1
|
Jerow LG, Krueger DA, Gross C, Danzer SC. Somatic mosaicism and interneuron involvement in mTORopathies. Trends Neurosci 2025:S0166-2236(25)00040-2. [PMID: 40121168 DOI: 10.1016/j.tins.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/27/2025] [Accepted: 02/25/2025] [Indexed: 03/25/2025]
Abstract
Somatic mutations in genes regulating mechanistic target of rapamycin (mTOR) pathway signaling can cause epilepsy, autism, and cognitive dysfunction. Research has predominantly focused on mTOR regulation of excitatory neurons in these conditions; however, dysregulated mTOR signaling among interneurons may also be critical. In this review, we discuss clinical evidence for interneuron involvement, and potential mechanisms, known and hypothetical, by which interneurons might come to directly harbor pathogenic mutations. To understand how mTOR hyperactive interneurons might drive dysfunction, we review studies in which mTOR signaling has been selectively disrupted among interneurons and interneuron progenitors in mouse model systems. Complex cellular mosaicism and dual roles for mTOR (hyper)activation in mediating disease pathogenesis and homeostatic responses raise challenging questions for effective treatment of these disorders.
Collapse
Affiliation(s)
- Lilian G Jerow
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, USA; Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Darcy A Krueger
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Christina Gross
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, USA; Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Steve C Danzer
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, USA; Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
2
|
Guan Q, Xing S, Wang L, Zhu J, Guo C, Xu C, Zhao Q, Wu Y, Chen Y, Sun H. Triazoles in Medicinal Chemistry: Physicochemical Properties, Bioisosterism, and Application. J Med Chem 2024; 67:7788-7824. [PMID: 38699796 DOI: 10.1021/acs.jmedchem.4c00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Triazole demonstrates distinctive physicochemical properties, characterized by weak basicity, various dipole moments, and significant dual hydrogen bond acceptor and donor capabilities. These features are poised to play a pivotal role in drug-target interactions. The inherent polarity of triazole contributes to its lower logP, suggesting the potential improvement in water solubility. The metabolic stability of triazole adds additional value to drug discovery. Moreover, the metal-binding capacity of the nitrogen atom lone pair electrons of triazole has broad applications in the development of metal chelators and antifungal agents. This Perspective aims to underscore the unique physicochemical attributes of triazole and its application. A comparative analysis involving triazole isomers and other heterocycles provides guiding insights for the subsequent design of triazoles, with the hope of offering valuable considerations for designing other heterocycles in medicinal chemistry.
Collapse
Affiliation(s)
- Qianwen Guan
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Lei Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Jiawei Zhu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Can Guo
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Chunlei Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Qun Zhao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Yulan Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| |
Collapse
|
3
|
Bonazzi S, Gray A, Thomsen NM, Biag J, Labbe-Giguere N, Keaney EP, Malik HA, Sun Y, Nunez J, Karki RG, Knapp M, Elling R, Fuller J, Pardee G, Craig L, Capre K, Salas S, Gorde A, Liang G, Lubicka D, McTighe SM, Goold C, Liu S, Deng L, Hong J, Fekete A, Stadelmann P, Frieauff W, Elhajouji A, Bauer D, Lerchner A, Radetich B, Furet P, Piizzi G, Burdette D, Wilson CJ, Peukert S, Hamann LG, Murphy LO, Curtis D. Identification of Brain-Penetrant ATP-Competitive mTOR Inhibitors for CNS Syndromes. J Med Chem 2023. [PMID: 37399505 DOI: 10.1021/acs.jmedchem.3c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
The allosteric inhibitor of the mechanistic target of rapamycin (mTOR) everolimus reduces seizures in tuberous sclerosis complex (TSC) patients through partial inhibition of mTOR functions. Due to its limited brain permeability, we sought to develop a catalytic mTOR inhibitor optimized for central nervous system (CNS) indications. We recently reported an mTOR inhibitor (1) that is able to block mTOR functions in the mouse brain and extend the survival of mice with neuronal-specific ablation of the Tsc1 gene. However, 1 showed the risk of genotoxicity in vitro. Through structure-activity relationship (SAR) optimization, we identified compounds 9 and 11 without genotoxicity risk. In neuronal cell-based models of mTOR hyperactivity, both corrected aberrant mTOR activity and significantly improved the survival rate of mice in the Tsc1 gene knockout model. Unfortunately, 9 and 11 showed limited oral exposures in higher species and dose-limiting toxicities in cynomolgus macaque, respectively. However, they remain optimal tools to explore mTOR hyperactivity in CNS disease models.
