
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, CA, USA
| | - Ryan Butler
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Anne Nolty
- Fuller Theological Seminary, Pasadena, CA, USA
| | | | - Shinsuke Shimojo
- The Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Daw-An Wu
- The Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Alfred N Fonteh
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Michael T Kleinman
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, CA, USA
| | - Robert A Kloner
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, USA
- Department of Cardiovascular Research, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Xianghong Arakaki
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, USA.
| |
Collapse
|
6
|
Valencia-Olvera AC, Maldonado Weng J, Christensen A, LaDu MJ, Pike CJ. Role of estrogen in women's Alzheimer's disease risk as modified by APOE. J Neuroendocrinol 2023; 35:e13209. [PMID: 36420620 PMCID: PMC10049970 DOI: 10.1111/jne.13209] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is characterized by numerous sexual dimorphisms that impact the development, progression, and probably the strategies to prevent and treat the most common form of dementia. In this review, we consider this topic from a female perspective with a specific focus on how women's vulnerability to the disease is affected by the individual and interactive effects of estrogens and apolipoprotein E (APOE) genotype. Importantly, APOE appears to modulate systemic and neural outcomes of both menopause and estrogen-based hormone therapy. In the brain, dementia risk is greater in APOE4 carriers, and the impacts of hormone therapy on cognitive decline and dementia risk vary according to both outcome measure and APOE genotype. Beyond the CNS, estrogen and APOE genotype affect vulnerability to menopause-associated bone loss, dyslipidemia and cardiovascular disease risk. An emerging concept that may link these relationships is the possibility that the effects of APOE in women interact with estrogen status by mechanisms that may include modulation of estrogen responsiveness. This review highlights the need to consider the key AD risk factors of advancing age in a sex-specific manner to optimize development of therapeutic approaches for AD, a view aligned with the principle of personalized medicine.
Collapse
Affiliation(s)
- AC Valencia-Olvera
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - J Maldonado Weng
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - A Christensen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089 USA
| | - MJ LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - CJ Pike
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089 USA
| |
Collapse
|
7
|
Oyeleke MB, Owoyele BV. Saponins and flavonoids from Bacopa floribunda plant extract exhibit antioxidant and anti-inflammatory effects on amyloid beta 1-42-induced Alzheimer's disease in BALB/c mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 288:114997. [PMID: 35033624 DOI: 10.1016/j.jep.2022.114997] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/30/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bacopa floribunda (BF), a locally available plant has been employed traditionally as memory enhancer in Southwestern, Nigeria. It has been utilized in traditional and Ayurvedic medicine as brain tonic for enhancing memory, anti-aging and forestalling series of psychological disorders. However, there is a dearth of scientific information on the mechanism(s) of action of important phytochemicals from BF extract on dementia. AIM OF THE STUDY Alzheimer's disease, the commonest form of dementia has been postulated to triple by 2050 as a result of increase in life expectancy. This study therefore assessed and compared the possible mechanism(s) of action of flavonoids and saponins from BF on Amyloid beta (Aβ1-42)-induced dementia in male BALB/c mice. MATERIALS AND METHODS Eighty (80) healthy BALB/c mice divided into 10 groups (n = 8) were given a single bilateral ICV injection of Aβ1-42 or normal saline. Graded doses of Saponins and flavonoids (50, 100 and 200 mg/kg) were used as treatment for 21 days. Hippocampal homogenates were assayed for the levels of antioxidants, oxidative stress and neuroinflammatory markers. In vitro antioxidant activity of flavonoids and saponins were equally assessed using standard procedures. The extent of microglial activation was quantified through immunohistochemistry procedure. RESULTS Aβ1-42 successfully caused a spike in hippocampal levels of MDA, IL1β, TNF-α including MPO levels and invariably decreased antioxidant activities. Likewise an increase in reactive microglia (microgliosis) was observed. However, crude saponins and flavonoids from BF were able to suppress microgliosis, oxidative stress and neuroinflammation induced by Aβ1- 42 and were observed to be more effective at higher doses of saponins (100 mg/kg and 200 mg/kg) and flavonoid (100 mg/kg). CONCLUSIONS Phytochemicals from BF efficiently exhibited dose dependent alleviation of some symptoms associated with Alzheimer's disease.
Collapse
Affiliation(s)
- Mosunmola Busayo Oyeleke
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine and Health Sciences, Afe Babalola University, P.M.B, 5454, Ado-Ekiti, Nigeria; Department of Physiology, Neuroscience and Inflammation Unit, Faculty of Basic Medical Sciences, University of Ilorin, P.M.B, 1515, Ilorin, Nigeria.
| | - Bamidele Victor Owoyele
- Department of Physiology, Neuroscience and Inflammation Unit, Faculty of Basic Medical Sciences, University of Ilorin, P.M.B, 1515, Ilorin, Nigeria.
| |
Collapse
|
8
|
Libowitz MR, Wei K, Tran T, Chu K, Moncrieffe K, Harrington MG, King K. Regional brain volumes relate to Alzheimer's disease cerebrospinal fluid biomarkers and neuropsychometry: A cross-sectional, observational study. PLoS One 2021; 16:e0254332. [PMID: 34292973 PMCID: PMC8297871 DOI: 10.1371/journal.pone.0254332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/27/2021] [Indexed: 11/18/2022] Open
Abstract
We hypothesized that automated assessment of brain volumes on MRI can predict presence of cerebrospinal fluid abnormal ß-amyloid42 and Tau protein levels and thus serve as a useful screening test for possible Alzheimer's disease. 113 participants ranging from cognitively healthy to Alzheimer's disease underwent MRI exams to obtain measurements of hippocampus, prefrontal cortex, precuneus, parietal cortex, and occipital lobe volumes. A non-exclusive subset (n = 107) consented to lumbar punctures to obtain cerebrospinal fluid for ß-amyloid42 and Tau protein assessment including cognitively health (n = 75), mild cognitively impaired (n = 22), and Alzheimer's disease (n = 10). After adjustment for false discovery rate, ß-amyloid42 was significantly associated with volumes in the hippocampus (p = 0.043), prefrontal cortex (p = 0.010), precuneus (p = 0.024), and the posterior cingulate (p = 0.002). No association between Tau levels and regional brain volume survived multiple test correction. Secondary analysis was performed to determine associations between MRI brain volumes and CSF protein levels to neuropsychological impairment. A non-exclusive subset (n = 96) including cognitively healthy (n = 72), mild cognitively impaired (n = 21), and Alzheimer's disease (n = 3) participants underwent Stroop Interference and Boston Naming neuropsychological testing. A higher score on the Boston Naming Test was optimally predicted in a selective regression model by greater hippocampus volume (p = 0.002), a higher ratio of ß-amyloid42 to Tau protein levels (p < 0.001), greater posterior cingulate volume (p = 0.0193), age (p = 0.0271), and a higher education level (p = 0.002). A better performance on the Stroop Interference Test was optimally predicted by greater hippocampus volume (p = 0.0003) and a higher education level (p < 0.001). Lastly, impaired cognitive status (mild cognitive impairment and Alzheimer's Disease) was optimally predicted in a selective regression model by a worse performance on the Stroop Interference Test (p < 0.001), a worse performance on the Boston Naming Test (p < 0.001), along with lower prefrontal cortex volume (p = 0.002) and lower hippocampus volume (p = 0.007).
