1
|
Sarró C, Stalin C, Gutierrez-Quintana R, Cloquell A. Clinical characterization of a novel episodic ataxia in young working Cocker Spaniels. J Vet Intern Med 2025; 39:e17268. [PMID: 39715410 DOI: 10.1111/jvim.17268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/20/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Episodic ataxias (EAs) are a rare group of paroxysmal movement disorders (PMD) described in human medicine with only one suspected case described in veterinary literature. HYPOTHESIS/OBJECTIVES This study aimed to provide clinical description of a suspected primary EA in working Cocker Spaniel (WCS) dogs. ANIMALS Seven WCS dogs with suspected primary EA. METHODS Descriptive, retrospecitve, multicenter study. Clinical signs, video footage, investigations, treatment, and outcome were reviewed. Owners of affected dogs were invited to complete a questionnaire. RESULTS The mean age at clinical onset was 4 months. Signs were acute and included episodic body swaying, titubation, cerebellar ataxia, wide-base stance, and hypermetria, all while mentation remained unaltered. Neither autonomic nor vestibular signs nor hyperkinetic movements were observed. Duration of episodes ranged from 30 minutes up to 24 hours, and their frequency varied from weekly to once every 5 months. When investigations were performed, results revealed no abnormalities except for 1 dog that had increased gluten antibody titers. None of the dogs deteriorated, and in dogs with available follow-up (5/7) the frequency of episodes decreased or completely resolved, from which the majority (4/5) received gluten-free diet. CONCLUSION AND CLINICAL IMPORTANCE A novel PMD was identified in young WCS, manifesting as EA. The condition is suspected to have a primary (genetic) etiology, although the cause of this manifestation has not yet been identified. Episodic ataxia in our WCS had a good prognosis. Veterinarians must be aware of this presentation, and further investigations are needed to determine the origin of the clinical signs.
Collapse
Affiliation(s)
- Clara Sarró
- Small Animal Hospital, School of Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Catherine Stalin
- Small Animal Hospital, School of Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
- Moorview Referrals, Cramlington, United Kingdom
| | | | - Ana Cloquell
- Small Animal Hospital, School of Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
2
|
Li X, Lei D, Qin K, Li L, Zhang Y, Zhou D, Kemp GJ, Gong Q. Effects of PRRT2 mutation on brain gray matter networks in paroxysmal kinesigenic dyskinesia. Cereb Cortex 2024; 34:bhad418. [PMID: 37955636 DOI: 10.1093/cercor/bhad418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023] Open
Abstract
Although proline-rich transmembrane protein 2 is the primary causative gene of paroxysmal kinesigenic dyskinesia, its effects on the brain structure of paroxysmal kinesigenic dyskinesia patients are not yet clear. Here, we explored the influence of proline-rich transmembrane protein 2 mutations on similarity-based gray matter morphological networks in individuals with paroxysmal kinesigenic dyskinesia. A total of 51 paroxysmal kinesigenic dyskinesia patients possessing proline-rich transmembrane protein 2 mutations, 55 paroxysmal kinesigenic dyskinesia patients possessing proline-rich transmembrane protein 2 non-mutation, and 80 healthy controls participated in the study. We analyzed the structural connectome characteristics across groups by graph theory approaches. Relative to paroxysmal kinesigenic dyskinesia patients possessing proline-rich transmembrane protein 2 non-mutation and healthy controls, paroxysmal kinesigenic dyskinesia patients possessing proline-rich transmembrane protein 2 mutations exhibited a notable increase in characteristic path length and a reduction in both global and local efficiency. Relative to healthy controls, both patient groups showed reduced nodal metrics in right postcentral gyrus, right angular, and bilateral thalamus; Relative to healthy controls and paroxysmal kinesigenic dyskinesia patients possessing proline-rich transmembrane protein 2 non-mutation, paroxysmal kinesigenic dyskinesia patients possessing proline-rich transmembrane protein 2 mutations showed almost all reduced nodal centralities and structural connections in cortico-basal ganglia-thalamo-cortical circuit including bilateral supplementary motor area, bilateral pallidum, and right caudate nucleus. Finally, we used support vector machine by gray matter network matrices to classify paroxysmal kinesigenic dyskinesia patients possessing proline-rich transmembrane protein 2 mutations and paroxysmal kinesigenic dyskinesia patients possessing proline-rich transmembrane protein 2 non-mutation, achieving an accuracy of 73%. These results show that proline-rich transmembrane protein 2 related gray matter network deficits may contribute to paroxysmal kinesigenic dyskinesia, offering new insights into its pathophysiological mechanisms.