Collapse
Affiliation(s)
- Simone Bonazzi
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Audrey Gray
- Neuroscience, Novartis Institutes for BioMedical Research, 22 Windsor Street, Cambridge, Massachusetts 02139, United States
| | - Noel M Thomsen
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Jonathan Biag
- Neuroscience, Novartis Institutes for BioMedical Research, 22 Windsor Street, Cambridge, Massachusetts 02139, United States
| | - Nancy Labbe-Giguere
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Erin P Keaney
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Hasnain A Malik
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Yingchuan Sun
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Jill Nunez
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Rajeshri G Karki
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Mark Knapp
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5959 Horton St, Emeryville, California 94608, United States
| | - Robert Elling
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5959 Horton St, Emeryville, California 94608, United States
| | - John Fuller
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, 5959 Horton St, Emeryville, California 94608, United States
| | - Gwynn Pardee
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, 5959 Horton St, Emeryville, California 94608, United States
| | - Lucas Craig
- Neuroscience, Novartis Institutes for BioMedical Research, 22 Windsor Street, Cambridge, Massachusetts 02139, United States
| | - Ketthsy Capre
- Neuroscience, Novartis Institutes for BioMedical Research, 22 Windsor Street, Cambridge, Massachusetts 02139, United States
| | - Sarah Salas
- Neuroscience, Novartis Institutes for BioMedical Research, 22 Windsor Street, Cambridge, Massachusetts 02139, United States
| | - Aakruti Gorde
- Neuroscience, Novartis Institutes for BioMedical Research, 22 Windsor Street, Cambridge, Massachusetts 02139, United States
| | - Guiqing Liang
- Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Danuta Lubicka
- Global Drug Development/Technical Research and Development, Novartis Institutes for BioMedical Research, 700 Main Street, Cambridge, Massachusetts 02139, United States
| | - Stephanie M McTighe
- Neuroscience, Novartis Institutes for BioMedical Research, 22 Windsor Street, Cambridge, Massachusetts 02139, United States
| | - Carleton Goold
- Neuroscience, Novartis Institutes for BioMedical Research, 22 Windsor Street, Cambridge, Massachusetts 02139, United States
| | - Shanming Liu
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Lin Deng
- Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jin Hong
- Preclinical Safety, Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Alexander Fekete
- Preclinical Safety, Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Pascal Stadelmann
- Preclinical Safety, Novartis Institutes for BioMedical Research, Fabrikstrasse 28, 4056 Basel, Switzerland
| | - Wilfried Frieauff
- Preclinical Safety, Novartis Institutes for BioMedical Research, Fabrikstrasse 28, 4056 Basel, Switzerland
| | - Azeddine Elhajouji
- Preclinical Safety, Novartis Institutes for BioMedical Research, Fabrikstrasse 28, 4056 Basel, Switzerland
| | - Daniel Bauer
- Preclinical Safety, Novartis Institutes for BioMedical Research, Fabrikstrasse 28, 4056 Basel, Switzerland
| | - Andreas Lerchner
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Fabrikstrasse 22, 4056 Basel, Switzerland
| | - Branko Radetich
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Pascal Furet
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Fabrikstrasse 22, 4056 Basel, Switzerland
| | - Grazia Piizzi
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Doug Burdette
- Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Christopher J Wilson
- Neuroscience, Novartis Institutes for BioMedical Research, 22 Windsor Street, Cambridge, Massachusetts 02139, United States
| | - Stefan Peukert
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Lawrence G Hamann
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Leon O Murphy
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Daniel Curtis
- Neuroscience, Novartis Institutes for BioMedical Research, 22 Windsor Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
4
|
Boßelmann CM, Leu C, Lal D. Technological and computational approaches to detect somatic mosaicism in epilepsy. Neurobiol Dis 2023:106208. [PMID: 37343892 DOI: 10.1016/j.nbd.2023.106208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/03/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023] Open
Abstract
Lesional epilepsy is a common and severe disease commonly associated with malformations of cortical development, including focal cortical dysplasia and hemimegalencephaly. Recent advances in sequencing and variant calling technologies have identified several genetic causes, including both short/single nucleotide and structural somatic variation. In this review, we aim to provide a comprehensive overview of the methodological advancements in this field while highlighting the unresolved technological and computational challenges that persist, including ultra-low variant allele fractions in bulk tissue, low availability of paired control samples, spatial variability of mutational burden within the lesion, and the issue of false-positive calls and validation procedures. Information from genetic testing in focal epilepsy may be integrated into clinical care to inform histopathological diagnosis, postoperative prognosis, and candidate precision therapies.