Collapse
Affiliation(s)
- Mark R. Libowitz
- Magnetic Resonance Program, Huntington Medical Research Institutes, Pasadena, California, United States of America
- * E-mail:
| | - Ke Wei
- Magnetic Resonance Program, Huntington Medical Research Institutes, Pasadena, California, United States of America
| | - Thao Tran
- Magnetic Resonance Program, Huntington Medical Research Institutes, Pasadena, California, United States of America
| | - Karen Chu
- Magnetic Resonance Program, Huntington Medical Research Institutes, Pasadena, California, United States of America
| | - Kristina Moncrieffe
- Fuller Graduate School of Psychology, Pasadena, California, United States of America
| | - Michael G. Harrington
- Molecular Neurology Program, Huntington Medical Research Institutes, Pasadena, California, United States of America
| | - Kevin King
- Barrow Neurological Institute, Phoenix, Arizona, United States of America
| |
Collapse
|
9
|
Wisse LEM, Ravikumar S, Ittyerah R, Lim S, Lane J, Bedard ML, Xie L, Das SR, Schuck T, Grossman M, Lee EB, Tisdall MD, Prabhakaran K, Detre JA, Mizsei G, Trojanowski JQ, Artacho-Pérula E, de Iñiguez de Onzono Martin MM, M Arroyo-Jiménez M, Muñoz Lopez M, Molina Romero FJ, P Marcos Rabal M, Cebada Sánchez S, Delgado González JC, de la Rosa Prieto C, Córcoles Parada M, Wolk DA, Irwin DJ, Insausti R, Yushkevich PA. Downstream effects of polypathology on neurodegeneration of medial temporal lobe subregions. Acta Neuropathol Commun 2021; 9:128. [PMID: 34289895 PMCID: PMC8293481 DOI: 10.1186/s40478-021-01225-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/06/2021] [Indexed: 12/14/2022] Open
Abstract
The medial temporal lobe (MTL) is a nidus for neurodegenerative pathologies and therefore an important region in which to study polypathology. We investigated associations between neurodegenerative pathologies and the thickness of different MTL subregions measured using high-resolution post-mortem MRI. Tau, TAR DNA-binding protein 43 (TDP-43), amyloid-β and α-synuclein pathology were rated on a scale of 0 (absent)-3 (severe) in the hippocampus and entorhinal cortex (ERC) of 58 individuals with and without neurodegenerative diseases (median age 75.0 years, 60.3% male). Thickness measurements in ERC, Brodmann Area (BA) 35 and 36, parahippocampal cortex, subiculum, cornu ammonis (CA)1 and the stratum radiatum lacunosum moleculare (SRLM) were derived from 0.2 × 0.2 × 0.2 mm3 post-mortem MRI scans of excised MTL specimens from the contralateral hemisphere using a semi-automated approach. Spearman's rank correlations were performed between neurodegenerative pathologies and thickness, correcting for age, sex and hemisphere, including all four proteinopathies in the model. We found significant associations of (1) TDP-43 with thickness in all subregions (r = - 0.27 to r = - 0.46), and (2) tau with BA35 (r = - 0.31) and SRLM thickness (r = - 0.33). In amyloid-β and TDP-43 negative cases, we found strong significant associations of tau with ERC (r = - 0.40), BA35 (r = - 0.55), subiculum (r = - 0.42) and CA1 thickness (r = - 0.47). This unique dataset shows widespread MTL atrophy in relation to TDP-43 pathology and atrophy in regions affected early in Braak stageing and tau pathology. Moreover, the strong association of tau with thickness in early Braak regions in the absence of amyloid-β suggests a role of Primary Age-Related Tauopathy in neurodegeneration.
Collapse
Affiliation(s)
- L E M Wisse
- Department of Diagnostic Radiology, Lund University, Klinikgatan 13b, Lund, Sweden.
- Department of Radiology, University of Pennsylvania, Philadelphia, USA.
| | - S Ravikumar
- Department of Radiology, University of Pennsylvania, Philadelphia, USA
| | - R Ittyerah
- Department of Radiology, University of Pennsylvania, Philadelphia, USA
| | - S Lim
- Department of Radiology, University of Pennsylvania, Philadelphia, USA
| | - J Lane
- Department of Neurology, University of Pennsylvania, Philadelphia, USA
| | - M L Bedard
- Department of Pharmacology, University of North Carolina At Chapel Hill, Chapel Hill, USA
| | - L Xie
- Department of Radiology, University of Pennsylvania, Philadelphia, USA
| | - S R Das
- Department of Neurology, University of Pennsylvania, Philadelphia, USA
| | - T Schuck
- Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, USA
| | - M Grossman
- Department of Neurology, University of Pennsylvania, Philadelphia, USA
| | - E B Lee
- Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, USA
| | - M D Tisdall
- Department of Radiology, University of Pennsylvania, Philadelphia, USA
| | - K Prabhakaran
- Department of Neurology, University of Pennsylvania, Philadelphia, USA
| | - J A Detre
- Department of Neurology, University of Pennsylvania, Philadelphia, USA
| | - G Mizsei
- Department of Radiology, University of Pennsylvania, Philadelphia, USA
| | - J Q Trojanowski
- Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, USA
| | - E Artacho-Pérula
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, University of Castilla La Mancha, Albacete, Spain
| | | | - M M Arroyo-Jiménez
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, University of Castilla La Mancha, Albacete, Spain
| | - M Muñoz Lopez
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, University of Castilla La Mancha, Albacete, Spain
| | - F J Molina Romero
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, University of Castilla La Mancha, Albacete, Spain
| | - M P Marcos Rabal
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, University of Castilla La Mancha, Albacete, Spain
| | - S Cebada Sánchez
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, University of Castilla La Mancha, Albacete, Spain
| | - J C Delgado González
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, University of Castilla La Mancha, Albacete, Spain
| | - C de la Rosa Prieto
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, University of Castilla La Mancha, Albacete, Spain
| | - M Córcoles Parada
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, University of Castilla La Mancha, Albacete, Spain
| | - D A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, USA
| | - D J Irwin
- Department of Neurology, University of Pennsylvania, Philadelphia, USA
- Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, USA
| | - R Insausti
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, University of Castilla La Mancha, Albacete, Spain
| | - P A Yushkevich
- Department of Radiology, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
10
|
Hansson O, Cullen N, Zetterberg H, the Alzheimer’s Disease Neuroimaging Initiative, Blennow K, Mattsson‐Carlgren N. Plasma phosphorylated tau181 and neurodegeneration in Alzheimer's disease. Ann Clin Transl Neurol 2021; 8:259-265. [PMID: 33249783 PMCID: PMC7818141 DOI: 10.1002/acn3.51253] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/09/2020] [Accepted: 10/20/2020] [Indexed: 01/25/2023] Open
Abstract
We examined if plasma phosphorylated tau is associated with neurodegeneration in Alzheimer's disease. We investigated 372 cognitively unimpaired participants, 554 mild cognitive impairment patients, and 141 Alzheimer's disease dementia patients. Tau phosphorylated at threonine 181, regional cortical thickness (using magnetic resonance imaging) and hypometabolism (using fluorodeoxyglucose positron emission tomography) were measured longitudinally. High plasma tau was associated with hypometabolism and cortical atrophy at baseline and over time, and longitudinally increased tau was associated with accelerated atrophy, but these associations were only observed in Aβ-positive participants. Plasma phosphorylated tau may identify and track processes linked to neurodegeneration in Alzheimer's disease.
