1
|
Tilz C, Wang-Tilz Y. Narrative Review on Common Traits of Parkinson's Disease and Epilepsy. J Clin Med 2025; 14:2716. [PMID: 40283547 PMCID: PMC12027815 DOI: 10.3390/jcm14082716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
Epilepsy and Parkinson's disease (PD) are two common neurological disorders, with a lifetime prevalence of approximately 1% and 0.4%, respectively. Both conditions affect movement and brain function and were traditionally considered distinct, with different pathophysiological mechanisms. However, recent research suggests potential links between them. Some studies indicate that epilepsy may contribute to the development of PD due to chronic neuroinflammation, excitotoxicity, and neuronal loss. Conversely, PD-related neurodegeneration in dopaminergic pathways might increase susceptibility to seizures. This article presents a narrative review of the limited literature on the pathophysiological mechanisms linking epilepsy and PD, including shared genetic factors, neurodegenerative processes, and alterations in the neurotransmitter system. It also examines the influence of anti-seizure medications and dopaminergic treatments on the symptoms and progression of both disorders, as well as their common clinical features. Additionally, the limitations of the existing data on this topic are discussed. Understanding the true relationship between these two disorders is crucial, as it could provide insight into common neurobiological mechanisms and lead to improved therapeutic strategies.
Collapse
Affiliation(s)
- Christian Tilz
- Epilepsy Center Bodensee, Clinik of Neurology and Epileptology, ZfP Südwürttemberg, Weingartshofer Str. 2, 88214 Ravensburg, Germany
- Department of Neurology, University Hospital of Graz, Univesity Graz, Auenbruggerplatz 22, 8036 Graz, Austria
| | - Ying Wang-Tilz
- Hospital of Barmherzigen Brüder Regensburg, Clinik of Neurology, Prüfeninger Str. 86, 93049 Regensburg, Germany;
| |
Collapse
|
2
|
Salluce C, Cocciante M, Gazzillo M, Ferrari AR, Battini R, Santorelli FM, Bartolini E. Children and Young Adults with Epilepsy Exhibit an Interictal Autonomic Dysfunction: A Prospective Exploratory Study. Brain Sci 2024; 14:670. [PMID: 39061411 PMCID: PMC11274926 DOI: 10.3390/brainsci14070670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Dysautonomic disorders are an increasingly studied group of conditions, either as isolated diseases or associated with other neurological disorders. There is growing interest in understanding how dysautonomia affects people with epilepsy, who may report autonomic symptoms before, during and after seizures. Furthermore, autonomic abnormalities appear to play a role in sudden unexpected death in epilepsy, likely contributing to the increased mortality rate described in epilepsy. To better understand the association between epilepsy and dysautonomia, we explored electrochemical skin conductance in a group of 18 children and young adults with epilepsy compared to 15 age- and sex-matched healthy controls by the SudoscanTM test. We found a significant difference in terms of electrochemical skin conductance, suggesting that people with epilepsy suffer significantly reduced conductance in small nerve fibers. Within patients, values were significantly different according to the type of epilepsy and to neuroimaging results, with lower conductance values in epilepsies of unknown origin and in patients with morphological abnormalities of the brain. Using a non-invasive test, we identified altered conductance of small sympathetic nerve fibers in children and young adults with epilepsy, suggesting underlying dysautonomia. Further studies are needed to investigate this association and to clarify its neurobiological substrates.
Collapse
Affiliation(s)
- Carmen Salluce
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (C.S.); (M.C.); (M.G.); (A.R.F.); (R.B.); (F.M.S.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Marco Cocciante
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (C.S.); (M.C.); (M.G.); (A.R.F.); (R.B.); (F.M.S.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Marisa Gazzillo
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (C.S.); (M.C.); (M.G.); (A.R.F.); (R.B.); (F.M.S.)
- Division of Pediatric Neurology, Department of Neurosciences, Santobono-Pausillipon Children’s Hospital, 80129 Naples, Italy
| | - Anna Rita Ferrari
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (C.S.); (M.C.); (M.G.); (A.R.F.); (R.B.); (F.M.S.)