Collapse
Affiliation(s)
- Xiuli Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu, 610041, China
| | - Du Lei
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu, 610041, China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, 260 Stetson St., Suite 3326, Cincinnati, Ohio, 45219, United States
| | - Kun Qin
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu, 610041, China
| | - Lei Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu, 610041, China
| | - Yingying Zhang
- Department of Neurology, West China Hospital of Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu, 610041, China
| | - Dong Zhou
- Department of Neurology, West China Hospital of Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu, 610041, China
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, L69 3BX, Liverpool, L3 5TR, United Kingdom
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu, 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Lane, Wuhou District, Chengdu, 610041, China
| |
Collapse
|
3
|
Olszewska DA, Shetty A, Rajalingam R, Rodriguez-Antiguedad J, Hamed M, Huang J, Breza M, Rasheed A, Bahr N, Madoev H, Westenberger A, Trinh J, Lohmann K, Klein C, Marras C, Waln O. Genotype-phenotype relations for episodic ataxia genes: MDSGene systematic review. Eur J Neurol 2023; 30:3377-3393. [PMID: 37422902 DOI: 10.1111/ene.15969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Most episodic ataxias (EA) are autosomal dominantly inherited and characterized by recurrent attacks of ataxia and other paroxysmal and non-paroxysmal features. EA is often caused by pathogenic variants in the CACNA1A, KCNA1, PDHA1, and SLC1A3 genes, listed as paroxysmal movement disorders (PxMD) by the MDS Task Force on the Nomenclature of Genetic Movement Disorders. Little is known about the genotype-phenotype correlation of the different genetic EA forms. METHODS We performed a systematic review of the literature to identify individuals affected by an episodic movement disorder harboring pathogenic variants in one of the four genes. We applied the standardized MDSGene literature search and data extraction protocol to summarize the clinical and genetic features. All data are available via the MDSGene protocol and platform on the MDSGene website (https://www.mdsgene.org/). RESULTS Information on 717 patients (CACNA1A: 491, KCNA1: 125, PDHA1: 90, and SLC1A3: 11) carrying 287 different pathogenic variants from 229 papers was identified and summarized. We show the profound phenotypic variability and overlap leading to the absence of frank genotype-phenotype correlation aside from a few key 'red flags'. CONCLUSION Given this overlap, a broad approach to genetic testing using a panel or whole exome or genome approach is most practical in most circumstances.
Collapse
Affiliation(s)
- Diana Angelika Olszewska
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Aakash Shetty
- Department of Neurology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Rajasumi Rajalingam
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Jon Rodriguez-Antiguedad
- Movement Disorders Unit and Institut d'Investigacions Biomediques-Sant Pau, Hospital Sant Pau, Barcelona, Spain
| | - Moath Hamed
- Department of Neurosciences, NYP Brooklyn Methodist Hospital, Brooklyn, New York, USA
| | - Jana Huang
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | | | - Ashar Rasheed
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Natascha Bahr
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Harutyan Madoev
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Ana Westenberger
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Joanne Trinh
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Connie Marras
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Olga Waln
- Houston Methodist Neurological Institute, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
4
|
Xu K, Huang SS, Yue DY, Li G, Zhu SQ, Liu XY. PRRT2 Mutation and Serum Cytokines in Paroxysmal Kinesigenic Dyskinesia. Curr Med Sci 2022; 42:280-285. [PMID: 35438471 DOI: 10.1007/s11596-022-2583-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/01/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Paroxysmal kinesigenic dyskinesia (PKD) is a rare movement disorder PRRT2 gene mutations have been reported to cause PKD. However, the pathophysiological mechanism of PKD remains unclear, and it is unknown whether an inflammatory response is involved in the occurrence of this disease. We aimed to investigate the symptomatology, genotype, and serum cytokines of patients with PKD. METHODS We recruited 21 patients with PKD, including 7 with familial PKD and 14 with sporadic PKD. Their clinical features were investigated, and blood samples were collected, and PRRT2 mutations and cytokine levels were detected. RESULTS The mean age at PKD onset was 12.3±2.2 years old. Dystonia was the most common manifestation of dyskinesia, and the limbs were the most commonly affected parts. All attacks were induced by identifiable kinesigenic triggers, and the attack durations were brief (<1 min). Four different mutations from 9 probands were identified in 7 familial cases (71.4%) and 14 sporadic cases (28.6%). Two of these mutations (c.649dupC, c.620_621delAA) had already been reported, while other 2 (c.1018_1019delAA, c.1012+1G>A) were previously undocumented. The tumor necrosis factor (TNF)-α level in the PKD group was significantly higher than that in the age- and sex-matched control group (P=0.025). There were no significant differences in the interleukin (IL)-1β, IL-2R, IL-6, IL-8, or IL-10 levels between the two groups. CONCLUSION In this study, we summarized the clinical and genetic characteristics of PKD. We found that the serum TNF-α levels were elevated in patients clinically diagnosed with PKD, suggesting that an inflammatory response is involved in the pathogenesis of PKD.
