1
|
Barbo M, Ravnik-Glavač M. Extracellular Vesicles as Potential Biomarkers in Amyotrophic Lateral Sclerosis. Genes (Basel) 2023; 14:genes14020325. [PMID: 36833252 PMCID: PMC9956314 DOI: 10.3390/genes14020325] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is described as a fatal and rapidly progressive neurodegenerative disorder caused by the degeneration of upper motor neurons in the primary motor cortex and lower motor neurons of the brainstem and spinal cord. Due to ALS's slowly progressive characteristic, which is often accompanied by other neurological comorbidities, its diagnosis remains challenging. Perturbations in vesicle-mediated transport and autophagy as well as cell-autonomous disease initiation in glutamatergic neurons have been revealed in ALS. The use of extracellular vesicles (EVs) may be key in accessing pathologically relevant tissues for ALS, as EVs can cross the blood-brain barrier and be isolated from the blood. The number and content of EVs may provide indications of the disease pathogenesis, its stage, and prognosis. In this review, we collected a recent study aiming at the identification of EVs as a biomarker of ALS with respect to the size, quantity, and content of EVs in the biological fluids of patients compared to controls.
Collapse
|
2
|
Dhasmana S, Dhasmana A, Kotnala S, Mangtani V, Narula AS, Haque S, Jaggi M, Yallapu MM, Chauhan SC. Boosting Mitochondrial Potential: An Imperative Therapeutic Intervention in Amyotrophic Lateral Sclerosis. Curr Neuropharmacol 2023; 21:1117-1138. [PMID: 36111770 PMCID: PMC10286590 DOI: 10.2174/1570159x20666220915092703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/28/2022] [Accepted: 07/12/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Amyotrophic Lateral Sclerosis (ALS) is a progressive and terminal neurodegenerative disorder. Mitochondrial dysfunction, imbalance of cellular bioenergetics, electron chain transportation and calcium homeostasis are deeply associated with the progression of this disease. Impaired mitochondrial functions are crucial in rapid neurodegeneration. The mitochondria of ALS patients are associated with deregulated Ca2+ homeostasis and elevated levels of reactive oxygen species (ROS), leading to oxidative stress. Overload of mitochondrial calcium and ROS production leads to glutamatereceptor mediated neurotoxicity. This implies mitochondria are an attractive therapeutic target. OBJECTIVE The aim of this review is to brief the latest developments in the understanding of mitochondrial pathogenesis in ALS and emphasize the restorative capacity of therapeutic candidates. RESULTS In ALS, mitochondrial dysfunction is a well-known phenomenon. Various therapies targeted towards mitochondrial dysfunction aim at decreasing ROS generation, increasing mitochondrial biogenesis, and inhibiting apoptotic pathways. Some of the therapies briefed in this review may be categorized as synthetic, natural compounds, genetic materials, and cellular therapies. CONCLUSION The overarching goals of mitochondrial therapies in ALS are to benefit ALS patients by slowing down the disease progression and prolonging overall survival. Despite various therapeutic approaches, there are many hurdles in the development of a successful therapy due to the multifaceted nature of mitochondrial dysfunction and ALS progression. Intensive research is required to precisely elucidate the molecular pathways involved in the progression of mitochondrial dysfunctions that ultimately lead to ALS. Because of the multifactorial nature of ALS, a combination therapy approach may hold the key to cure and treat ALS in the future.
Collapse
Affiliation(s)
- Swati Dhasmana
- Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, TX, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Anupam Dhasmana
- Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, TX, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Sudhir Kotnala
- Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, TX, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Varsha Mangtani
- Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, TX, USA
| | - Acharan S. Narula
- Narula Research LLC, 107 Boulder Bluff, Chapel Hill, North Carolina, NC 27516, USA
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Meena Jaggi
- Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, TX, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Murali M. Yallapu
- Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, TX, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Subhash C. Chauhan
- Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, TX, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| |
Collapse
|
3
|
Viader F. La sclérose latérale amyotrophique : une maladie neurodégénérative emblématique. BULLETIN DE L'ACADÉMIE NATIONALE DE MÉDECINE 2023. [DOI: 10.1016/j.banm.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
4
|
Donatelli G, Costagli M, Cecchi P, Migaleddu G, Bianchi F, Frumento P, Siciliano G, Cosottini M. Motor cortical patterns of upper motor neuron pathology in amyotrophic lateral sclerosis: A 3 T MRI study with iron-sensitive sequences. NEUROIMAGE: CLINICAL 2022; 35:103138. [PMID: 36002961 PMCID: PMC9421531 DOI: 10.1016/j.nicl.2022.103138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/05/2022] [Accepted: 07/27/2022] [Indexed: 11/11/2022] Open
Abstract
M1 regions associated with the body site of onset are frequently affected at MRI. The simultaneous involvement of both homologous M1 regions is frequent. The T2* hypointensity in non-contiguous M1 regions seems rare.