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (C.S.); (M.C.); (M.G.); (A.R.F.); (R.B.); (F.M.S.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Filippo Maria Santorelli
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (C.S.); (M.C.); (M.G.); (A.R.F.); (R.B.); (F.M.S.)
| | - Emanuele Bartolini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (C.S.); (M.C.); (M.G.); (A.R.F.); (R.B.); (F.M.S.)
- Tuscany PhD Program in Neurosciences, 50139 Florence, Italy
| |
Collapse
|
3
|
Lee S, Kim H, Kim JH, So M, Kim JB, Kim DJ. Heart rate variability as a preictal marker for determining the laterality of seizure onset zone in frontal lobe epilepsy. Front Neurosci 2024; 18:1373837. [PMID: 38784087 PMCID: PMC11114103 DOI: 10.3389/fnins.2024.1373837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
Determining the laterality of the seizure onset zone is challenging in frontal lobe epilepsy (FLE) due to the rapid propagation of epileptic discharges to the contralateral hemisphere. There is hemispheric lateralization of autonomic control, and heart rate is modulated by interactions between the sympathetic and parasympathetic nervous systems. Based on this notion, the laterality of seizure foci in FLE might be determined using heart rate variability (HRV) parameters. We explored preictal markers for differentiating the laterality of seizure foci in FLE using HRV parameters. Twelve patients with FLE (6 right FLE and 6 left FLE) were included in the analyzes. A total of 551 (460 left FLE and 91 right FLE) 1-min epoch electrocardiography data were used for HRV analysis. We found that most HRV parameters differed between the left and right FLE groups. Among the machine learning algorithms applied in this study, the light gradient boosting machine was the most accurate, with an AUC value of 0.983 and a classification accuracy of 0.961. Our findings suggest that HRV parameter-based laterality determination models can be convenient and effective tools in clinical settings. Considering that heart rate can be easily measured in real time with a wearable device, our proposed method can be applied to a closed-loop device as a real-time monitoring tool for determining the side of stimulation.
Collapse
Affiliation(s)
- Seho Lee
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
- Department of Artificial Intelligence, Korea University, Seoul, Republic of Korea
| | - Hayom Kim
- Department of Neurology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jin Hyung Kim
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| | - Mingyeong So
- Department of Neurology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jung Bin Kim
- Department of Neurology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Dong-Joo Kim
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
- Department of Neurology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
- NeuroTx, Co., Ltd., Seoul, Republic of Korea
| |
Collapse
|
4
|
Demir TG, Gungoren F, Ethemoglu OU, Agircan D. Epilepsy's effect on cardiac rhythm and the autonomic nervous system. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2024; 70:e20230742. [PMID: 38265350 PMCID: PMC10807047 DOI: 10.1590/1806-9282.20230742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/01/2023] [Indexed: 01/25/2024]
Abstract
OBJECTIVE Sudden unexpected death in epilepsy is the most common cause of death in young patients with epilepsy. The aim of this study was to evaluate changes in interictal electrocardiogram parameters and sympathetic skin responses as markers of autonomic dysfunction in patients with epilepsy and to determine their effects on the type and duration of epilepsy, frequency of seizures, and responses to treatment. METHODS A total of 97 patients with epilepsy and 94 healthy controls were recruited. We recorded their clinical and demographic characteristics and analyzed sympathetic skin response latency and amplitude, electrocardiogram recordings, and seven cardiac rhythm parameters: P-wave duration, PR segment, QRS duration, QT interval, QT interval distribution, Tpe duration, and Tpe/QT interval ratio. RESULTS P-wave durations, T-wave durations, QT and QT interval durations, and Tpe and sympathetic skin response latency were significantly longer among patients with epilepsy than the controls, and their heart rate was significantly lower. However, sympathetic skin response latency and heart rate were negatively correlated, and T-wave duration, QT duration, QT interval duration, and Tpe were positively correlated. CONCLUSION Our results from interictal electrocardiograms indicate clinically significant arrhythmias among patients with epilepsy and the correlation of such arrhythmias with sympathetic skin responses. Thus, noninvasive tests that evaluate the autonomic system should be used to predict the risk of sudden unexpected death in epilepsy among patients with epilepsy.