Collapse
Affiliation(s)
- Christian M Boßelmann
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Costin Leu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK.
| | - Dennis Lal
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and M.I.T., Cambridge, MA, USA; Cologne Center for Genomics (CCG), University of Cologne, Cologne, DE, USA
| |
Collapse
|
5
|
Bychkova E, Dorofeeva M, Levov A, Kislyakov A, Karandasheva K, Strelnikov V, Anoshkin K. Specific Features of Focal Cortical Dysplasia in Tuberous Sclerosis Complex. Curr Issues Mol Biol 2023; 45:3977-3996. [PMID: 37232723 DOI: 10.3390/cimb45050254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Patients with tuberous sclerosis complex present with cognitive, behavioral, and psychiatric impairments, such as intellectual disabilities, autism spectrum disorders, and drug-resistant epilepsy. It has been shown that these disorders are associated with the presence of cortical tubers. Tuberous sclerosis complex results from inactivating mutations in the TSC1 or TSC2 genes, resulting in hyperactivation of the mTOR signaling pathway, which regulates cell growth, proliferation, survival, and autophagy. TSC1 and TSC2 are classified as tumor suppressor genes and function according to Knudson's two-hit hypothesis, which requires both alleles to be damaged for tumor formation. However, a second-hit mutation is a rare event in cortical tubers. This suggests that the molecular mechanism of cortical tuber formation may be more complicated and requires further research. This review highlights the issues of molecular genetics and genotype-phenotype correlations, considers histopathological characteristics and the mechanism of morphogenesis of cortical tubers, and also presents data on the relationship between these formations and the development of neurological manifestations, as well as treatment options.
Collapse
Affiliation(s)
- Ekaterina Bychkova
- Research Centre for Medical Genetics, Moskvorechye Street 1, 115522 Moscow, Russia
- Faculty of Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova Street 1, 117997 Moscow, Russia
| | - Marina Dorofeeva
- Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery, Pirogov Russian National Research Medical University, Taldomskaya 2, 125412 Moscow, Russia
| | - Aleksandr Levov
- Morozov Children's City Clinical Hospital, 4th Dobryninsky Lane, 1/9, 119049 Moscow, Russia
| | - Alexey Kislyakov
- Morozov Children's City Clinical Hospital, 4th Dobryninsky Lane, 1/9, 119049 Moscow, Russia
| | | | - Vladimir Strelnikov
- Research Centre for Medical Genetics, Moskvorechye Street 1, 115522 Moscow, Russia
| | - Kirill Anoshkin
- Research Centre for Medical Genetics, Moskvorechye Street 1, 115522 Moscow, Russia
| |
Collapse
|
6
|
Studer M, Rossini L, Spreafico R, Pelliccia V, Tassi L, de Curtis M, Garbelli R. Why are type II focal cortical dysplasias frequently located at the bottom of sulcus? A neurodevelopmental hypothesis. Epilepsia 2022; 63:2716-2721. [PMID: 35932101 DOI: 10.1111/epi.17386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022]
Affiliation(s)
| | - Laura Rossini
- Epilepsy Unit, Fondazione IRCCS, Istituto Neurologico Carlo Besta, Milano, Italy
| | - Roberto Spreafico
- Epilepsy Unit, Fondazione IRCCS, Istituto Neurologico Carlo Besta, Milano, Italy
| | - Veronica Pelliccia
- "Claudio Munari" Epilepsy Surgery Centre, Niguarda Hospital, Milano, Italy
| | - Laura Tassi
- "Claudio Munari" Epilepsy Surgery Centre, Niguarda Hospital, Milano, Italy
| | - Marco de Curtis
- Epilepsy Unit, Fondazione IRCCS, Istituto Neurologico Carlo Besta, Milano, Italy
| | - Rita Garbelli
- Epilepsy Unit, Fondazione IRCCS, Istituto Neurologico Carlo Besta, Milano, Italy
| |
Collapse
|
7
|
Kang HJ, Kim DS, Kim SH, Lee JH, Ko A, Kim SH, Lee JS, Kim HD, Kang HC. Epilepsy with SLC35A2 Brain Somatic Mutations in Mild Malformation of Cortical Development with Oligodendroglial Hyperplasia in Epilepsy (MOGHE). ANNALS OF CHILD NEUROLOGY 2022. [DOI: 10.26815/acn.2022.00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Purpose: This study presents the characteristics of patients with mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy (MOGHE) with SLC35A2 somatic variants in the brain who underwent epilepsy surgery and showed clinical improvement in seizures. Methods: We collected 10 patients with SLC35A2 somatic mutations in the brain who underwent surgery to treat drug-resistant epilepsy at Severance Children’s Hospital from 2014 to 2019 and retrospectively reviewed their genetic profiles, neuropathologic results, clinical features, pre-operative evaluations, and post-operative outcomes.Results: Six of the 10 patients with SCL35A2 somatic mutations in the brain had Lennox Gastaut syndrome (LGS) evolving from infantile spasms (IS), three had LGS, and one had IS. The median value of variant allele frequencies (VAFs) was 5.7% (1.7% to 5.8%; range, 1.4% to 22.9%). Nonsense