Background Patterns of initiation and propagation of disease in Amyotrophic Lateral Sclerosis (ALS) are still partly unknown. Single or multiple foci of neurodegeneration followed by disease diffusion to contiguous or connected regions have been proposed as mechanisms underlying symptom occurrence. Here, we investigated cortical patterns of upper motor neuron (UMN) pathology in ALS using iron-sensitive MR imaging. Methods Signal intensity and magnetic susceptibility of the primary motor cortex (M1), which are associated with clinical UMN burden and neuroinflammation, were assessed in 78 ALS patients using respectively T2*-weighted images and Quantitative Susceptibility Maps. The signal intensity of the whole M1 and each of its functional regions was rated as normal or reduced, and the magnetic susceptibility of each M1 region was measured. Results The highest frequencies of T2* hypointensity were found in M1 regions associated with the body sites of symptom onset. Homologous M1 regions were both hypointense in 80–93 % of patients with cortical abnormalities, and magnetic susceptibility values measured in homologous M1 regions were strongly correlated with each other (ρ = 0.88; p < 0.0001). In some cases, the T2* hypointensity was detectable in two non-contiguous M1 regions but spared the cortex in between. Conclusions M1 regions associated with the body site of onset are frequently affected at imaging. The simultaneous involvement of both homologous M1 regions is frequent, followed by that of adjacent regions; the affection of non-contiguous regions, instead, seems rare. This type of cortical involvement suggests the interhemispheric connections as one of the preferential paths for the UMN pathology diffusion in ALS.
Collapse
|
5
|
Dhasmana S, Dhasmana A, Narula AS, Jaggi M, Yallapu MM, Chauhan SC. The panoramic view of amyotrophic lateral sclerosis: A fatal intricate neurological disorder. Life Sci 2022; 288:120156. [PMID: 34801512 DOI: 10.1016/j.lfs.2021.120156] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurological disease affecting both upper and lower motor neurons. In the United States alone, there are 16,000-20,000 established cases of ALS. The early disease diagnosis is challenging due to many overlapping pathophysiologies with other neurological diseases. The etiology of ALS is unknown; however, it is divided into two categories: familial ALS (fALS) which occurs due to gene mutations & contributes to 5-10% of ALS, and sporadic ALS (sALS) which is due to environmental factors & contributes to 90-95% of ALS. There is still no curative treatment for ALS: palliative care and symptomatic treatment are therefore essential components in the management of these patients. In this review, we provide a panoramic view of ALS, which includes epidemiology, risk factors, pathophysiologies, biomarkers, diagnosis, therapeutics (natural, synthetic, gene-based, pharmacological, stem cell, extracellular vesicles, and physical therapy), controversies (in the clinical trials of ALS), the scope of nanomedicine in ALS, and future perspectives.
Collapse
Affiliation(s)
- Swati Dhasmana
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Acharan S Narula
- Narula Research LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.
| |
Collapse
|
6
|
Russo K, Wharton KA. BMP/TGF-β signaling as a modulator of neurodegeneration in ALS. Dev Dyn 2022; 251:10-25. [PMID: 33745185 PMCID: PMC11929146 DOI: 10.1002/dvdy.333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/19/2022] Open
Abstract
This commentary focuses on the emerging intersection between BMP/TGF-β signaling roles in nervous system function and the amyotrophic lateral sclerosis (ALS) disease state. Future research is critical to elucidate the molecular underpinnings of this intersection of the cellular processes disrupted in ALS and those influenced by BMP/TGF-β signaling, including synapse structure, neurotransmission, plasticity, and neuroinflammation. Such knowledge promises to inform us of ideal entry points for the targeted modulation of dysfunctional cellular processes in an effort to abrogate ALS pathologies. It is likely that different interventions are required, either at discrete points in disease progression, or across multiple dysfunctional processes which together lead to motor neuron degeneration and death. We discuss the challenging, but intriguing idea that modulation of the pleiotropic nature of BMP/TGF-β signaling could be advantageous, as a way to simultaneously treat defects in more than one cell process across different forms of ALS.