Collapse
Affiliation(s)
- Oskar Hansson
- Memory ClinicSkåne University HospitalLundSweden
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityMalmöSweden
| | - Nicholas Cullen
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityMalmöSweden
- Wallenberg Centre for Molecular MedicineLund UniversityLundSweden
| | - Henrik Zetterberg
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUnited Kingdom
- UK Dementia Research Institute at UCLLondonUnited Kingdom
| | | | - Kaj Blennow
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Niklas Mattsson‐Carlgren
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityMalmöSweden
- Wallenberg Centre for Molecular MedicineLund UniversityLundSweden
- Department of NeurologySkåne University HospitalLundSweden
| |
Collapse
|
11
|
Li K, Wang S, Luo X, Zeng Q, Jiaerken Y, Xu X, Wang C, Liu X, Li Z, Zhao S, Zhang T, Fu Y, Chen Y, Liu Z, Zhou J, Huang P, Zhang M. Progressive Memory Circuit Impairments along with Alzheimer's Disease Neuropathology Spread: Evidence from in vivo Neuroimaging. Cereb Cortex 2020; 30:5863-5873. [PMID: 32537637 DOI: 10.1093/cercor/bhaa162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/04/2020] [Accepted: 05/21/2020] [Indexed: 01/04/2023] Open
Abstract
During the progression of Alzheimer's disease (AD), neuropathology may propagate transneuronally, cause disruption in memory circuit, and lead to memory impairment. However, there is a lack of in vivo evidence regarding this process. Thus, we aim to simulate and observe the progression of neuropathology in AD continuum. We included cognitively normal (CN), mild cognitive impairments (MCI), and AD subjects, and further classified them using the A/T/N scheme (Group 0: CN, A - T-; Group 1: CN, A + T-; Group 2: CN, A + T+; Group 3: MCI, A + T+; Group 4: AD, A + T+). We investigated alterations of three core memory circuit structures: hippocampus (HP) subfields volume, cingulum-angular bundles (CAB) fiber integrity, and precuneus cortex volume. HP subfields volume showed the trend of initially increased and then decreased (starting from Group 2), while precuneus volume decreased in Groups 3 and 4. The CAB integrity degenerated in Groups 3 and 4 and aggravated with higher disease stages. Further, memory circuit impairments were correlated with neuropathology biomarkers and memory performance. Conclusively, our results demonstrated a pattern of memory circuit impairments along with AD progression: starting from the HP, then propagating to the downstream projection fiber tract and cortex. These findings support the tau propagation theory to some extent.
Collapse
Affiliation(s)
- Kaicheng Li
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Shuyue Wang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xiao Luo
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Qingze Zeng
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yerfan Jiaerken
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xiaopei Xu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Chao Wang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xiaocao Liu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zheyu Li
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Shuai Zhao
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Tianyi Zhang
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yanv Fu
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yanxing Chen
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhirong Liu
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jiong Zhou
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
12
|
Wang L, Heywood A, Stocks J, Bae J, Ma D, Popuri K, Toga AW, Kantarci K, Younes L, Mackenzie IR, Zhang F, Beg MF, Rosen H, Alzheimer’s Disease Neuroimaging Initiative. Grant Report on PREDICT-ADFTD: Multimodal Imaging Prediction of AD/FTD and Differential Diagnosis. JOURNAL OF PSYCHIATRY AND BRAIN SCIENCE 2019; 4:e190017. [PMID: 31754634 PMCID: PMC6868780 DOI: 10.20900/jpbs.20190017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We report on the ongoing project "PREDICT-ADFTD: Multimodal Imaging Prediction of AD/FTD and Differential Diagnosis" describing completed and future work supported by this grant. This project is a multi-site, multi-study collaboration effort with research spanning seven sites across the US and Canada. The overall goal of the project is to study neurodegeneration within Alzheimer's Disease, Frontotemporal Dementia, and related neurodegenerative disorders, using a variety of brain imaging and computational techniques to develop methods for the early and accurate prediction of disease and its course. The overarching goal of the project is to develop the earliest and most accurate biomarker that can differentiate clinical diagnoses to inform clinical trials and patient care. In its third year, this project has already completed several projects to achieve this goal, focusing on (1) structural MRI (2) machine learning and (3) FDG-PET and multimodal imaging. Studies utilizing structural MRI have identified key features of underlying pathology by studying hippocampal deformation that is unique to clinical diagnosis and also post-mortem confirmed neuropathology. Several machine learning experiments have shown high classification accuracy in the prediction of disease based on Convolutional Neural Networks utilizing MRI images as input. In addition, we have also achieved high accuracy in predicting conversion to DAT up to five years in the future. Further, we evaluated multimodal models that combine structural and FDG-PET imaging, in order to compare the predictive power of multimodal to unimodal models. Studies utilizing FDG-PET have shown significant predictive ability in the prediction and progression of disease.