Collapse
Affiliation(s)
- Ke Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shan-Shan Huang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dao-Yuan Yue
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guo Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Sui-Qiang Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Yan Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
5
|
Sanpera J, Gupta R, Singh R, Byrne S. PRRT2
‐ Associated Paroxysmal Kinesigenic Dyskinesia Only Evident with High‐Speed Cricket Bowling. Mov Disord Clin Pract 2022; 9:259-260. [PMID: 36989010 PMCID: PMC8810421 DOI: 10.1002/mdc3.13402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/21/2021] [Accepted: 12/01/2021] [Indexed: 11/10/2022] Open
Affiliation(s)
- Julia Sanpera
- Department of Paediatric Neurology Evelina London Children's Hospital London United Kingdom
| | - Rajesh Gupta
- Department of Paediatrics Maidstone and Tunbridge Wells NHS Trust Kent United Kingdom
| | - Rahul Singh
- Department of Paediatric Neurology Evelina London Children's Hospital London United Kingdom
| | - Susan Byrne
- Department of Paediatric Neurology Evelina London Children's Hospital London United Kingdom
- Department of Paediatrics and FutureNeuro Royal College of Surgeons Dublin Ireland
| |
Collapse
|
6
|
Garone G, Graziola F, Grasso M, Capuano A. Acute Movement Disorders in Childhood. J Clin Med 2021; 10:2671. [PMID: 34204464 PMCID: PMC8234395 DOI: 10.3390/jcm10122671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022] Open
Abstract
Acute-onset movement disorders (MDs) are an increasingly recognized neurological emergency in both adults and children. The spectrum of possible causes is wide, and diagnostic work-up is challenging. In their acute presentation, MDs may represent the prominent symptom or an important diagnostic clue in a broader constellation of neurological and extraneurological signs. The diagnostic approach relies on the definition of the overall clinical syndrome and on the recognition of the prominent MD phenomenology. The recognition of the underlying disorder is crucial since many causes are treatable. In this review, we summarize common and uncommon causes of acute-onset movement disorders, focusing on clinical presentation and appropriate diagnostic investigations. Both acquired (immune-mediated, infectious, vascular, toxic, metabolic) and genetic disorders causing acute MDs are reviewed, in order to provide a useful clinician's guide to this expanding field of pediatric neurology.
Collapse
Affiliation(s)
- Giacomo Garone
- Movement Disorders Clinic, Department of Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, viale San Paolo 15, 00146 Rome, Italy; (G.G.); (F.G.); (M.G.)