Collapse
Affiliation(s)
- Tulin Gesoglu Demir
- Harran University, Faculty of Medicine, Department of Neurology – Şanlıurfa, Turkey
| | - Fatih Gungoren
- Medical Park Florya Hospital, Department of Cardiology – İstanbul, Turkey
| | | | - Dilek Agircan
- Harran University, Faculty of Medicine, Department of Neurology – Şanlıurfa, Turkey
| |
Collapse
|
5
|
Cousyn L, Dono F, Navarro V, Chavez M. Can heart rate variability identify a high-risk state of upcoming seizure? Epilepsy Res 2023; 197:107232. [PMID: 37783038 DOI: 10.1016/j.eplepsyres.2023.107232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/10/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
Heart rate variability (HRV) is an accessible and convenient means to assess the sympathetic/parasympathetic balance. Autonomic dysfunctions may reflect a pro-ictal state and occur before the seizure onset. Previous studies have reported HRV-based models to identify preictal states in continuous electrocardiogram (EKG) monitoring. Here, we evaluated the ability of HRV metrics extracted from daily single resting-state periods to estimate the risk of upcoming seizure(s) using probabilistic forecasts. Daily standardized 10-min vigilance-controlled EKG periods were recorded in 15 patients with drug-resistant focal epilepsy who underwent intracerebral electroencephalography (EEG). Analyses of a total of 156 periods, based on machine learning approaches, suggested that HRV features can identify preictal states with a median AUC of 0.75 [0.68;0.99]. Pseudoprospective daily forecasts yielded a median Brier score of 0.3 [0.18;0.48]. About 60% of preictal days were correctly forecasted, while false positive predictions were noticed in 24% of interictal days. Daily resting HRV seems to capture information on autonomic variations that may reflect a pro-ictal state. The method could be embedded in an ambulatory clinical seizure prediction device, but additional modalities (prodromes, EEG-based features, etc.) should be associated to improve its performance.
Collapse
Affiliation(s)
- Louis Cousyn
- Paris Brain Institute (Inserm, CNRS, Sorbonne Université), Paris, France; AP-HP, Department of Neurology, Epilepsy Unit, Pitié-Salpêtrière Hospital, Paris, France.
| | - Fedele Dono
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti -Pescara, Chieti, Italy
| | - Vincent Navarro
- Paris Brain Institute (Inserm, CNRS, Sorbonne Université), Paris, France; AP-HP, Department of Neurology, Epilepsy Unit, Pitié-Salpêtrière Hospital, Paris, France
| | - Mario Chavez
- CNRS UMR-7225, Pitié-Salpêtrière Hospital, Paris, France
| |
Collapse
|
6
|
Kim W, Lee H, Lee KW, Yang E, Kim S. The Association of Nocturnal Seizures and Interictal Cardiac/Central Autonomic Function in Frontal Lobe Epilepsy: Heart Rate Variability and Central Autonomic Network Analysis. Neuropsychiatr Dis Treat 2023; 19:2081-2091. [PMID: 37810949 PMCID: PMC10559795 DOI: 10.2147/ndt.s426263] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023] Open
Abstract
Purpose Patients with epilepsy frequently experience autonomic dysfunction, closely related to sudden unexplained death in epilepsy (SUDEP). SUDEP occurs most often at night or during sleep, and frequent nocturnal seizures are an established risk factor. This study investigated the influence of nocturnal seizures on autonomic dysfunction in epilepsy. Patients and Methods This retrospective study enrolled frontal lobe epilepsy (FLE) patients who performed 24-hour EEG monitoring. All participants were divided into nocturnal FLE (NFLE, > 90% of seizures occurring during sleep) or diurnal FLE (DFLE) groups. EEG and ECG signals were simultaneously obtained during waking and sleep stages. EEG current density source and connectivity analysis of the autonomic network were performed. ECG was analyzed across time and frequency domains heart rate variability (HRV) analysis method was used. The obtained parameters were compared between the NFLE and DFLE groups. Results Fifteen NFLE and 16 DFLE patients were enrolled with no significant difference in age, sex, disease duration, seizure frequency, or the number of anti-seizure medications between the two groups. During sleep, a decrease in HRV parameters and an increase of the beta-1 (13-22 Hz) current source density power in the bilateral paracentral lobule (BA4,5,6), precuneus (BA7), and cingulate (BA31) were observed in the NFLE group compared to DFLE group. The NFLE group also showed hyperconnectivity in the central autonomic (12 edges distributed over 10 nodes), sympathetic (2 edges distributed over 3 nodes), and parasympathetic (4 edges distributed over 6 nodes) beta-1 frequency band networks during sleep. During wakefulness, central and cardiac autonomic variables were not significantly different between the NFLE and DFLE groups. Conclusion Interictal cardiac and central autonomic dysfunction occurred simultaneously and can be attributed to the brain-heart autonomic axis. Our findings suggest that nocturnal seizures may contribute to interictal autonomic dysfunction during sleep in people with epilepsy.