Collapse
Affiliation(s)
- Lei Wang
- Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA
| | - Ashley Heywood
- Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA
| | - Jane Stocks
- Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA
| | - Jinhyeong Bae
- Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA
| | - Da Ma
- School of Engineering Science, Simon Fraser University, Burnaby, V6A1S6 BC, Canada
| | - Karteek Popuri
- School of Engineering Science, Simon Fraser University, Burnaby, V6A1S6 BC, Canada
| | - Arthur W. Toga
- Keck School of Medicine of University of Southern California, Los Angeles, 90033 CA, USA
| | - Kejal Kantarci
- Departments of Neurology and Radiology, Mayo Clinic, Rochester, 55905 MN, USA
| | - Laurent Younes
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, 21218 MD, USA
| | - Ian R. Mackenzie
- Department of Pathology and Lab Medicine, University of British Columbia, Vancouver, B6T1Z4 BC, Canada
| | - Fengqing Zhang
- Department of Psychology, Drexel University, Philadelphia, 19104 PA, USA
| | - Mirza Faisal Beg
- School of Engineering Science, Simon Fraser University, Burnaby, V6A1S6 BC, Canada
| | - Howard Rosen
- Department of Neurology, University of California, San Francisco, 94143 CA, USA
| | - Alzheimer’s Disease Neuroimaging Initiative
- Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu/). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNIAcknowledgement_List.pdf
| |
Collapse
|
13
|
Zetterberg H. Review: Tau in biofluids - relation to pathology, imaging and clinical features. Neuropathol Appl Neurobiol 2018; 43:194-199. [PMID: 28054371 DOI: 10.1111/nan.12378] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/23/2016] [Accepted: 01/05/2017] [Indexed: 11/30/2022]
Abstract
Tau is a microtubule-binding protein that is important for the stability of neuronal axons. It is normally expressed within neurons and is also secreted into the brain interstitial fluid that communicates freely with cerebrospinal fluid (CSF) and, in a more restricted manner, blood via the glymphatic clearance system of the brain. In Alzheimer's disease (AD), neuroaxonal degeneration results in increased release of tau from neurons. Furthermore, tau is truncated and phosphorylated, which leads to aggregation of tau in neurofibrillary tangles of the proximal axoplasm. Neuroaxonal degeneration and tangle formation are reflected by increased concentrations of total tau (T-tau, measured using assays that detect most forms of tau) and phospho-tau (P-tau, measured using assays with antibodies specific to phosphorylated forms of tau). In AD CSF, both T-tau and P-tau concentrations are increased. In stroke and other CNS disorders with neuroaxonal injury but without tangles, T-tau is selectively increased, whereas P-tau concentration often stays normal. In tauopathies (diseases with both neurodegeneration and neurofibrillary tangles) other than AD, CSF T-tau and P-tau concentrations are typically unaltered, which is a puzzling result that warrants further investigation. In the current review, I discuss the association of T-tau and P-tau concentrations in body fluids with neuropathological changes, imaging findings and clinical features in AD and other CNS diseases.
Collapse
Affiliation(s)
- H Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| |
Collapse
|
14
|
Tardif CL, Devenyi GA, Amaral RSC, Pelleieux S, Poirier J, Rosa‐Neto P, Breitner J, Chakravarty MM, for the PREVENT‐AD Research Group. Regionally specific changes in the hippocampal circuitry accompany progression of cerebrospinal fluid biomarkers in preclinical Alzheimer's disease. Hum Brain Mapp 2018; 39:971-984. [PMID: 29164798 PMCID: PMC6866392 DOI: 10.1002/hbm.23897] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 01/18/2023] Open
Abstract
Neuropathological and in vivo brain imaging studies agree that the cornu ammonis 1 and subiculum subfields of the hippocampus are most vulnerable to atrophy in the prodromal phases of Alzheimer's disease (AD). However, there has been limited investigation of the structural integrity of the components of the hippocampal circuit, including subfields and extra-hippocampal white matter structure, in relation to the progression of well-accepted cerebrospinal fluid (CSF) biomarkers of AD, amyloid-β 1-42 (Aβ) and total-tau (tau). We investigated these relationships in 88 aging asymptomatic individuals with a parental or multiple-sibling familial history of AD. Apolipoprotein (APOE) ɛ4 risk allele carriers were identified, and all participants underwent cognitive testing, structural magnetic resonance imaging, and lumbar puncture for CSF assays of tau, phosphorylated-tau (p-tau) and Aβ. Individuals with a reduction in CSF Aβ levels (an indicator of amyloid accretion into neuritic plaques) as well as evident tau pathology (believed to be linked to neurodegeneration) exhibited lower subiculum volume, lower fornix microstructural integrity, and a trend towards lower cognitive score than individuals who showed only reduction in CSF Aβ. In contrast, persons with normal levels of tau showed an increase in structural MR markers in relation to declining levels of CSF Aβ. These results suggest that hippocampal subfield volume and extra-hippocampal white matter microstructure demonstrate a complex pattern where an initial volume increase is followed by decline among asymptomatic individuals who, in some instances, may be a decade or more away from onset of cognitive or functional impairment.