mutations were the most common (50%), followed by missense mutations (40%) and a splicing site mutation (10%). Eight patients (80%) had good post-operative outcomes, with freedom from disabling seizures in five (Engel class I) and rare disabling seizures in three (Engel class II). Four of the eight patients who could be assessed for social quotient (SQ) after surgery showed SQ improvements by 12.2±6.4. Although all patients were finally diagnosed with MOGHE, seven (70%) were initially diagnosed with gliosis, two with mild malformation of cortical development, and one with no abnormality.Conclusion: All patients with SCL35A2 brain somatic mutations, even with low VAFs, had refractory epilepsy such as LGS or IS, and were finally diagnosed with MOGHE. This report is the first in Korea to our knowledge.
Collapse
|
8
|
Ye Z, Bennett MF, Bahlo M, Scheffer IE, Berkovic SF, Perucca P, Hildebrand MS. Cutting edge approaches to detecting brain mosaicism associated with common focal epilepsies: implications for diagnosis and potential therapies. Expert Rev Neurother 2021; 21:1309-1316. [PMID: 34519595 DOI: 10.1080/14737175.2021.1981288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Mosaic variants arising in brain tissue are increasingly being recognized as a hidden cause of focal epilepsy. This knowledge gain has been driven by new, highly sensitive genetic technologies and genome-wide analysis of brain tissue from surgical resection or autopsy in a small proportion of patients with focal epilepsy. Recently reported novel strategies to detect mosaic variants limited to brain have exploited trace brain DNA obtained from cerebrospinal fluid liquid biopsies or stereo-electroencephalography electrodes. AREAS COVERED The authors review the data on these innovative approaches published in PubMed before 12 June 2021, discuss the challenges associated with their application, and describe how they are likely to improve detection of mosaic variants to provide new molecular diagnoses and therapeutic targets for focal epilepsy, with potential utility in other nonmalignant neurological disorders. EXPERT OPINION These cutting-edge approaches may reveal the hidden genetic etiology of focal epilepsies and provide guidance for precision medicine.
Collapse
Affiliation(s)
- Zimeng Ye
- Department of Medicine (Austin Health), Epilepsy Research Centre, University of Melbourne, Heidelberg, Australia
| | - Mark F Bennett
- Department of Medicine (Austin Health), Epilepsy Research Centre, University of Melbourne, Heidelberg, Australia.,Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Ingrid E Scheffer
- Department of Medicine (Austin Health), Epilepsy Research Centre, University of Melbourne, Heidelberg, Australia.,Neuroscience Research Group, Murdoch Children's Research Institute, Parkville, Australia.,Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Australia.,Department of Neurology, Comprehensive Epilepsy Program, Austin Health, Heidelberg, Australia
| | - Samuel F Berkovic
- Department of Medicine (Austin Health), Epilepsy Research Centre, University of Melbourne, Heidelberg, Australia.,Department of Neurology, Comprehensive Epilepsy Program, Austin Health, Heidelberg, Australia
| | - Piero Perucca
- Department of Medicine (Austin Health), Epilepsy Research Centre, University of Melbourne, Heidelberg, Australia.,Department of Neurology, Comprehensive Epilepsy Program, Austin Health, Heidelberg, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia.,Department of Neurology, Alfred Health, Melbourne, Australia.,Department of Neurology, The Royal Melbourne Hospital, Parkville, Australia
| | - Michael S Hildebrand
- Department of Medicine (Austin Health), Epilepsy Research Centre, University of Melbourne, Heidelberg, Australia.,Neuroscience Research Group, Murdoch Children's Research Institute, Parkville, Australia
| |
Collapse
|
9
|
Rossini L, De Santis D, Mauceri RR, Tesoriero C, Bentivoglio M, Maderna E, Maiorana A, Deleo F, de Curtis M, Tringali G, Cossu M, Tumminelli G, Bramerio M, Spreafico R, Tassi L, Garbelli R. Dendritic pathology, spine loss and synaptic reorganization in human cortex from epilepsy patients. Brain 2021; 144:251-265. [PMID: 33221837 DOI: 10.1093/brain/awaa387] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/06/2020] [Accepted: 09/07/2020] [Indexed: 12/26/2022] Open
Abstract