Collapse
Affiliation(s)
- Kathryn Russo
- Department of Neuroscience, Brown University, Providence, Rhode Island, USA
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island, USA
| | - Kristi A Wharton
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
7
|
He Z, Sun B, Feng F, Bai J, Wang H, Wang H, Yang F, Cui F, Huang X. Time of symptoms beyond the bulbar region predicts survival in bulbar onset amyotrophic lateral sclerosis. Neurol Sci 2021; 43:1817-1822. [PMID: 34383162 DOI: 10.1007/s10072-021-05556-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/28/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. Spreading pattern and time interval of spreading are getting more and more attention. The aim of present study was to investigate spreading pattern in bulbar onset ALS patients and to explore the relationship between time interval of spreading and survival. METHODS ALS patients with bulbar onset diagnosed at Chinese PLA General Hospital from January 2015 to December 2018 were recruited. Clinical features including gender, onset age, diagnostic delay, the second involved region (SIR), time of symptoms beyond the bulbar region, forced vital capacity (FVC), ALSFRS-R score, electromyography results, and survival time were retrospectively collected. RESULTS A total of 96 bulbar onset ALS patients were collected. Overall patients showed female predominance. Median age at onset was 56 years. Median diagnostic delay was 8.5 months. Median time of symptoms beyond the bulbar region (TBBR) was 7 months. Median ALSFRS-R score at baseline was 40. Fifty-six (58.3%) patients' SIR were upper limb, 6 (6.3%) patients' SIR were lower limb, 3 (3.1%) patients' SIR were upper and lower limbs, and 5 (5.2%) patients' SIR were thoracic region. Twenty-six (27.1%) patients did not report SIR. The median survival time of patients with TBBR ≥ 7 months was significantly longer than that with TBBR < 7 month. Multivariate Cox regression showed that onset age and TBBR were prognostic factors. CONCLUSIONS In bulbar onset ALS patients, cervical region is the second most common SIR. TBBR is an independent prognostic factor.
Collapse
Affiliation(s)
- Zhengqing He
- Medical School of Chinese PLA, Beijing, China.,Neurological Department of the First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, 100853, Beijing, China
| | - Bo Sun
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, 100853, Beijing, China.,Geriatric Neurological Department of the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Feng Feng
- Department of Neurology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Jiongming Bai
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, 100853, Beijing, China.,College of Medicine, Nankai University, Tianjin, China
| | - Haoran Wang
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, 100853, Beijing, China.,College of Medicine, Nankai University, Tianjin, China
| | - Hongfen Wang
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, 100853, Beijing, China
| | - Fei Yang
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, 100853, Beijing, China
| | - Fang Cui
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, 100853, Beijing, China.,Department of Neurology, Hainan Hospital of PLA General Hospital, Hainan, China
| | - Xusheng Huang
- Medical School of Chinese PLA, Beijing, China. .,Neurological Department of the First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, 100853, Beijing, China.
| |
Collapse
|
8
|
Buratti E. Trends in Understanding the Pathological Roles of TDP-43 and FUS Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:243-267. [PMID: 33433879 DOI: 10.1007/978-3-030-51140-1_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Following the discovery of TDP-43 and FUS involvement in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD), the major challenge in the field has been to understand their physiological functions, both in normal and disease conditions. The hope is that this knowledge will improve our understanding of disease and lead to the development of effective therapeutic options. Initially, the focus has been directed at characterizing the role of these proteins in the control of RNA metabolism, because the main function of TDP-43 and FUS is to bind coding and noncoding RNAs to regulate their life cycle within cells. As a result, we now have an in-depth picture of the alterations that occur in RNA metabolism following their aggregation in various ALS/FTLD models and, to a somewhat lesser extent, in patients' brains. In parallel, progress has been made with regard to understanding how aggregation of these proteins occurs in neurons, how it can spread in different brain regions, and how these changes affect various metabolic cellular pathways to result in neuronal death. The aim of this chapter will be to provide a general overview of the trending topics in TDP-43 and FUS investigations and to highlight what might represent the most promising avenues of research in the years to come.