Collapse
Affiliation(s)
- Woojun Kim
- Department of Neurology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyunjo Lee
- Department of Neurology, Ulsan University Hospital, College of Medicine, University of Ulsan, Ulsan, Republic of Korea
| | - Kyung Won Lee
- Department of Neurology, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eunjin Yang
- Department of Neurology, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seonghoon Kim
- Department of Neurology, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
7
|
Bagnall RD, Perucca P. ILAE Genetic Literacy Series: Postmortem Genetic Testing in Sudden Unexpected Death in Epilepsy. Epileptic Disord 2023; 25:472-479. [PMID: 37340991 DOI: 10.1002/epd2.20090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/31/2023] [Accepted: 06/17/2023] [Indexed: 06/22/2023]
Abstract
A 24-year-old man with non-lesional bitemporal lobe epilepsy since age 16 years was found dead in bed around midday. He was last seen the previous night when he was witnessed to have a tonic-clonic seizure. Before his death, he was experiencing weekly focal impaired awareness seizures and up to two focal-to-bilateral tonic-clonic seizures each year. He had trialed several antiseizure medications and was on levetiracetam 1500 mg/day, lamotrigine 400 mg/day, and clobazam 10 mg/day at the time of death. Other than epilepsy, his medical history was unremarkable. Of note, he had an older brother with a history of febrile seizures and a paternal first cousin with epilepsy. No cause of death was identified following a comprehensive postmortem investigation. The coroner classified the death as "sudden unexpected death in epilepsy" (SUDEP), and it would qualify as "definite SUDEP" using the current definitions.1 This left the family with many questions unanswered; in particular, they wish to know what caused the death and whether it could happen to other family members. Could postmortem genetic testing identify a cause of death, provide closure to the family, and facilitate cascade genetic testing of first-degree family members who may be at risk of sudden death? While grieving family members struggle with uncertainty about the cause of death, we as clinicians also face similar uncertainties about genetic contributions to SUDEP, especially when the literature is sparse, and the utility of genetic testing is still being worked out. We aim to shed some light on this topic, highlighting areas where data is emerging but also areas where uncertainty remains, keeping our case in mind as we examine this clinically important area.
Collapse
Affiliation(s)
- Richard D Bagnall
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Piero Perucca
- Department of Medicine (Austin Health), Epilepsy Research Centre, The University of Melbourne, Melbourne, Victoria, Australia
- Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Melbourne, Victoria, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Neurology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Viloria-Alebesque A, Bellosta-Diago E, Navarro-Pérez MP, Santos-Lasaosa S, Mauri-Llerda JÁ. Circadian rhythm of blood pressure in patients with drug-resistant mesial temporal lobe epilepsy. Seizure 2023; 108:43-48. [PMID: 37080123 DOI: 10.1016/j.seizure.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/22/2023] Open
Abstract
OBJECTIVE To determine whether patients with drug-resistant mesial temporal lobe epilepsy present with an alteration in the autonomic circadian regulation of blood pressure. METHODS A prospective case‒control study was designed, with a case group comprising patients with drug-resistant mesial temporal lobe epilepsy and a control group comprising healthy volunteers. Twenty-four-hour outpatient blood pressure monitoring was performed to assess the existence of a normal (dipping) or altered (non-dipping) circadian pattern. In addition, analytical and ultrasound parameters (carotid intima-media thickness) of vascular risk and sleep quality were evaluated. RESULTS Twenty-four subjects were recruited in each study group, amongst whom no demographic differences or history of vascular risk were observed. A higher percentage of participants with a non-dipping pattern was observed in the group of patients with epilepsy (62.5% vs. 12.5, p = 0.001). In the case group, significant differences were also observed in carotid intima-media thickness, with a greater probability of presenting with pathological values (p = 0.022). CONCLUSION The results suggest a disorder of the central autonomic control of blood pressure in patients with drug-resistant mesial temporal lobe epilepsy, with a greater probability of developing an alteration of the circadian rhythm of blood pressure. This dysfunction may be a factor involved in the increased cardiovascular risk in this population.