Collapse
Affiliation(s)
- Christine L. Tardif
- Cerebral Imaging Centre, Douglas Mental Health University InstituteVerdunQuebecCanada
- Montreal Neurological InstituteMontrealQuebecCanada
- Department of Biomedical EngineeringMcGill UniversityMontrealQuebecCanada
| | - Gabriel A. Devenyi
- Cerebral Imaging Centre, Douglas Mental Health University InstituteVerdunQuebecCanada
- Department of PsychiatryMcGill UniversityMontrealQuebecCanada
| | - Robert S. C. Amaral
- Cerebral Imaging Centre, Douglas Mental Health University InstituteVerdunQuebecCanada
| | - Sandra Pelleieux
- Centre for the Studies on the Prevention of AD, Douglas Mental Health University InstituteVerdunQuebecCanada
| | - Judes Poirier
- Centre for the Studies on the Prevention of AD, Douglas Mental Health University InstituteVerdunQuebecCanada
| | - Pedro Rosa‐Neto
- Montreal Neurological InstituteMontrealQuebecCanada
- McGill University, Research Centre for Studies in AgingMontreal QuebecCanada
| | | | - M. Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University InstituteVerdunQuebecCanada
- Department of Biomedical EngineeringMcGill UniversityMontrealQuebecCanada
- Department of PsychiatryMcGill UniversityMontrealQuebecCanada
| | | |
Collapse
|
15
|
Zetterberg H, Rohrer JD, Schott JM. Cerebrospinal fluid in the dementias. HANDBOOK OF CLINICAL NEUROLOGY 2018; 146:85-97. [DOI: 10.1016/b978-0-12-804279-3.00006-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
|
17
|
Ritchie C, Smailagic N, Noel‐Storr AH, Ukoumunne O, Ladds EC, Martin S, Cochrane Dementia and Cognitive Improvement Group. CSF tau and the CSF tau/ABeta ratio for the diagnosis of Alzheimer's disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev 2017; 3:CD010803. [PMID: 28328043 PMCID: PMC6464349 DOI: 10.1002/14651858.cd010803.pub2] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Research suggests that measurable change in cerebrospinal fluid (CSF) biomarkers occurs years in advance of the onset of clinical symptoms (Beckett 2010). In this review, we aimed to assess the ability of CSF tau biomarkers (t-tau and p-tau) and the CSF tau (t-tau or p-tau)/ABeta ratio to enable the detection of Alzheimer's disease pathology in patients with mild cognitive impairment (MCI). These biomarkers have been proposed as important in new criteria for Alzheimer's disease dementia that incorporate biomarker abnormalities. OBJECTIVES To determine the diagnostic accuracy of 1) CSF t-tau, 2) CSF p-tau, 3) the CSF t-tau/ABeta ratio and 4) the CSF p-tau/ABeta ratio index tests for detecting people with MCI at baseline who would clinically convert to Alzheimer's disease dementia or other forms of dementia at follow-up. SEARCH METHODS The most recent search for this review was performed in January 2013. We searched MEDLINE (OvidSP), Embase (OvidSP), BIOSIS Previews (Thomson Reuters Web of Science), Web of Science Core Collection, including Conference Proceedings Citation Index (Thomson Reuters Web of Science), PsycINFO (OvidSP), and LILACS (BIREME). We searched specialized sources of diagnostic test accuracy studies and reviews. We checked reference lists of relevant studies and reviews for additional studies. We contacted researchers for possible relevant but unpublished data. We did not apply any language or data restriction to the electronic searches. We did not use any methodological filters as a method to restrict the search overall. SELECTION CRITERIA We selected those studies that had prospectively well-defined cohorts with any accepted definition of MCI and with CSF t-tau or p-tau and CSF tau (t-tau or p-tau)/ABeta ratio values, documented at or around the time the MCI diagnosis was made. We also included studies which looked at data from those cohorts retrospectively, and which contained sufficient data to construct two by two tables expressing those biomarker results by disease status. Moreover, studies were only selected if they applied a reference standard for Alzheimer's disease dementia diagnosis, for example, the NINCDS-ADRDA or Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) criteria. DATA COLLECTION AND ANALYSIS We screened all titles generated by the electronic database searches. Two review authors independently assessed the abstracts of all potentially relevant studies, and the full papers for eligibility. Two independent assessors performed data extraction and quality assessment. Where data allowed, we derived estimates of sensitivity at fixed values of specificity from the model we fitted to produce the summary receiver operating characteristic (ROC) curve. MAIN RESULTS In total, 1282 participants with MCI at baseline were identified in the 15 included studies of which 1172 had analysable data; 430 participants converted to Alzheimer's disease dementia and 130 participants to other forms of dementia. Follow-up ranged from less than one year to over four years for some participants, but in the majority of studies was in the range one to three years. Conversion to Alzheimer's disease dementia The accuracy of the CSF t-tau was evaluated in seven studies (291 cases and 418 non-cases).The sensitivity values ranged from 51% to 90% while the specificity values ranged from 48% to 88%. At the median specificity of 72%, the estimated sensitivity was 75% (95% CI 67 to 85), the positive likelihood ratio was 2.72 (95% CI 2.43 to 3.04), and the negative likelihood ratio was 0.32 (95% CI 0.22 to 0.47).Six studies (164 cases and 328 non-cases) evaluated the accuracy of the CSF p-tau. The sensitivities were between 40% and 100% while the specificities were between 22% and 86%. At the median specificity of 47.5%, the estimated sensitivity was 81% (95% CI: 64 to 91), the positive likelihood ratio was 1.55 (CI 1.31 to 1.84), and the negative likelihood ratio was 0.39 (CI: 0.19 to 0.82).Five studies (140 cases and 293 non-cases) evaluated the accuracy of the CSF p-tau/ABeta ratio. The sensitivities were between 80% and 96% while the specificities were between 33% and 95%. We did not conduct a meta-analysis because the studies were few and small. Only one study reported the accuracy of CSF t-tau/ABeta ratio.Our findings are based on studies with poor reporting. A significant number of studies had unclear risk of bias for the reference standard, participant selection and flow and timing domains. According to the assessment of index test domain, eight of 15 studies were of poor methodological quality.The accuracy of these CSF biomarkers for 'other dementias' had not been investigated in the included primary studies. Investigation of heterogeneity The main sources of heterogeneity were thought likely to be reference standards used for the target disorders, sources of recruitment, participant sampling, index test methodology and aspects of study quality (particularly, inadequate blinding).We were not able to formally assess the effect of each potential source of heterogeneity as planned, due to the small number of studies available to be included. AUTHORS' CONCLUSIONS The insufficiency and heterogeneity of research to date primarily leads to a state of uncertainty regarding the value of CSF testing of t-tau, p-tau or p-tau/ABeta ratio for the diagnosis of Alzheimer's disease in current clinical practice. Particular attention should be paid to the risk of misdiagnosis and overdiagnosis of dementia (and therefore over-treatment) in clinical practice. These tests, like other biomarker tests which have been subject to Cochrane DTA reviews, appear to have better sensitivity than specificity and therefore might have greater utility in ruling out Alzheimer's disease as the aetiology to the individual's evident cognitive impairment, as opposed to ruling it in. The heterogeneity observed in the few studies awaiting classification suggests our initial summary will remain valid. However, these tests may have limited clinical value until uncertainties have been addressed. Future studies with more uniformed approaches to thresholds, analysis and study conduct may provide a more homogenous estimate than the one that has been available from the included studies we have identified.