Neuronal dendritic arborizations and dendritic spines are crucial for a normal synaptic transmission and may be critically involved in the pathophysiology of epilepsy. Alterations in dendritic morphology and spine loss mainly in hippocampal neurons have been reported both in epilepsy animal models and in human brain tissues from patients with epilepsy. However, it is still unclear whether these dendritic abnormalities relate to the cause of epilepsy or are generated by seizure recurrence. We investigated fine neuronal structures at the level of dendritic and spine organization using Golgi impregnation, and analysed synaptic networks with immunohistochemical markers of glutamatergic (vGLUT1) and GABAergic (vGAT) axon terminals in human cerebral cortices derived from epilepsy surgery. Specimens were obtained from 28 patients with different neuropathologically defined aetiologies: type Ia and type II focal cortical dysplasia, cryptogenic (no lesion) and temporal lobe epilepsy with hippocampal sclerosis. Autoptic tissues were used for comparison. Three-dimensional reconstructions of Golgi-impregnated neurons revealed severe dendritic reshaping and spine alteration in the core of the type II focal cortical dysplasia. Dysmorphic neurons showed increased dendritic complexity, reduction of dendritic spines and occasional filopodia-like protrusions emerging from the soma. Surprisingly, the intermingled normal-looking pyramidal neurons also showed severe spine loss and simplified dendritic arborization. No changes were observed outside the dysplasia (perilesional tissue) or in neocortical postsurgical tissue obtained in the other patient groups. Immunoreactivities of vGLUT1 and vGAT showed synaptic reorganization in the core of type II dysplasia characterized by the presence of abnormal perisomatic baskets around dysmorphic neurons, in particular those with filopodia-like protrusions, and changes in vGLUT1/vGAT expression. Ultrastructural data in type II dysplasia highlighted the presence of altered neuropil engulfed by glial processes. Our data indicate that the fine morphological aspect of neurons and dendritic spines are normal in epileptogenic neocortex, with the exception of type II dysplastic lesions. The findings suggest that the mechanisms leading to this severe form of cortical malformation interfere with the normal dendritic arborization and synaptic network organization. The data argue against the concept that long-lasting epilepsy and seizure recurrence per se unavoidably produce a dendritic pathology.
Collapse
Affiliation(s)
- Laura Rossini
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Dalia De Santis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | | | - Chiara Tesoriero
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | - Marina Bentivoglio
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | - Emanuela Maderna
- Division of Neurology V and Neuropathology, Fondazione IRCCS, Istituto Neurologico Carlo Besta, Milano, Italy
| | - Antonio Maiorana
- Institute of Pathology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Deleo
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Marco de Curtis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Giovanni Tringali
- Neurosurgery Unit, Fondazione IRCCS, Istituto Neurologico Carlo Besta, Milano, Italy
| | - Massimo Cossu
- "Claudio Munari" Epilepsy Surgery Center, GOM Niguarda, Milano, Italy
| | - Gemma Tumminelli
- "Claudio Munari" Epilepsy Surgery Center, GOM Niguarda, Milano, Italy
| | | | - Roberto Spreafico
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Laura Tassi
- "Claudio Munari" Epilepsy Surgery Center, GOM Niguarda, Milano, Italy
| | - Rita Garbelli
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| |
Collapse
|
10
|
Specchio N, Pepi C, De Palma L, Trivisano M, Vigevano F, Curatolo P. Neuroimaging and genetic characteristics of malformation of cortical development due to mTOR pathway dysregulation: clues for the epileptogenic lesions and indications for epilepsy surgery. Expert Rev Neurother 2021; 21:1333-1345. [PMID: 33754929 DOI: 10.1080/14737175.2021.1906651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Malformation of cortical development (MCD) is strongly associated with drug-resistant epilepsies for which surgery to remove epileptogenic lesions is common. Two notable technological advances in this field are identification of the underlying genetic cause and techniques in neuroimaging. These now question how presurgical evaluation ought to be approached for 'mTORpathies.'Area covered: From review of published primary and secondary articles, the authors summarize evidence to consider focal cortical dysplasia (FCD), tuber sclerosis complex (TSC), and hemimegalencephaly (HME) collectively as MCD mTORpathies. The authors also consider the unique features of these related conditions with particular focus on the practicalities of using neuroimaging techniques currently available to define surgical targets and predict post-surgical outcome. Ultimately, the authors consider the surgical dilemmas faced for each condition.Expert opinion: Considering FCD, TSC, and HME collectively as mTORpathies has some merit; however, a unified approach to presurgical evaluation would seem unachievable. Nevertheless, the authors believe combining genetic-centered classification and morphologic findings using advanced imaging techniques will eventually form the basis of a paradigm when considering candidacy for early surgery.