- University Department of Pediatrics, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Federica Graziola
- Movement Disorders Clinic, Department of Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, viale San Paolo 15, 00146 Rome, Italy; (G.G.); (F.G.); (M.G.)
| | - Melissa Grasso
- Movement Disorders Clinic, Department of Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, viale San Paolo 15, 00146 Rome, Italy; (G.G.); (F.G.); (M.G.)
| | - Alessandro Capuano
- Movement Disorders Clinic, Department of Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, viale San Paolo 15, 00146 Rome, Italy; (G.G.); (F.G.); (M.G.)
| |
Collapse
|
7
|
Ji F, Ke Q, Wang K, Luo BY. Exercise test for patients with new-onset paroxysmal kinesigenic dyskinesia. Neurol Sci 2021; 42:4623-4628. [PMID: 33661484 DOI: 10.1007/s10072-021-05118-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Abstract
The pathogenesis of primary paroxysmal kinesigenic dyskinesia (PKD) remains unclear, and channelopathy is a possibility. In a pilot study, we found that PKD patients had abnormal exercise test (ET) results. To investigate the ET performances in patients affected by PKD, and the role of the channelopathies in the pathogenesis of PKD, we compared the ET results of PKD patients, control subjects, and hypokalemic periodic paralysis (HoPP) patients, and we analyzed ET changes in 32 PKD patients before and after treatment. Forty-four PKD patients underwent genetic testing for the PRRT2, SCN4A, and CLCN1 genes. Sixteen of 59 (27%) patients had abnormal ET results in the PKD group, while 28 of 35 (80%) patients had abnormal ET results in the HoPP group. Compared with the control group, the PKD group showed a significant decrease in the compound muscle action potential (CMAP) amplitude and area after the long ET (LET), while the HoPP group showed not only greater decreases in the CMAP amplitude and area after the LET but also greater increases in the CMAP amplitude and area immediately after the LET. The ET parameters before and after treatment were not significantly different. Nine of 44 PKD patients carried PRRT2 mutations, but the gene abnormalities were unrelated to any ET parameter. The PKD group demonstrated an abnormal LET result by electromyography (EMG), and this abnormality did not seem to correlate with the PRRT2 variant or sodium channel blocker therapy.
Collapse
Affiliation(s)
- Fang Ji
- Department of Neurology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Qing Ke
- Department of Neurology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Kang Wang
- Department of Neurology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, China.
| | - Ben-Yan Luo
- Department of Neurology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, China.
| |
Collapse
|
8
|
Zhou Y, Zhang J, Wang X, Peng Q, Shang X. Paroxysmal kinesigenic dyskinesia associated with a novel POLG variant: A case report. Medicine (Baltimore) 2021; 100:e24395. [PMID: 33530235 PMCID: PMC7850660 DOI: 10.1097/md.0000000000024395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/29/2020] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Paroxysmal kinesigenic dyskinesia (PKD) is a rare neurological disease characterized by recurrent dyskinesia or choreoathetosis triggered by sudden movements. Pathogenic variants in PRRT2 are the main cause of PKD. However, only about half of clinically diagnosed PKD patients have PRRT2 mutations, indicating that additional undiscovered causative genes could be implicated. PKD associated with POLG variant has not been reported. PATIENT CONCERNS A 14-year-old boy presented with a 2-month history of involuntary dystonic movements triggered by sudden activities. He was conscious during the attacks. Neurological examination, laboratory tests, brain magnetic resonance imaging (MRI), electroencephalogram (EEG) were all normal. Genetic analysis showed a novel variant of POLG (c.440G>T, p.Ser147Ile), which was considered to be a likely pathogenic variant in this case. DIAGNOSES The patient was diagnosed with PKD. INTERVENTIONS Low dose carbamazepine was used orally for treatment. OUTCOMES The patient achieved complete resolution of symptoms without any dyskinesia during the 6-month follow up. CONCLUSION Our study identified the novel POLG variant (c.440G>T, p.Ser147Ile) to be a likely pathogenic variant in PKD.
Collapse
|
9
|
Delorme C, Giron C, Bendetowicz D, Méneret A, Mariani LL, Roze E. Current challenges in the pathophysiology, diagnosis, and treatment of paroxysmal movement disorders. Expert Rev Neurother 2020; 21:81-97. [PMID: 33089715 DOI: 10.1080/14737175.2021.1840978] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Paroxysmal movement disorders mostly comprise paroxysmal dyskinesia and episodic ataxia, and can be the consequence of a genetic disorder or symptomatic of an acquired disease. AREAS COVERED In this review, the authors focused on certain hot-topic issues in the field: the respective contribution of the cerebellum and striatum to the generation of paroxysmal dyskinesia, the importance of striatal cAMP turnover in the pathogenesis of paroxysmal dyskinesia, the treatable causes of paroxysmal movement disorders not to be missed, with a special emphasis on the treatment strategy to bypass the glucose transport defect in paroxysmal movement disorders due to GLUT1 deficiency, and functional paroxysmal movement disorders. EXPERT OPINION Treatment of genetic causes of paroxysmal movement disorders is evolving towards precision medicine with targeted gene-specific therapy. Alteration of the cerebellar output and modulation of the striatal cAMP turnover offer new perspectives for experimental therapeutics, at least for paroxysmal movement disorders due to selected causes. Further characterization of cell-specific molecular pathways or network dysfunctions that are critically involved in the pathogenesis of paroxysmal movement disorders will likely result in the identification of new biomarkers and testing of innovative-targeted therapeutics.