Collapse
Affiliation(s)
- Alejandro Viloria-Alebesque
- Neurology Department, Hospital Universitario Miguel Servet- Hospital General de la Defensa, P.º de Isabel la Católica 1-3, Zaragoza 50009, Spain; Aragon Health Research Institute, C/ San Juan Bosco 13, Zaragoza 50009, Spain.
| | - Elena Bellosta-Diago
- Aragon Health Research Institute, C/ San Juan Bosco 13, Zaragoza 50009, Spain; Neurology Department, Hospital Clínico Universitario Lozano Blesa, C/San Juan Bosco 15, Zaragoza 50009, Spain
| | - María Pilar Navarro-Pérez
- Aragon Health Research Institute, C/ San Juan Bosco 13, Zaragoza 50009, Spain; Neurology Department, Hospital Obispo Polanco, Av/ Ruiz Jarabo s/n, Teruel 44002, Spain
| | - Sonia Santos-Lasaosa
- Aragon Health Research Institute, C/ San Juan Bosco 13, Zaragoza 50009, Spain; Neurology Department, Hospital Clínico Universitario Lozano Blesa, C/San Juan Bosco 15, Zaragoza 50009, Spain
| | - José Ángel Mauri-Llerda
- Aragon Health Research Institute, C/ San Juan Bosco 13, Zaragoza 50009, Spain; Neurology Department, Hospital Clínico Universitario Lozano Blesa, C/San Juan Bosco 15, Zaragoza 50009, Spain
| |
Collapse
|
9
|
Byiers BJ, Merbler AM, Burkitt CC, Beisang A, Symons FJ. Preliminary assessment of the reliability and validity of infrared skin temperature measurements in Rett syndrome. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2023; 67:387-395. [PMID: 36744445 PMCID: PMC10251747 DOI: 10.1111/jir.13010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 12/02/2022] [Accepted: 01/04/2023] [Indexed: 06/11/2023]
Abstract
BACKGROUND As clinical trials for Rett syndrome are underway, there is a need to validate potential supplemental outcome measures that reflect important signs and symptoms. Autonomic dysfunction, particularly vasomotor dysfunction, is one potential area for which biomarkers could be developed. METHODS In the current study, infrared thermal images of hands and feet from 26 females with Rett syndrome (aged 62 months to 39 years), and 17 females without known intellectual, genetic or neurological disorders (aged 55 months to 39 years) were collected. Between-group differences in skin temperature, and temporal stability of skin temperature measures in the Rett syndrome group, and relationships between skin temperature measures and parent-reported and researcher-evaluated indicators of autonomic dysfunction were evaluated. RESULTS Between-group differences showed lower hand and foot temperatures in the Rett syndrome group. Hand temperature measurements were stable over time and were moderately correlated with parent-reported autonomic symptoms. Foot temperature measurements were more variable than hand temperatures but showed stronger correlations with parent-reported autonomic symptoms. CONCLUSIONS The results provide preliminary support for the reliability and validity of hand and foot skin temperature measures in Rett syndrome. Additional research is needed to replicate these results and evaluate the temporal stability of these measures over shorter time scales.