Collapse
Affiliation(s)
- Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.
| |
Collapse
|
9
|
Matamala JM, Howells J, Dharmadasa T, Huynh W, Park SB, Burke D, Kiernan MC. Excitability of sensory axons in amyotrophic lateral sclerosis. Clin Neurophysiol 2018; 129:1472-1478. [PMID: 29661595 DOI: 10.1016/j.clinph.2018.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/22/2018] [Accepted: 03/11/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To evaluate the excitability of sensory axons in patients with amyotrophic lateral sclerosis (ALS). METHODS Comprehensive sensory nerve excitability studies were prospectively performed on 28 sporadic ALS patients, compared to age-matched controls. Sensory nerve action potentials were recorded from digit 2 following median nerve stimulation at the wrist. Disease severity was measured using motor unit number estimation (MUNE), the revised ALS Functional Rating Scale (ALSFRS-R) and the MRC scale. RESULTS There were no significant differences in standard and extended measures of nerve excitability between ALS patients and controls. These unchanged excitability measures included accommodation to long-lasting hyperpolarization and the threshold changes after two supramaximal stimuli during the recovery cycle. Excitability parameters did not correlate with MUNE, ALSFRS-R, APB MRC scale or disease duration. CONCLUSIONS This cross-sectional study has identified normal axonal membrane properties in myelinated sensory axons of ALS patients. Previously described sensory abnormalities could be the result of axonal fallout, possibly due to a ganglionopathy, or to involvement of central sensory pathways rostral to gracile and cuneate nuclei. SIGNIFICANCE These results demonstrate the absence of generalized dysfunction of the membrane properties of sensory axons in ALS in the face of substantial deficits in motor function.
Collapse
Affiliation(s)
| | - James Howells
- Brain and Mind Centre, University of Sydney, Sydney, NSW 2050, Australia
| | - Thanuja Dharmadasa
- Brain and Mind Centre, University of Sydney, Sydney, NSW 2050, Australia
| | - William Huynh
- Brain and Mind Centre, University of Sydney, Sydney, NSW 2050, Australia
| | - Susanna B Park
- Brain and Mind Centre, University of Sydney, Sydney, NSW 2050, Australia
| | - David Burke
- Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia; Department of Neurology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, University of Sydney, Sydney, NSW 2050, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia; Department of Neurology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| |
Collapse
|
10
|
van Weehaeghe D, Ceccarini J, Willekens SM, de Vocht J, van Damme P, van Laere K. Is there a glucose metabolic signature of spreading TDP-43 pathology in amyotrophic lateral sclerosis? THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2017; 64:96-104. [PMID: 29166751 DOI: 10.23736/s1824-4785.17.03009-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Recently, four neuropathological stages of amyotrophic lateral sclerosis (ALS) with spreading of transactive response DNA-binding protein-43 pathology were described. Although 18F-FDG PET has been useful in diagnosis and prognosis of ALS patients, in-vivo disease staging using glucose metabolic patterns across the different ALS stages has not been attempted so far. In this study, we investigated whether the discriminant brain regions of the neuropathological stage model can be translated to metabolic patterns for in-vivo staging of ALS. Furthermore, we examined the correlation of these metabolic patterns with disease duration, the Revised ALS Functional Rating Scale (ALSFRS-R) and the forced vital capacity (FVC). METHODS A total of 146 ALS patients (age 66.0±11.0 years; 86 male, 60 female) were divided into four metabolic stages depending on glucose metabolism in discriminant regions of neuropathological stages. 18F-FDG data were analysed voxel-based to compare local metabolic patterns between different stages. Additionally, correlation analyses were performed between pathologic stage and clinical parameters. RESULTS Relative hypometabolism was present in regions known to be affected from the post-mortem pathological spread model, but relative hypermetabolism was also observed across the different ALS stages. In particular, stage 4 reflected a different frontotemporal pattern discordant with mere progression of stage 1-3, which may point to a potential different subgroup in ALS. Furthermore, metabolic stage correlated with disease duration (Spearman's ρ=-0.21, P=0.01) and FVC (Spearman's ρ=-0.24, P=0.04). CONCLUSIONS The neuropathological ALS stages correspond to discriminative regional brain glucose metabolism patterns correlating with disease duration and forced vital capacity. Furthermore, metabolic stage 4 may represents a separate group of ALS progression towards frontotemporal dementia.