Collapse
Affiliation(s)
- Nicola Specchio
- Rare and Complex Epilepsy Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Member of European Reference Network EpiCARE, Rome, Italy
| | - Chiara Pepi
- Rare and Complex Epilepsy Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Member of European Reference Network EpiCARE, Rome, Italy
| | - Luca De Palma
- Rare and Complex Epilepsy Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Member of European Reference Network EpiCARE, Rome, Italy
| | - Marina Trivisano
- Rare and Complex Epilepsy Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Member of European Reference Network EpiCARE, Rome, Italy
| | - Federico Vigevano
- Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Member of European Reference Network EpiCARE, Rome, Italy
| | - Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, Rome, Italy
| |
Collapse
|
11
|
Goldman AM. What does a defect in N-glycosylation mean for neuronal migration and function? Neurol Genet 2020; 6:e490. [PMID: 32754647 PMCID: PMC7357410 DOI: 10.1212/nxg.0000000000000490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Alica M Goldman
- Department of Neurology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
12
|
Feliciano DM. The Neurodevelopmental Pathogenesis of Tuberous Sclerosis Complex (TSC). Front Neuroanat 2020; 14:39. [PMID: 32765227 PMCID: PMC7381175 DOI: 10.3389/fnana.2020.00039] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/10/2020] [Indexed: 12/22/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a model disorder for understanding brain development because the genes that cause TSC are known, many downstream molecular pathways have been identified, and the resulting perturbations of cellular events are established. TSC, therefore, provides an intellectual framework to understand the molecular and biochemical pathways that orchestrate normal brain development. The TSC1 and TSC2 genes encode Hamartin and Tuberin which form a GTPase activating protein (GAP) complex. Inactivating mutations in TSC genes (TSC1/TSC2) cause sustained Ras homologue enriched in brain (RHEB) activation of the mammalian isoform of the target of rapamycin complex 1 (mTORC1). TOR is a protein kinase that regulates cell size in many organisms throughout nature. mTORC1 inhibits catabolic processes including autophagy and activates anabolic processes including mRNA translation. mTORC1 regulation is achieved through two main upstream mechanisms. The first mechanism is regulation by growth factor signaling. The second mechanism is regulation by amino acids. Gene mutations that cause too much or too little mTORC1 activity lead to a spectrum of neuroanatomical changes ranging from altered brain size (micro and macrocephaly) to cortical malformations to Type I neoplasias. Because somatic mutations often underlie these changes, the timing, and location of mutation results in focal brain malformations. These mutations, therefore, provide gain-of-function and loss-of-function changes that are a powerful tool to assess the events that have gone awry during development and to determine their functional physiological consequences. Knowledge about the TSC-mTORC1 pathway has allowed scientists to predict which upstream and downstream mutations should cause commensurate neuroanatomical changes. Indeed, many of these predictions have now been clinically validated. A description of clinical imaging and histochemical findings is provided in relation to laboratory models of TSC that will allow the reader to appreciate how human pathology can provide an understanding of the fundamental mechanisms of development.