Collapse
Affiliation(s)
- B J Byiers
- Department of Educational Psychology, University of Minnesota, Minneapolis, MN, USA
| | - A M Merbler
- Department of Educational Psychology, University of Minnesota, Minneapolis, MN, USA
| | - C C Burkitt
- Gillette Children's Specialty Healthcare, St. Paul, MN, USA
| | - A Beisang
- Gillette Children's Specialty Healthcare, St. Paul, MN, USA
| | - F J Symons
- Department of Educational Psychology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
10
|
Liu Z, Thergarajan P, Antonic-Baker A, Chen Z, Sparks PB, Lannin NA, Kwan P, Jones NC, Casillas-Espinosa PM, Perucca P, O'Brien TJ, Sivathamboo S. Cardiac structural and functional abnormalities in epilepsy: A systematic review and meta-analysis. Epilepsia Open 2023; 8:46-59. [PMID: 36648338 PMCID: PMC9977759 DOI: 10.1002/epi4.12692] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE Epilepsy is associated with an increased risk of cardiovascular disease and mortality. Whether cardiac structure and function are altered in epilepsy remains unclear. To address this, we conducted a systematic review and meta-analysis of studies evaluating cardiac structure and function in patients with epilepsy. METHODS We searched the electronic databases MEDLINE, PubMed, COCHRANE, and Web of Science from inception to 31 December 2021. Primary outcomes of interest included left ventricular ejection fraction (LVEF) for studies reporting echocardiogram findings and cardiac weight and fibrosis for postmortem investigations. Study quality was assessed using the National Heart, Lung, and Blood Institute (NHLBI) assessment tools. RESULTS Among the 10 case-control studies with epilepsy patients (n = 515) and healthy controls (n = 445), LVEF was significantly decreased in epilepsy group compared with controls (MD: -1.80; 95% confidence interval [CI]: -3.56 to -0.04; P = 0.045), whereas A-wave velocity (MD: 4.73; 95% CI: 1.87-7.60; P = 0.001), E/e' ratio (MD: 0.39; 95% CI: 0.06-0.71; P = 0.019), and isovolumic relaxation time (MD: 10.18; 95% CI: 2.05-18.32; P = 0.014) were increased in epilepsy, compared with controls. A pooled analysis was performed in sudden unexpected death in epilepsy (SUDEP) cases with autopsy data (n = 714). Among SUDEP cases, the prevalence of cardiac hypertrophy was 16% (95% CI: 9%-23%); cardiac fibrosis was 20% (95% CI: 15%-26%). We found no marked differences in cardiac hypertrophy, heart weight, or cardiac fibrosis between SUDEP cases and epilepsy controls. SIGNIFICANCE Our findings suggest that epilepsy is associated with altered diastolic and systolic echocardiogram parameters compared with healthy controls. Notably, SUDEP does not appear to be associated with a higher incidence of structural cardiac abnormalities, compared with non-SUDEP epilepsy controls. Longitudinal studies are needed to understand the prognostic significance of such changes. Echocardiography may be a useful noninvasive diagnostic test in epilepsy population.
Collapse
Affiliation(s)
- Zining Liu
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Peravina Thergarajan
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Ana Antonic-Baker
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Zhibin Chen
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Paul B Sparks
- Department of Cardiology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Natasha A Lannin
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Alfred Health, Melbourne, Victoria, Australia
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia.,Alfred Health, Melbourne, Victoria, Australia.,Department of Neurology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Nigel C Jones
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Pablo M Casillas-Espinosa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Piero Perucca
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia.,Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Hospital, Heidelberg, Victoria, Australia.,Department of Medicine (Austin Health), Epilepsy Research Centre, The University of Melbourne, Heidelberg, Victoria, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia.,Alfred Health, Melbourne, Victoria, Australia.,Department of Neurology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Shobi Sivathamboo
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia.,Alfred Health, Melbourne, Victoria, Australia.,Department of Neurology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| |