Collapse
Affiliation(s)
- Cécile Delorme
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière , Paris, France
| | - Camille Giron
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière , Paris, France
| | - David Bendetowicz
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière , Paris, France.,Inserm U 1127, CNRS UMR 7225- Institut du cerveau (ICM), Sorbonne Université , Paris, France
| | - Aurélie Méneret
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière , Paris, France.,Inserm U 1127, CNRS UMR 7225- Institut du cerveau (ICM), Sorbonne Université , Paris, France
| | - Louise-Laure Mariani
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière , Paris, France.,Inserm U 1127, CNRS UMR 7225- Institut du cerveau (ICM), Sorbonne Université , Paris, France
| | - Emmanuel Roze
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière , Paris, France.,Inserm U 1127, CNRS UMR 7225- Institut du cerveau (ICM), Sorbonne Université , Paris, France
| |
Collapse
|
10
|
Abstract
Paroxysmal dyskinesia (PxD) is a heterogeneous group of syndromes characterized by recurrent attacks of abnormal movements, triggered by detectable factors, without loss of consciousness. According to the precipitating factors, they are classified as paroxysmal kinesigenic dyskinesia (PKD), paroxysmal non-kinesigenic dyskinesia (PNKD), and paroxysmal exercise-induced dystonia (PED). PxD treatment is based on the combination of nonpharmacologic and pharmacologic approaches. Pharmacologic and nonpharmacologic treatments effective for PNKD and PED also are available. In PxD refractory to conventional treatment, surgery might be an alternative therapeutic option. The course of PRRT2-PKD and MR-1-PNKD is benign, and treatment might not be needed with advancing age.
Collapse
|
11
|
Pandey S, Chouksey A, Bhattad S. Severe Choreo-Ballism Episodes Due to PRRT2 Gene Mutations-A Vignette. Mov Disord Clin Pract 2020; 7:857-858. [PMID: 33043084 DOI: 10.1002/mdc3.13042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/19/2020] [Accepted: 07/24/2020] [Indexed: 02/01/2023] Open
Affiliation(s)
- Sanjay Pandey
- Department of Neurology Govind Ballabh Pant Postgraduate Institute of Medical Education and Research New Delhi India
| | - Anjali Chouksey
- Department of Neurology Govind Ballabh Pant Postgraduate Institute of Medical Education and Research New Delhi India
| | - Sonali Bhattad
- Department of Neurology Govind Ballabh Pant Postgraduate Institute of Medical Education and Research New Delhi India
| |
Collapse
|
12
|
Clinical and Genetic Overview of Paroxysmal Movement Disorders and Episodic Ataxias. Int J Mol Sci 2020; 21:ijms21103603. [PMID: 32443735 PMCID: PMC7279391 DOI: 10.3390/ijms21103603] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022] Open
Abstract
Paroxysmal movement disorders (PMDs) are rare neurological diseases typically manifesting with intermittent attacks of abnormal involuntary movements. Two main categories of PMDs are recognized based on the phenomenology: Paroxysmal dyskinesias (PxDs) are characterized by transient episodes hyperkinetic movement disorders, while attacks of cerebellar dysfunction are the hallmark of episodic ataxias (EAs). From an etiological point of view, both primary (genetic) and secondary (acquired) causes of PMDs are known. Recognition and diagnosis of PMDs is based on personal and familial medical history, physical examination, detailed reconstruction of ictal phenomenology, neuroimaging, and genetic analysis. Neurophysiological or laboratory tests are reserved for selected cases. Genetic knowledge of PMDs has been largely incremented by the advent of next generation sequencing (NGS) methodologies. The wide number of genes involved in the pathogenesis of PMDs reflects a high complexity of molecular bases of neurotransmission in cerebellar and basal ganglia circuits. In consideration of the broad genetic and phenotypic heterogeneity, a NGS approach by targeted panel for movement disorders, clinical or whole exome sequencing should be preferred, whenever possible, to a single gene approach, in order to increase diagnostic rate. This review is focused on clinical and genetic features of PMDs with the aim to (1) help clinicians to recognize, diagnose and treat patients with PMDs as well as to (2) provide an overview of genes and molecular mechanisms underlying these intriguing neurogenetic disorders.