Collapse
Affiliation(s)
- David M Feliciano
- Department of Biological Sciences, Clemson University, Clemson, SC, United States
| |
Collapse
|
13
|
mTOR-Related Cell-Clearing Systems in Epileptic Seizures, an Update. Int J Mol Sci 2020; 21:ijms21051642. [PMID: 32121250 PMCID: PMC7084443 DOI: 10.3390/ijms21051642] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
Recent evidence suggests that autophagy impairment is implicated in the epileptogenic mechanisms downstream of mTOR hyperactivation. This holds true for a variety of genetic and acquired epileptic syndromes besides malformations of cortical development which are classically known as mTORopathies. Autophagy suppression is sufficient to induce epilepsy in experimental models, while rescuing autophagy prevents epileptogenesis, improves behavioral alterations, and provides neuroprotection in seizure-induced neuronal damage. The implication of autophagy in epileptogenesis and maturation phenomena related to seizure activity is supported by evidence indicating that autophagy is involved in the molecular mechanisms which are implicated in epilepsy. In general, mTOR-dependent autophagy regulates the proliferation and migration of inter-/neuronal cortical progenitors, synapse development, vesicular release, synaptic plasticity, and importantly, synaptic clustering of GABAA receptors and subsequent excitatory/inhibitory balance in the brain. Similar to autophagy, the ubiquitin–proteasome system is regulated downstream of mTOR, and it is implicated in epileptogenesis. Thus, mTOR-dependent cell-clearing systems are now taking center stage in the field of epilepsy. In the present review, we discuss such evidence in a variety of seizure-related disorders and models. This is expected to provide a deeper insight into the molecular mechanisms underlying seizure activity.
Collapse
|
14
|
Bonazzi S, Goold CP, Gray A, Thomsen NM, Nunez J, Karki RG, Gorde A, Biag JD, Malik HA, Sun Y, Liang G, Lubicka D, Salas S, Labbe-Giguere N, Keaney EP, McTighe S, Liu S, Deng L, Piizzi G, Lombardo F, Burdette D, Dodart JC, Wilson CJ, Peukert S, Curtis D, Hamann LG, Murphy LO. Discovery of a Brain-Penetrant ATP-Competitive Inhibitor of the Mechanistic Target of Rapamycin (mTOR) for CNS Disorders. J Med Chem 2020; 63:1068-1083. [PMID: 31955578 DOI: 10.1021/acs.jmedchem.9b01398] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent clinical evaluation of everolimus for seizure reduction in patients with tuberous sclerosis complex (TSC), a disease with overactivated mechanistic target of rapamycin (mTOR) signaling, has demonstrated the therapeutic value of mTOR inhibitors for central nervous system (CNS) indications. Given that everolimus is an incomplete inhibitor of the mTOR function, we sought to develop a new mTOR inhibitor that has improved properties and is suitable for CNS disorders. Starting from an in-house purine-based compound, optimization of the physicochemical properties of a thiazolopyrimidine series led to the discovery of the small molecule 7, a potent and selective brain-penetrant ATP-competitive mTOR inhibitor. In neuronal cell-based models of mTOR hyperactivity, 7 corrected the mTOR pathway activity and the resulting neuronal overgrowth phenotype. The new mTOR inhibitor 7 showed good brain exposure and significantly improved the survival rate of mice with neuronal-specific ablation of the Tsc1 gene. These results demonstrate the potential utility of this tool compound to test therapeutic hypotheses that depend on mTOR hyperactivity in the CNS.
Collapse
Affiliation(s)
- Simone Bonazzi
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research , 181 Massachusetts Ave , Cambridge , Massachusetts 02139 , United States
| | - Carleton P Goold
- Neuroscience , Novartis Institutes for BioMedical Research , 22 Windsor Street , Cambridge , Massachusetts 02139 , United States
| | - Audrey Gray
- Neuroscience , Novartis Institutes for BioMedical Research , 22 Windsor Street , Cambridge , Massachusetts 02139 , United States
| | - Noel M Thomsen
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research , 181 Massachusetts Ave , Cambridge , Massachusetts 02139 , United States
| | - Jill Nunez
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research , 181 Massachusetts Ave , Cambridge , Massachusetts 02139 , United States
| | - Rajeshri G Karki
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research , 181 Massachusetts Ave , Cambridge , Massachusetts 02139 , United States
| | - Aakruti Gorde
- Neuroscience , Novartis Institutes for BioMedical Research , 22 Windsor Street , Cambridge , Massachusetts 02139 , United States
| | - Jonathan D Biag
- Neuroscience , Novartis Institutes for BioMedical Research , 22 Windsor Street , Cambridge , Massachusetts 02139 , United States
| | - Hasnain A Malik
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research , 181 Massachusetts Ave , Cambridge , Massachusetts 02139 , United States
| | - Yingchuan Sun