Collapse
Affiliation(s)
- Donatienne van Weehaeghe
- Division of Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University Hospitals Leuven and KU Leuven, Leuven, Belgium -
| | - Jenny Ceccarini
- Division of Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Stefanie M Willekens
- Division of Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Joke de Vocht
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Philip van Damme
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium.,Laboratory of Neurobiology, Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Koen van Laere
- Division of Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Walhout R, Verstraete E, van den Heuvel MP, Veldink JH, van den Berg LH. Patterns of symptom development in patients with motor neuron disease. Amyotroph Lateral Scler Frontotemporal Degener 2017; 19:21-28. [PMID: 29037065 DOI: 10.1080/21678421.2017.1386688] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To investigate whether symptom development in motor neuron disease (MND) is a random or organized process. METHODS Six hundred patients with amyotrophic lateral sclerosis (ALS), upper motor neuron (UMN) or lower motor neuron (LMN) phenotypes were invited for a questionnaire concerning symptom development. A binomial test was used to examine distribution of symptoms from site of onset. Development of symptoms over time was evaluated by Kaplan-Meier analysis. RESULTS There were 470 respondents (ALS = 254; LMN = 100; UMN = 116). Subsequent symptoms were more often in the contralateral limb following unilateral limb onset (ALS: arms p = 1.05 × 10-8, legs p < 2.86 × 10-15; LMN phenotype: arms p = 6.74 × 10-9, legs p = 6.26 × 10-6; UMN phenotype: legs p = 4.07 × 10-14). In patients with limb onset, symptoms occurred significantly faster in the contralateral limb, followed by the other limbs and lastly by the bulbar region. Patterns of non-contiguous symptom development were also reported: leg symptoms followed bulbar onset in 30%, and bulbar symptoms followed leg onset in 11% of ALS patients. CONCLUSIONS Preferred spread of symptoms from one limb to the contralateral limb, and to adjacent sites appears to be a characteristic of MND phenotypes, suggesting that symptom spread is organized, possibly involving axonal connectivity. Non-contiguous symptom development, however, is not uncommon, and may involve other factors.
Collapse
Affiliation(s)
- Renée Walhout
- a Department of Neurology, Brain Center Rudolf Magnus , University Medical Center Utrecht , Utrecht , The Netherlands and
| | - Esther Verstraete
- a Department of Neurology, Brain Center Rudolf Magnus , University Medical Center Utrecht , Utrecht , The Netherlands and
| | - Martijn P van den Heuvel
- b Department of Psychiatry, Brain Center Rudolf Magnus , University Medical Center Utrecht , Utrecht , The Netherlands
| | - Jan H Veldink
- a Department of Neurology, Brain Center Rudolf Magnus , University Medical Center Utrecht , Utrecht , The Netherlands and
| | - Leonard H van den Berg
- a Department of Neurology, Brain Center Rudolf Magnus , University Medical Center Utrecht , Utrecht , The Netherlands and
| |
Collapse
|
12
|
Brain computer interface with the P300 speller: Usability for disabled people with amyotrophic lateral sclerosis. Ann Phys Rehabil Med 2017; 61:5-11. [PMID: 29024794 DOI: 10.1016/j.rehab.2017.09.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Amyotrophic lateral sclerosis (ALS), a progressive neurodegenerative disease, restricts patients' communication capacity a few years after onset. A proof-of-concept of brain-computer interface (BCI) has shown promise in ALS and "locked-in" patients, mostly in pre-clinical studies or with only a few patients, but performance was estimated not high enough to support adoption by people with physical limitation of speech. Here, we evaluated a visual BCI device in a clinical study to determine whether disabled people with multiple deficiencies related to ALS would be able to use BCI to communicate in a daily environment. METHODS After clinical evaluation of physical, cognitive and language capacities, 20 patients with ALS were included. The P300 speller BCI system consisted of electroencephalography acquisition connected to real-time processing software and separate keyboard-display control software. It was equipped with original features such as optimal stopping of flashes and word prediction. The study consisted of two 3-block sessions (copy spelling, free spelling and free use) with the system in several modes of operation to evaluate its usability in terms of effectiveness, efficiency and satisfaction. RESULTS The system was effective in that all participants successfully achieved all spelling tasks and was efficient in that 65% of participants selected more than 95% of the correct symbols. The mean number of correct symbols selected per minute ranged from 3.6 (without word prediction) to 5.04 (with word prediction). Participants expressed satisfaction: the mean score was 8.7 on a 10-point visual analog scale assessing comfort, ease of use and utility. Patients quickly learned how to operate the system, which did not require much learning effort. CONCLUSION With its word prediction and optimal stopping of flashes, which improves information transfer rate, the BCI system may be competitive with alternative communication systems such as eye-trackers. Remaining requirements to improve the device for suitable ergonomic use are in progress.