Collapse
|
13
|
Piarroux J, Riant F, Humbertclaude V, Remerand G, Hadjadj J, Rejou F, Coubes C, Pinson L, Meyer P, Roubertie A. FGF14-related episodic ataxia: delineating the phenotype of Episodic Ataxia type 9. Ann Clin Transl Neurol 2020; 7:565-572. [PMID: 32162847 PMCID: PMC7187715 DOI: 10.1002/acn3.51005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 11/09/2022] Open
Abstract
We report four patients from two families who presented attacks of childhood-onset episodic ataxia associated with pathogenic mutations in the FGF14 gene. Attacks were triggered by fever, lasted several days, and had variable frequencies. Nystagmus and/or postural tremor and/or learning disabilities were noticed in individuals harboring FGF14 mutation with or without episodic ataxia. These cases and literature data delineate the FGF14-mutation-related episodic ataxia phenotype: wide range of age at onset (from childhood to adulthood), variable durations and frequencies, triggering factors including fever, and association to chronic symptoms. We propose to add FGF14-related episodic ataxia to the list of primary episodic ataxia as Episodic Ataxia type 9.
Collapse
Affiliation(s)
- Julie Piarroux
- Département de Neuropédiatrie, CHU Gui de Chauliac, Montpellier, France
| | - Florence Riant
- Service de Génétique Moléculaire Neurovasculaire, Groupe hospitalier Saint-Louis - Lariboisière - Fernand Widal AP-HP, Paris, France
| | - Véronique Humbertclaude
- Service de Médecine Psychologique Enfants et Adolescents, CHU Saint Eloi, Montpellier, France
| | | | - Jessica Hadjadj
- Service de Génétique Moléculaire Neurovasculaire, Groupe hospitalier Saint-Louis - Lariboisière - Fernand Widal AP-HP, Paris, France
| | - Franck Rejou
- Département de Neuropédiatrie, CHU Gui de Chauliac, Montpellier, France
| | - Christine Coubes
- Service de Génétique Clinique, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Hôpital Arnaud de Villeneuve, CHU de Montpellier, Montpellier, France
| | - Lucile Pinson
- Service de Génétique Clinique, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Hôpital Arnaud de Villeneuve, CHU de Montpellier, Montpellier, France
| | - Pierre Meyer
- Département de Neuropédiatrie, CHU Gui de Chauliac, Montpellier, France.,PhyMedExp, U1046 INSERM, UMR9214 CNRS, Montpellier, France
| | - Agathe Roubertie
- Département de Neuropédiatrie, CHU Gui de Chauliac, Montpellier, France.,INSERM U 1051, Institut des Neurosciences de Montpellier, Montpellier, France
| |
Collapse
|
14
|
Schesny M, Joncourt F, Tarnutzer AA. Acetazolamide-Responsive Episodic Ataxia Linked to Novel Splice Site Variant in FGF14 Gene. THE CEREBELLUM 2019; 18:649-653. [PMID: 30607796 DOI: 10.1007/s12311-018-0997-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Here we describe the case of a patient with episodic dizziness and gait imbalance for 7 years and a negative family history. On clinical examination, interictally, the patient presented with gaze-evoked nystagmus and rebound nystagmus and slight dysarthria. MRI of the brain was normal and peripheral-vestibular function was bilaterally intact. Based on genetic testing (episodic ataxia panel), a heterozygote splice site variant in intron 1 of the FGF14 gene was identified. This report adds important new evidence to previous observations that pathogenic variants in the FGF14 gene may result in variable phenotypes, either in progressive spinocerebellar ataxia (type 27) or in episodic ataxia as in our case. Our patient responded well to acetazolamide (reduction in the frequency of attacks by about two thirds), supporting the hypothesis of a sodium channelopathy.