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research , 181 Massachusetts Ave , Cambridge , Massachusetts 02139 , United States
| | - Guiqing Liang
- Pharmacokinetic Sciences , Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Danuta Lubicka
- Global Drug Development/Technical Research and Development , Novartis Institutes for BioMedical Research , 700 Main Street , Cambridge , Massachusetts 02139 , United States
| | - Sarah Salas
- Neuroscience , Novartis Institutes for BioMedical Research , 22 Windsor Street , Cambridge , Massachusetts 02139 , United States
| | - Nancy Labbe-Giguere
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research , 181 Massachusetts Ave , Cambridge , Massachusetts 02139 , United States
| | - Erin P Keaney
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research , 181 Massachusetts Ave , Cambridge , Massachusetts 02139 , United States
| | - Stephanie McTighe
- Neuroscience , Novartis Institutes for BioMedical Research , 22 Windsor Street , Cambridge , Massachusetts 02139 , United States
| | - Shanming Liu
- Chemical Biology and Therapeutics , Novartis Institutes for BioMedical Research , 181 Massachusetts Ave , Cambridge , Massachusetts 02139 , United States
| | - Lin Deng
- Pharmacokinetic Sciences , Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Grazia Piizzi
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research , 181 Massachusetts Ave , Cambridge , Massachusetts 02139 , United States
| | - Franco Lombardo
- Pharmacokinetic Sciences , Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Doug Burdette
- Pharmacokinetic Sciences , Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Jean-Cosme Dodart
- Neuroscience , Novartis Institutes for BioMedical Research , 22 Windsor Street , Cambridge , Massachusetts 02139 , United States
| | - Christopher J Wilson
- Neuroscience , Novartis Institutes for BioMedical Research , 22 Windsor Street , Cambridge , Massachusetts 02139 , United States
| | - Stefan Peukert
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research , 181 Massachusetts Ave , Cambridge , Massachusetts 02139 , United States
| | - Daniel Curtis
- Neuroscience , Novartis Institutes for BioMedical Research , 22 Windsor Street , Cambridge , Massachusetts 02139 , United States
| | - Lawrence G Hamann
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research , 181 Massachusetts Ave , Cambridge , Massachusetts 02139 , United States
| | - Leon O Murphy
- Chemical Biology and Therapeutics , Novartis Institutes for BioMedical Research , 181 Massachusetts Ave , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
15
|
H S N, Paudel YN, K L K. Envisioning the neuroprotective effect of Metformin in experimental epilepsy: A portrait of molecular crosstalk. Life Sci 2019; 233:116686. [PMID: 31348946 DOI: 10.1016/j.lfs.2019.116686] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022]
Abstract
Epilepsy is a neurological disorder characterized by an enduring predisposition to generate and aggravate epileptic seizures affecting around 1% of global population making it a serious health concern. Despite the recent advances in epilepsy research, no disease-modifying treatment able to terminate epileptogenesis have been reported yet reflecting the complexity in understanding the disease pathogenesis. To overcome the current treatment gap against epilepsy, one effective approach is to explore anti-epileptic effects from a drug that are approved to treat non-epileptic diseases. In this regard, Metformin emerged as an ideal candidate which is a first line treatment option for type 2 diabetes mellitus (T2DM), has conferred neuroprotection in several in vivo neurological disorders such as Alzheimer's diseases (AD), Parkinson's disease (PD), Stroke, Huntington's diseases (HD) including epilepsy. In addition, Metformin has ameliorated cognitive alteration, learning and memory induced by epilepsy as well as in animal model of AD. Herein, we review the promising findings demonstrated upon Metformin treatment against animal model of epilepsy however, the precise underlying mechanism of anti-epileptic potential of Metformin is not well understood. However, there is a growing understanding that Metformin demonstrates its anti-epileptic effect mainly via ameliorating brain oxidative damage, activation of AMPK, inhibition of mTOR pathway, downregulation of α-synuclein, reducing apoptosis, downregulation of BDNF and TrkB level. These reflects that Metformin being non-anti-epileptic drug (AED) has a potential to ameliorate the cellular pathways that were impaired in epilepsy reflecting its therapeutical potential against epileptic seizure that might plausibly overcome the limitations of today epilepsy treatment.
Collapse
Affiliation(s)
- Nandini H S
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru 570015, Karnataka, India
| | - Yam Nath Paudel
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.
| | - Krishna K L
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru 570015, Karnataka, India.
| |
Collapse
|