Collapse
|
13
|
Bendotti C, Bonetto V, Migheli A. Introduction. Brain Pathol 2016; 26:224-6. [PMID: 26780164 DOI: 10.1111/bpa.12349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 01/14/2016] [Indexed: 11/27/2022] Open
Affiliation(s)
- Caterina Bendotti
- Laboratory Molecular Neurobiology, Department of Neuroscience-IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Valentina Bonetto
- Laboratory of Translational Proteomics, Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Antonio Migheli
- Centro Regionale Diagnosi ed Osservazione delle Malattie Prioniche DOMP-ASL TO2, Turin, Italy
| |
Collapse
|
14
|
Rossi S, Cozzolino M, Carrì MT. Old versus New Mechanisms in the Pathogenesis of ALS. Brain Pathol 2016; 26:276-86. [PMID: 26779612 DOI: 10.1111/bpa.12355] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/14/2016] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is recognized as a very complex disease. As we have learned in the past 20 years from studies in patients and in models based on the expression of mutant SOD1, ALS is not a purely motor neuron disease as previously thought. While undoubtedly motor neurons are lost in patients, a number of alterations in those cell-types that interact functionally with motor neurons (astrocytes, microglia, muscle fibers, oligodendrocytes) take place even long before onset of symptoms. At the same time, disturbance of several, only partly inter-related physiological functions play some role in the onset and progression of the disease. Traditionally, mitochondrial damage and oxidative stress, excitotoxicity, neuroinflammation, altered axonal transport, ER stress, protein aggregation and defective removal of toxic proteins have been considered as key factors in the pathogenesis of ALS, with the relatively recent addition of disturbances in RNA metabolism. This complexity makes the search for an effective treatment extremely difficult and prompts further studies to reveal other possible, previously unappreciated aspects of the pathogenesis of ALS. In this review, we focus on previous knowledge on ALS mechanisms as well as new facets emerging from studies on genetic ALS patients and models that may both provide precious information for a novel therapeutic approach.
Collapse
Affiliation(s)
- Simona Rossi
- Institute of Translational Pharmacology, National Research Council (CNR), Rome, Italy
| | - Mauro Cozzolino
- Institute of Translational Pharmacology, National Research Council (CNR), Rome, Italy.,Lab of Neurochemistry, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Maria Teresa Carrì
- Lab of Neurochemistry, Fondazione Santa Lucia IRCCS, Rome, Italy.,Department of Biology, University of Rome Tor Vergata
| |
Collapse
|
15
|
Dimond D, Ishaque A, Chenji S, Mah D, Chen Z, Seres P, Beaulieu C, Kalra S. White matter structural network abnormalities underlie executive dysfunction in amyotrophic lateral sclerosis. Hum Brain Mapp 2016; 38:1249-1268. [PMID: 27796080 DOI: 10.1002/hbm.23452] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 10/13/2016] [Accepted: 10/18/2016] [Indexed: 12/13/2022] Open
Abstract
Research in amyotrophic lateral sclerosis (ALS) suggests that executive dysfunction, a prevalent cognitive feature of the disease, is associated with abnormal structural connectivity and white matter integrity. In this exploratory study, we investigated the white matter constructs of executive dysfunction, and attempted to detect structural abnormalities specific to cognitively impaired ALS patients. Eighteen ALS patients and 22 age and education matched healthy controls underwent magnetic resonance imaging on a 4.7 Tesla scanner and completed neuropsychometric testing. ALS patients were categorized into ALS cognitively impaired (ALSci, n = 9) and ALS cognitively competent (ALScc, n = 5) groups. Tract-based spatial statistics and connectomics were used to compare white matter integrity and structural connectivity of ALSci and ALScc patients. Executive function performance was correlated with white matter FA and network metrics within the ALS group. Executive function performance in the ALS group correlated with global and local network properties, as well as FA, in regions throughout the brain, with