Collapse
Affiliation(s)
- M Schesny
- Department of Neurology, University Hospital Zurich, Frauenklinikstr. 26, 8091, Zurich, Switzerland
| | - F Joncourt
- Division of Human Genetics, Department of Pediatrics, University Hospital Berne, Berne, Switzerland
| | - Alexander A Tarnutzer
- Department of Neurology, University Hospital Zurich, Frauenklinikstr. 26, 8091, Zurich, Switzerland. .,University of Zurich, Zurich, Switzerland.
| |
Collapse
|
15
|
Abstract
Paroxysmal dyskinesias (PxD) comprise a group of heterogeneous syndromes characterized by recurrent attacks of mainly dystonia and/or chorea, without loss of consciousness. PxD have been classified according to their triggers and duration as paroxysmal kinesigenic dyskinesia, paroxysmal nonkinesigenic dyskinesia and paroxysmal exertion-induced dyskinesia. Of note, the spectrum of genetic and nongenetic conditions underlying PxD is continuously increasing, but not always a phenotype–etiology correlation exists. This creates a challenge in the diagnostic work-up, increased by the fact that most of these episodes are unwitnessed. Furthermore, other paroxysmal disorders, included those of psychogenic origin, should be considered in the differential diagnosis. In this review, some key points for the diagnosis are provided, as well as the appropriate treatment and future approaches discussed.
Collapse
Affiliation(s)
- Raquel Manso-Calderón
- Department of Neurology, University Hospital of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| |
Collapse
|
16
|
Méneret A, Roze E, Maranci JB, Dodet P, Doummar D, Riant F, Tranchant C, Fraix V, Anheim M, Ekmen A, McGovern E, Vidailhet M, Arnulf I, Leu-Semenescu S. Sleep in ADCY5-Related Dyskinesia: Prolonged Awakenings Caused by Abnormal Movements. J Clin Sleep Med 2019; 15:1021-1029. [PMID: 31383240 DOI: 10.5664/jcsm.7886] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/18/2019] [Indexed: 12/15/2022]
Abstract
STUDY OBJECTIVES ADCY5 mutations cause early-onset hyperkinetic movement disorders comprising diurnal and nocturnal paroxysmal dyskinesia, and patient-reported sleep fragmentation. We aimed to characterize all movements occurring during sleep and in the transition from sleep to awakening, to ascertain if there is a primary sleep disorder, or if the sleep disturbance is rather a consequence of the dyskinesia. METHODS Using video polysomnography, we evaluated the nocturnal motor events and abnormal movements in 7 patients with ADCY5-related dyskinesia and compared their sleep measures with those of 14 age- and sex-matched healthy controls. RESULTS We observed an increased occurrence of abnormal movements during wake periods compared to sleep in patients with ADCY5-related dyskinesia. While asleep, abnormal movements occurred more frequently during stage N2 and REM sleep, in contrast with stage N3 sleep. Abnormal movements were also more frequent during morning awakenings compared to wake periods before falling asleep. The pattern of the nocturnal abnormal movements mirrored those observed during waking hours. Compared to controls, patients with ADCY5-related dyskinesia had lower sleep efficiencies due to prolonged awakenings secondary to the abnormal movements, but no other differences in sleep measures. Notably, sleep onset latency was short and devoid of violent abnormal movements. CONCLUSIONS In this series of patients with ADCY5-related dyskinesia, nocturnal paroxysmal dyskinesia were not associated with drowsiness or delayed sleep onset, but emerged during nighttime awakenings with subsequent delayed sleep, whereas sleep architecture was normal.