Collapse
Affiliation(s)
- Craig Ritchie
- University of EdinburghCentre for Clinical Brain SciencesEdinburghUK
| | - Nadja Smailagic
- University of CambridgeInstitute of Public HealthForvie SiteRobinson WayCambridgeUKCB2 0SR
| | - Anna H Noel‐Storr
- University of OxfordRadcliffe Department of MedicineRoom 4401c (4th Floor)John Radcliffe Hospital, HeadingtonOxfordUKOX3 9DU
| | - Obioha Ukoumunne
- University of Exeter Medical School, University of ExeterNIHR CLAHRC South West Peninsula (PenCLAHRC)Veysey BuildingSalmon Pool LaneExeterDevonUKEX2 4SG
| | - Emma C Ladds
- North Bristol NHS TrustSouthmead hospitalBristolUK
| | - Steven Martin
- University of CambridgeInstitute of Public HealthForvie SiteRobinson WayCambridgeUKCB2 0SR
| | | |
Collapse
|
18
|
Hu J, Hamidian H, Zhong Z, Hua J. Visualizing Shape Deformations with Variation of Geometric Spectrum. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2017; 23:721-730. [PMID: 27875186 DOI: 10.1109/tvcg.2016.2598790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This paper presents a novel approach based on spectral geometry to quantify and visualize non-isometric deformations of 3D surfaces by mapping two manifolds. The proposed method can determine multi-scale, non-isometric deformations through the variation of Laplace-Beltrami spectrum of two shapes. Given two triangle meshes, the spectra can be varied from one to another with a scale function defined on each vertex. The variation is expressed as a linear interpolation of eigenvalues of the two shapes. In each iteration step, a quadratic programming problem is constructed, based on our derived spectrum variation theorem and smoothness energy constraint, to compute the spectrum variation. The derivation of the scale function is the solution of such a problem. Therefore, the final scale function can be solved by integral of the derivation from each step, which, in turn, quantitatively describes non-isometric deformations between two shapes. To evaluate the method, we conduct extensive experiments on synthetic and real data. We employ real epilepsy patient imaging data to quantify the shape variation between the left and right hippocampi in epileptic brains. In addition, we use longitudinal Alzheimer data to compare the shape deformation of diseased and healthy hippocampus. In order to show the accuracy and effectiveness of the proposed method, we also compare it with spatial registration-based methods, e.g., non-rigid Iterative Closest Point (ICP) and voxel-based method. These experiments demonstrate the advantages of our method.
Collapse
|
19
|
Hippocampal subfield atrophy in relation to cerebrospinal fluid biomarkers and cognition in early Parkinson's disease: a cross-sectional study. NPJ PARKINSONS DISEASE 2016; 2:15030. [PMID: 28725691 PMCID: PMC5516586 DOI: 10.1038/npjparkd.2015.30] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/23/2015] [Accepted: 12/10/2015] [Indexed: 11/14/2022]
Abstract
Cognition is often affected early in Parkinson’s disease (PD). Lewy body and amyloid β (Aβ) pathology and cortical atrophy may be involved. The aim of this study was to examine whether medial temporal lobe structural changes may be linked to cerebrospinal fluid (CSF) biomarker levels and cognition in early PD. PD patients had smaller volumes of total hippocampus, presubiculum, subiculum, CA2–3, CA4-DG, and hippocampal tail compared with normal controls (NCs). In the PD group, lower CSF Aβ38 and 42 were significant predictors for thinner perirhinal cortex. Lower Aβ42 and smaller presubiculum and subiculum predicted poorer verbal learning and delayed verbal recall. Smaller total hippocampus, presubiculum and subiculum predicted poorer visuospatial copying. Lower Aβ38 and 40 and thinner perirhinal cortex predicted poorer delayed visual reproduction. In conclusion, smaller volumes of hippocampal subfields and subhippocampal cortex thickness linked to lower CSF Aβ levels may contribute to cognitive impairment in early PD. Thirty-three early PD patients (13 without, 5 with subjective, and 15 with mild cognitive impairment) and NC had 3 T magnetic resonance imaging (MRI) scans. The MRI scans were post processed for volumes of hippocampal subfields and entorhinal and perirhinal cortical thickness. Lumbar puncture for CSF biomarkers Aβ38, 40, 42, total tau, phosphorylated tau (Innogenetics), and total α-synuclein (Meso Scale Diagnostics) were performed. Multiple regression analyses were used for between-group comparisons of the MRI measurements in the NC and PD groups and for assessment of CSF biomarkers and neuropsychological tests in relation to morphometry in the PD group.
Collapse
|
20
|
Abstract
This report discusses the public health impact of Alzheimer’s disease (AD), including incidence and prevalence, mortality rates, costs of care and the overall effect on caregivers and society. It also examines the challenges encountered by health care providers when disclosing an AD diagnosis to patients and caregivers. An estimated 5.3 million Americans have AD; 5.1 million are age 65 years, and approximately 200,000 are age <65 years and have younger onset AD. By mid-century, the number of people living with AD in the United States is projected to grow by nearly 10 million, fueled in large part by the aging baby boom generation. Today, someone in the country develops AD every 67 seconds. By 2050, one new case of AD is expected to develop every 33 seconds, resulting in nearly 1 million new cases per year, and the estimated prevalence is expected to range from 11 million to 16 million. In 2013, official death certificates recorded 84,767 deaths from AD, making AD the sixth leading cause of death in the United States and the fifth leading cause of death in Americans age 65 years. Between 2000 and 2013, deaths resulting from heart disease, stroke and prostate cancer decreased 14%, 23% and 11%, respectively, whereas deaths from AD increased 71%. The actual number of deaths to which AD contributes (or deaths with AD) is likely much larger than the number of deaths from AD recorded on death certificates. In 2015, an estimated 700,000 Americans age 65 years will die with AD, and many of them will die from complications caused by AD. In 2014, more than 15 million family members and other unpaid caregivers provided an estimated 17.9 billion hours of care to people with AD and other dementias, a contribution valued at more than $217 billion. Average per-person Medicare payments for services to beneficiaries age 65 years with AD and other dementias are more than two and a half times as great as payments for all beneficiaries without these conditions, and Medicaid payments are 19 times as great. Total payments in 2015 for health care, long-term care and hospice services for people age 65 years with dementia are expected to be $226 billion. Among people with a diagnosis of AD or another dementia, fewer than half report having been told of the diagnosis by their health care provider. Though the benefits of a prompt, clear and accurate disclosure of an AD diagnosis are recognized by the medical profession, improvements to the disclosure process are needed. These improvements may require stronger support systems for health care providers and their patients.