a high predilection for the frontal lobe. ALSci patients displayed altered local connectivity and structural integrity in these same frontal regions that correlated with executive dysfunction. Our results suggest that executive dysfunction in ALS is related to frontal network disconnectivity, which potentially mediates domain-specific, or generalized cognitive impairment, depending on the degree of global network disruption. Furthermore, reported co-localization of decreased network connectivity and diminished white matter integrity suggests white matter pathology underlies this topological disruption. We conclude that executive dysfunction in ALSci is associated with frontal and global network disconnectivity, underlined by diminished white matter integrity. Hum Brain Mapp 38:1249-1268, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dennis Dimond
- Neuroscience and Mental Health Institute, University of Alberta, 4-142 Katz Group Centre, 116 St. and 85 Ave, Edmonton, Alberta, T6G 2E1, Canada
| | - Abdullah Ishaque
- Neuroscience and Mental Health Institute, University of Alberta, 4-142 Katz Group Centre, 116 St. and 85 Ave, Edmonton, Alberta, T6G 2E1, Canada
| | - Sneha Chenji
- Neuroscience and Mental Health Institute, University of Alberta, 4-142 Katz Group Centre, 116 St. and 85 Ave, Edmonton, Alberta, T6G 2E1, Canada
| | - Dennell Mah
- Division of Neurology, Department of Medicine, University of Alberta, 7-132F Clinical Sciences Building, 11350-83 Ave, Edmonton, Alberta, T6G 2G3, Canada
| | - Zhang Chen
- Department of Biomedical Engineering, University of Alberta, 1098 Research Transition Facility, 8308-114 St, Edmonton, Alberta, T6G 2V2, Canada
| | - Peter Seres
- Department of Biomedical Engineering, University of Alberta, 1098 Research Transition Facility, 8308-114 St, Edmonton, Alberta, T6G 2V2, Canada
| | - Christian Beaulieu
- Neuroscience and Mental Health Institute, University of Alberta, 4-142 Katz Group Centre, 116 St. and 85 Ave, Edmonton, Alberta, T6G 2E1, Canada.,Department of Biomedical Engineering, University of Alberta, 1098 Research Transition Facility, 8308-114 St, Edmonton, Alberta, T6G 2V2, Canada
| | - Sanjay Kalra
- Neuroscience and Mental Health Institute, University of Alberta, 4-142 Katz Group Centre, 116 St. and 85 Ave, Edmonton, Alberta, T6G 2E1, Canada.,Division of Neurology, Department of Medicine, University of Alberta, 7-132F Clinical Sciences Building, 11350-83 Ave, Edmonton, Alberta, T6G 2G3, Canada.,Department of Biomedical Engineering, University of Alberta, 1098 Research Transition Facility, 8308-114 St, Edmonton, Alberta, T6G 2V2, Canada
| |
Collapse
|
16
|
Blasco H, Patin F, Andres CR, Corcia P, Gordon PH. Amyotrophic Lateral Sclerosis, 2016: existing therapies and the ongoing search for neuroprotection. Expert Opin Pharmacother 2016; 17:1669-82. [PMID: 27356036 DOI: 10.1080/14656566.2016.1202919] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS), one in a family of age-related neurodegenerative disorders, is marked by predominantly cryptogenic causes, partially elucidated pathophysiology, and elusive treatments. The challenges of ALS are illustrated by two decades of negative drug trials. AREAS COVERED In this article, we lay out the current understanding of disease genesis and physiology in relation to drug development in ALS, stressing important accomplishments and gaps in knowledge. We briefly consider clinical ALS, the ongoing search for biomarkers, and the latest in trial design, highlighting major recent and ongoing clinical trials; and we discuss, in a concluding section on future directions, the prion-protein hypothesis of neurodegeneration and what steps can be taken to end the drought that has characterized drug discovery in ALS. EXPERT OPINION Age-related neurodegenerative disorders are fast becoming major public health problems for the world's aging populations. Several agents offer promise in the near-term, but drug development is hampered by an interrelated cycle of obstacles surrounding etiological, physiological, and biomarkers discovery. It is time for the type of government-funded, public-supported offensive on neurodegenerative disease that has been effective in other fields.