Collapse
Affiliation(s)
- Aurélie Méneret
- Department of Neurology, Pitié-Salpêtrière Hospital, Paris, France.,Faculty of Medicine of Sorbonne University, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Emmanuel Roze
- Department of Neurology, Pitié-Salpêtrière Hospital, Paris, France.,Faculty of Medicine of Sorbonne University, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Jean-Baptiste Maranci
- Sleep Disorders (Department "R3S"), Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Pauline Dodet
- Sleep Disorders (Department "R3S"), Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Diane Doummar
- Department of Pediatric Neurology, Hôpital Armand-Trousseau, Paris, France
| | - Florence Riant
- Groupe hospitalier Lariboisière-Fernand Widal, Laboratoire de Génétique, Paris, France.,Université Paris, Paris, France
| | - Christine Tranchant
- Department of Neurology, Hautepierre Hospital, University Hospitals of Strasbourg, Strasbourg, France.,Institute of Genetics and Molecular and Cellular Biology, University of Strasbourg, Illkirch, France.,Strasbourg Federation of Translational Medicine, University of Strasbourg, Strasbourg, France
| | - Valérie Fraix
- Service de Neurologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble Institut des Neurosciences, Université Grenoble Alpes, Grenoble, France
| | - Mathieu Anheim
- Department of Neurology, Hautepierre Hospital, University Hospitals of Strasbourg, Strasbourg, France.,Institute of Genetics and Molecular and Cellular Biology, University of Strasbourg, Illkirch, France.,Strasbourg Federation of Translational Medicine, University of Strasbourg, Strasbourg, France
| | - Asya Ekmen
- Faculty of Medicine of Sorbonne University, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Eavan McGovern
- Department of Neurology, Pitié-Salpêtrière Hospital, Paris, France
| | - Marie Vidailhet
- Department of Neurology, Pitié-Salpêtrière Hospital, Paris, France.,Faculty of Medicine of Sorbonne University, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Isabelle Arnulf
- Faculty of Medicine of Sorbonne University, Institut du Cerveau et de la Moelle épinière, Paris, France.,Sleep Disorders (Department "R3S"), Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Smaranda Leu-Semenescu
- Sleep Disorders (Department "R3S"), Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Recent advancements in next-generation sequencing (NGS) have enabled techniques such as whole exome sequencing (WES) and whole genome sequencing (WGS) to be used to study paroxysmal movement disorders (PMDs). This review summarizes how the recent genetic advances have altered our understanding of the pathophysiology and treatment of the PMDs. Recently described disease entities are also discussed. RECENT FINDINGS With the recognition of the phenotypic and genotypic heterogeneity that occurs amongst the PMDs, an increasing number of gene mutations are now implicated to cause the disorders. PMDs can also occur as part of a complex phenotype. The increasing complexity of PMDs challenges the way we view and classify them. The identification of new causative genes and their genotype-phenotype correlation will shed more light on the underlying pathophysiology and will facilitate development of genetic testing guidelines and identification of novel drug targets for PMDs.
Collapse
Affiliation(s)
- Zheyu Xu
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Che-Kang Lim
- Department of Clinical Translational Research, Singapore General Hospital, Bukit Merah, Singapore, Singapore
- Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institute, Solna, Sweden
| | - Louis C S Tan
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
- Duke-NUS Medical School, 8 College Rd, Singapore, 169857, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.
- Duke-NUS Medical School, 8 College Rd, Singapore, 169857, Singapore.
| |
Collapse
|
18
|
Zhang XJ, Xu ZY, Wu YC, Tan EK. Paroxysmal movement disorders: Recent advances and proposal of a classification system. Parkinsonism Relat Disord 2019; 59:131-139. [PMID: 30902529 DOI: 10.1016/j.parkreldis.2019.02.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 02/09/2019] [Accepted: 02/15/2019] [Indexed: 01/18/2023]
Abstract
The increasing recognition of the phenotypic and genotypic heterogeneity that exists amongst the paroxysmal movement disorders (PMDs) is challenging the way these disorders have been traditionally classified. The present review aims to summarize how recent genetic advances have influenced our understanding of the nosology, pathophysiology and treatment strategies of paroxysmal movement disorders. We propose classifying PMDs using a system that would combine both phenotype and genotype information to allow these disorders to be better categorized and studied. In the era of next generation sequencing, the use of a standardized algorithm and employment of selective genetic screening will lead to greater diagnostic certainty and targeted therapeutics for the patients.
Collapse
Affiliation(s)
- Xiao-Jin Zhang
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore; Department of Neurology, Shanghai General Hospital, China; Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore
| | - Zhe-Yu Xu
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | - Yun-Cheng Wu
- Department of Neurology, Shanghai General Hospital, China
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore.
| |
Collapse
|