Collapse
|
21
|
Abstract
This report discusses the public health impact of Alzheimer's disease (AD), including incidence and prevalence, mortality rates, costs of care, and overall effect on caregivers and society. It also examines the impact of AD on women compared with men. An estimated 5.2 million Americans have AD. Approximately 200,000 people younger than 65 years with AD comprise the younger onset AD population; 5 million are age 65 years or older. By mid-century, fueled in large part by the baby boom generation, the number of people living with AD in the United States is projected to grow by about 9 million. Today, someone in the country develops AD every 67 seconds. By 2050, one new case of AD is expected to develop every 33 seconds, or nearly a million new cases per year, and the total estimated prevalence is expected to be 13.8 million. In 2010, official death certificates recorded 83,494 deaths from AD, making AD the sixth leading cause of death in the United States and the fifth leading cause of death in Americans aged 65 years or older. Between 2000 and 2010, the proportion of deaths resulting from heart disease, stroke, and prostate cancer decreased 16%, 23%, and 8%, respectively, whereas the proportion resulting from AD increased 68%. The actual number of deaths to which AD contributes (or deaths with AD) is likely much larger than the number of deaths from AD recorded on death certificates. In 2014, an estimated 700,000 older Americans will die with AD, and many of them will die from complications caused by AD. In 2013, more than 15 million family members and other unpaid caregivers provided an estimated 17.7 billion hours of care to people with AD and other dementias, a contribution valued at more than $220 billion. Average per-person Medicare payments for services to beneficiaries aged 65 years and older with AD and other dementias are more than two and a half times as great as payments for all beneficiaries without these conditions, and Medicaid payments are 19 times as great. Total payments in 2014 for health care, long-term care, and hospice services for people aged 65 years and older with dementia are expected to be $214 billion. AD takes a stronger toll on women than men. More women than men develop the disease, and women are more likely than men to be informal caregivers for someone with AD or another dementia. As caregiving responsibilities become more time consuming and burdensome or extend for prolonged durations, women assume an even greater share of the caregiving burden. For every man who spends 21 to more than 60 hours per week as a caregiver, there are 2.1 women. For every man who lives with the care recipient and provides around-the-clock care, there are 2.5 women. In addition, for every man who has provided caregiving assistance for more than 5 years, there are 2.3 women.
Collapse
|
22
|
Zetterberg H, Lautner R, Skillbäck T, Rosén C, Shahim P, Mattsson N, Blennow K. CSF in Alzheimer's disease. Adv Clin Chem 2014; 65:143-72. [PMID: 25233613 DOI: 10.1016/b978-0-12-800141-7.00005-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) is a progressive brain amyloidosis that injures brain regions involved in memory consolidation and other cognitive functions. Neuropathologically, the disease is characterized by accumulation of a 42-amino acid protein called amyloid beta, and N-terminally truncated fragments thereof, in extracellular senile plaques together with intraneuronal inclusions of hyperphosphorylated tau protein in neurofibrillary tangles, and neuronal and axonal degeneration and loss. Clinical chemistry tests for these pathologies have been developed for use on cerebrospinal fluid samples. Here, we review what these markers have taught us on the disease process in AD and how they can be implemented in routine clinical chemistry. We also provide an update on new marker development and ongoing analytical standardization effort.
Collapse
|
23
|
Bertens D, Knol DL, Scheltens P, Visser PJ. Temporal evolution of biomarkers and cognitive markers in the asymptomatic, MCI, and dementia stage of Alzheimer's disease. Alzheimers Dement 2014; 11:511-22. [PMID: 25150730 DOI: 10.1016/j.jalz.2014.05.1754] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 05/10/2014] [Accepted: 05/30/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND We investigated the pattern of disease progression in the asymptomatic, mild cognitive impairment (MCI), and dementia stage of Alzheimer's disease (AD). METHODS We selected 284 subjects with AD pathology, defined as abnormal levels of amyloid beta 1-42 (Aβ1-42) in cerebrospinal fluid (CSF). Disease outcome measures included six biomarkers and five cognitive markers. We compared differences in baseline measures and decline over 4 years between the AD stages and tested whether these changes differed from subjects, without AD pathology (N = 132). RESULTS CSF Aβ1-42 reached the maximum abnormality level in the asymptomatic stage and tau in the MCI stage. The imaging and cognitive markers started to decline in the asymptomatic stage, and decline accelerated with advancing clinical stage. CONCLUSION This study provides further evidence for a temporal evolution of AD biomarkers. Our findings may be helpful to determine stage specific outcome measures for clinical trials.
Collapse
Affiliation(s)
- Daniela Bertens
- Department of Neurology/Alzheimer Centre, VU Medical Centre, Amsterdam, The Netherlands.
| | - Dirk L Knol
- Department of Epidemiology and Biostatistics, VU Medical Centre, Amsterdam, The Netherlands
| | - Philip Scheltens
- Department of Neurology/Alzheimer Centre, VU Medical Centre, Amsterdam, The Netherlands
| | - Pieter Jelle Visser
- Department of Neurology/Alzheimer Centre, VU Medical Centre, Amsterdam, The Netherlands; Department of Psychiatry and Neuropsychology, Maastricht University, School for Mental Health and Neuroscience (MHeNS), Alzheimer Centre Limburg, University Medical Centre, Maastricht, The Netherlands
| | | |
Collapse
|
24
|
Maruszak A, Thuret S. Why looking at the whole hippocampus is not enough-a critical role for anteroposterior axis, subfield and activation analyses to enhance predictive value of hippocampal changes for Alzheimer's disease diagnosis. Front Cell Neurosci 2014; 8:95. [PMID: 24744700 PMCID: PMC3978283 DOI: 10.3389/fncel.2014.00095] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 03/13/2014] [Indexed: 01/06/2023] Open
Abstract
The hippocampus is one of the earliest affected brain regions in Alzheimer's disease (AD) and its dysfunction is believed to underlie the core feature of the disease-memory impairment. Given that hippocampal volume is one of the best AD biomarkers, our review focuses on distinct subfields within the hippocampus, pinpointing regions that might enhance the predictive value of current diagnostic methods. Our review presents how changes in hippocampal volume, shape, symmetry and activation are reflected by cognitive impairment and how they are linked with neurogenesis alterations. Moreover, we revisit the functional differentiation along the anteroposterior longitudinal axis of the hippocampus and discuss its relevance for AD diagnosis. Finally, we indicate that apart from hippocampal subfield volumetry, the characteristic pattern of hippocampal hyperactivation associated with seizures and neurogenesis changes is another promising candidate for an early AD biomarker that could become also a target for early interventions.