Collapse
Affiliation(s)
- H Blasco
- a Inserm U930, Equipe "neurogénétique et neurométabolomique" , Tours , France.,b Université François-Rabelais, Faculté de Médecine , Tours , France.,c Laboratoire de Biochimie et Biologie Moléculaire , CHRU de Tours , Tours , France
| | - F Patin
- a Inserm U930, Equipe "neurogénétique et neurométabolomique" , Tours , France.,b Université François-Rabelais, Faculté de Médecine , Tours , France.,c Laboratoire de Biochimie et Biologie Moléculaire , CHRU de Tours , Tours , France
| | - C R Andres
- a Inserm U930, Equipe "neurogénétique et neurométabolomique" , Tours , France.,b Université François-Rabelais, Faculté de Médecine , Tours , France.,c Laboratoire de Biochimie et Biologie Moléculaire , CHRU de Tours , Tours , France
| | - P Corcia
- a Inserm U930, Equipe "neurogénétique et neurométabolomique" , Tours , France.,b Université François-Rabelais, Faculté de Médecine , Tours , France.,d Centre SLA, Service de Neurologie , CHRU Bretonneau , Tours , France
| | - P H Gordon
- e Northern Navajo Medical Center , Neurology Unit , Shiprock , NM , USA
| |
Collapse
|
17
|
Ratti A, Buratti E. Physiological functions and pathobiology of TDP-43 and FUS/TLS proteins. J Neurochem 2016; 138 Suppl 1:95-111. [PMID: 27015757 DOI: 10.1111/jnc.13625] [Citation(s) in RCA: 272] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/19/2016] [Accepted: 03/22/2016] [Indexed: 12/12/2022]
Abstract
The multiple roles played by RNA binding proteins in neurodegeneration have become apparent following the discovery of TAR DNA binding protein 43 kDa (TDP-43) and fused in sarcoma/translocated in liposarcoma (FUS/TLS) involvement in amyotrophic lateral sclerosis and frontotemporal lobar dementia. In these two diseases, the majority of patients display the presence of aggregated forms of one of these proteins in their brains. The study of their functional properties currently represents a very promising target for developing the effective therapeutic options that are still lacking. This aim, however, must be preceded by an accurate evaluation of TDP-43 and FUS/TLS biological functions, both in physiological and disease conditions. Recent findings have uncovered several aspects of RNA metabolism that can be affected by misregulation of these two proteins. Progress has also been made in starting to understand how the aggregation of these proteins occurs and spreads from cell to cell. The aim of this review will be to provide a general overview of TDP-43 and FUS/TLS proteins and to highlight their physiological functions. At present, the emerging picture is that TDP-43 and FUS/TLS control several aspects of an mRNA's life, but they can also participate in DNA repair processes and in non-coding RNA metabolism. Although their regulatory activities are similar, they regulate mainly distinct RNA targets and show different pathogenetic mechanisms in amyotrophic lateral sclerosis/frontotemporal lobar dementia diseases. The identification of key events in these processes represents today the best chance of finding targetable options for therapeutic approaches that might actually make a difference at the clinical level. The two major RNA Binding Proteins involved in Amyotrophic Lateral Sclerosisi and Frontotemporal Dementia are TDP-43 and FUST/TLS. Both proteins are involved in regulating all aspects of RNA and RNA life cycle within neurons, from transcription, processing, and transport/stability to the formation of cytoplasmic and nuclear stress granules. For this reason, the aberrant aggregation of these factors during disease can impair multiple RNA metabolic pathways and eventually lead to neuronal death/inactivation. The purpose of this review is to provide an up-to-date perspective on what we know about this issue at the molecular level. This article is part of the Frontotemporal Dementia special issue.
Collapse
Affiliation(s)
- Antonia Ratti
- Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center - Università degli Studi di Milano, Milan, Italy.,Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| |
Collapse
|