Collapse
Affiliation(s)
- Aleksandra Maruszak
- Centre for the Cellular Basis of Behaviour, Department of Neuroscience, Institute of Psychiatry, King’s College LondonLondon, UK
| | - Sandrine Thuret
- Centre for the Cellular Basis of Behaviour, Department of Neuroscience, Institute of Psychiatry, King’s College LondonLondon, UK
| |
Collapse
|
25
|
Cerebrospinal Fluid Biomarkers in Alzheimer’s Disease and Frontotemporal Dementia. NEURODEGENER DIS 2014. [DOI: 10.1007/978-1-4471-6380-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
26
|
Harrington MG, Chiang J, Pogoda JM, Gomez M, Thomas K, Marion SD, Miller KJ, Siddarth P, Yi X, Zhou F, Lee S, Arakaki X, Cowan RP, Tran T, Charleswell C, Ross BD, Fonteh AN. Executive function changes before memory in preclinical Alzheimer's pathology: a prospective, cross-sectional, case control study. PLoS One 2013; 8:e79378. [PMID: 24260210 PMCID: PMC3832547 DOI: 10.1371/journal.pone.0079378] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 09/24/2013] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Early treatment of Alzheimer's disease may reduce its devastating effects. By focusing research on asymptomatic individuals with Alzheimer's disease pathology (the preclinical stage), earlier indicators of disease may be discovered. Decreasing cerebrospinal fluid beta-amyloid42 is the first indicator of preclinical disorder, but it is not known which pathology causes the first clinical effects. Our hypothesis is that neuropsychological changes within the normal range will help to predict preclinical disease and locate early pathology. METHODS AND FINDINGS We recruited adults with probable Alzheimer's disease or asymptomatic cognitively healthy adults, classified after medical and neuropsychological examination. By logistic regression, we derived a cutoff for the cerebrospinal fluid beta amyloid42/tau ratios that correctly classified 85% of those with Alzheimer's disease. We separated the asymptomatic group into those with (n = 34; preclinical Alzheimer's disease) and without (n = 36; controls) abnormal beta amyloid42/tau ratios; these subgroups had similar distributions of age, gender, education, medications, apolipoprotein-ε genotype, vascular risk factors, and magnetic resonance imaging features of small vessel disease. Multivariable analysis of neuropsychological data revealed that only Stroop Interference (response inhibition) independently predicted preclinical pathology (OR = 0.13, 95% CI = 0.04-0.42). Lack of longitudinal and post-mortem data, older age, and small population size are limitations of this study. CONCLUSIONS Our data suggest that clinical effects from early amyloid pathophysiology precede those from hippocampal intraneuronal neurofibrillary pathology. Altered cerebrospinal fluid beta amyloid42 with decreased executive performance before memory impairment matches the deposits of extracellular amyloid that appear in the basal isocortex first, and only later involve the hippocampus. We propose that Stroop Interference may be an additional important screen for early pathology and useful to monitor treatment of preclinical Alzheimer's disease; measures of executive and memory functions in a longitudinal design will be necessary to more fully evaluate this approach.
Collapse
Affiliation(s)
- Michael G. Harrington
- Molecular Neurology Program, Huntington Medical Research Institutes, Pasadena, California, United States of America
- * E-mail:
| | - Jiarong Chiang
- Molecular Neurology Program, Huntington Medical Research Institutes, Pasadena, California, United States of America
| | - Janice M. Pogoda
- Keck School of Medicine at the University of Southern California, Los Angeles, California, United States of America
| | - Megan Gomez
- Fuller Graduate School of Psychology, Pasadena, California, United States of America
| | - Kris Thomas
- Fuller Graduate School of Psychology, Pasadena, California, United States of America
| | - Sarah DeBoard Marion
- Fuller Graduate School of Psychology, Pasadena, California, United States of America
| | - Karen J. Miller
- David Geffen School of Medicine, UCLA, Los Angeles, California, United States of America
| | - Prabha Siddarth
- David Geffen School of Medicine, UCLA, Los Angeles, California, United States of America
| | - Xinyao Yi
- Department of Chemistry and Biochemistry, California State University, Los Angeles, California, United States of America
| | - Feimeng Zhou
- Department of Chemistry and Biochemistry, California State University, Los Angeles, California, United States of America
| | - Sherri Lee
- Molecular Neurology Program, Huntington Medical Research Institutes, Pasadena, California, United States of America
| | - Xianghong Arakaki
- Molecular Neurology Program, Huntington Medical Research Institutes, Pasadena, California, United States of America
| | - Robert P. Cowan
- Dept of Neurology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Thao Tran
- Magnetic Resonance Program, Huntington Medical Research Institutes, Pasadena, California, United States of America
| | - Cherise Charleswell
- Magnetic Resonance Program, Huntington Medical Research Institutes, Pasadena, California, United States of America
| | - Brian D. Ross
- Magnetic Resonance Program, Huntington Medical Research Institutes, Pasadena, California, United States of America
| | - Alfred N. Fonteh
- Molecular Neurology Program, Huntington Medical Research Institutes, Pasadena, California, United States of America
| |
Collapse
|
27
|
Cerebrospinal fluid PKR level predicts cognitive decline in Alzheimer's disease. PLoS One 2013; 8:e53587. [PMID: 23320095 PMCID: PMC3539966 DOI: 10.1371/journal.pone.0053587] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 12/03/2012] [Indexed: 11/19/2022] Open
Abstract
The cerebrospinal fluid (CSF) levels of the proapoptotic kinase R (PKR) and its phosphorylated PKR (pPKR) are increased in Alzheimer’s disease (AD), but whether CSF PKR concentrations are associated with cognitive decline in AD patients remain unknown. In this study, 41 consecutive patients with AD and 11 patients with amnestic mild cognitive impairment (aMCI) from our Memory Clinic were included. A lumbar puncture was performed during the following month of the clinical diagnosis and Mini-Mental State Examination (MMSE) evaluations were repeated every 6 months during a mean follow-up of 2 years. In AD patients, linear mixed models adjusted for age and sex were used to assess the cross-sectional and longitudinal associations between MMSE scores and baseline CSF levels of Aβ peptide (Aβ 1-42), Tau, phosphorylated Tau (p-Tau 181), PKR and pPKR. The mean (SD) MMSE at baseline was 20.5 (6.1) and MMSE scores declined over the follow-up (-0.12 point/month, standard error [SE] = 0.03). A lower MMSE at baseline was associated with lower levels of CSF Aβ 1–42 and p-Tau 181/Tau ratio. pPKR level was associated with longitudinal MMSE changes over the follow-up, higher pPKR levels being related with an exacerbated cognitive deterioration. Other CSF biomarkers were not associated with MMSE changes over time. In aMCI patients, mean CSF biomarker levels were not different in patients who converted to AD from those who did not convert.These results suggest that at the time of AD diagnosis, a higher level of CSF pPKR can predict a faster rate of cognitive decline.
Collapse
|