Collapse
|
11
|
Zhuravlev D, Lebedeva A, Lebedeva M, Guekht A. Current concepts about autonomic dysfunction in patients with epilepsy. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:131-138. [DOI: 10.17116/jnevro2022122031131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Sivathamboo S, Friedman D, Laze J, Nightscales R, Chen Z, Kuhlmann L, Devore S, Macefield V, Kwan P, D'Souza W, Berkovic SF, Perucca P, O'Brien TJ, Devinsky O. Association of Short-term Heart Rate Variability and Sudden Unexpected Death in Epilepsy. Neurology 2021; 97:e2357-e2367. [PMID: 34649884 DOI: 10.1212/wnl.0000000000012946] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND OBJECTIVES We compared heart rate variability (HRV) in sudden unexpected death in epilepsy (SUDEP) cases and living epilepsy controls. METHODS This international, multicenter, retrospective, nested case-control study examined patients admitted for video-EEG monitoring (VEM) between January 1, 2003, and December 31, 2014, and subsequently died of SUDEP. Time domain and frequency domain components were extracted from 5-minute interictal ECG recordings during sleep and wakefulness from SUDEP cases and controls. RESULTS We identified 31 SUDEP cases and 56 controls. Normalized low-frequency power (LFP) during wakefulness was lower in SUDEP cases (median 42.5, interquartile range [IQR] 32.6-52.6) than epilepsy controls (55.5, IQR 40.7-68.9; p = 0.015, critical value = 0.025). In the multivariable model, normalized LFP was lower in SUDEP cases compared to controls (contrast -11.01, 95% confidence interval [CI] -20.29 to 1.73; p = 0.020, critical value = 0.025). There was a negative correlation between LFP and the latency to SUDEP, where each 1% incremental reduction in normalized LFP conferred a 2.7% decrease in the latency to SUDEP (95% CI 0.95-0.995; p = 0.017, critical value = 0.025). Increased survival duration from VEM to SUDEP was associated with higher normalized high-frequency power (HFP; p = 0.002, critical value = 0.025). The survival model with normalized LFP was associated with SUDEP (c statistic 0.66, 95% CI 0.55-0.77), which nonsignificantly increased with the addition of normalized HFP (c statistic 0.70, 95% CI 0.59-0.81; p = 0.209). CONCLUSIONS Reduced short-term LFP, which is a validated biomarker for sudden death, was associated with SUDEP. Increased HFP was associated with longer survival and may be cardioprotective in SUDEP. HRV quantification may help stratify individual SUDEP risk. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that in patients with epilepsy, some measures of HRV are associated with SUDEP.
Collapse
Affiliation(s)
- Shobi Sivathamboo
- From the Department of Neuroscience, Central Clinical School (S.S., R.N., Z.C., M.B., V.M., P.K., P.P., T.J.O.), Clinical Epidemiology, School of Public Health and Preventive Medicine (Z.C., M.B.), and Department of Data Science and AI, Faculty of Information Technology (L.K.), Monash University; Department of Medicine (The Royal Melbourne Hospital) (S.S., R.N., Z.C., M.B., P.K., P.P., T.J.O.), The University of Melbourne; Department of Neurology (S.S., R.N., P.K., P.P., T.J.O.), The Royal Melbourne Hospital; Department of Neurology (S.S., R.N., P.K., P.P., T.J.O.), Alfred Health, Melbourne, Australia; Department of Neurology (D.F., J.L., S.D., O.D.), New York University Grossman School of Medicine, New York; Human Autonomic Neurophysiology (V.M.), Baker Heart and Diabetes Institute, Melbourne; Department of Medicine (W.D., M.D.C.B.), St. Vincent's Hospital, The University of Melbourne, Fitzroy; and Department of Medicine (S.F.B.), Austin Health, The University of Melbourne, Heidelberg, Australia
| | - Daniel Friedman
- From the Department of Neuroscience, Central Clinical School (S.S., R.N., Z.C., M.B., V.M., P.K., P.P., T.J.O.), Clinical Epidemiology, School of Public Health and Preventive Medicine (Z.C., M.B.), and Department of Data Science and AI, Faculty of Information Technology (L.K.), Monash University; Department of Medicine (The Royal Melbourne Hospital) (S.S., R.N., Z.C., M.B., P.K., P.P., T.J.O.), The University of Melbourne; Department of Neurology (S.S., R.N., P.K., P.P., T.J.O.), The Royal Melbourne Hospital; Department of Neurology (S.S., R.N., P.K., P.P., T.J.O.), Alfred Health, Melbourne, Australia; Department of Neurology (D.F., J.L., S.D., O.D.), New York University Grossman School of Medicine, New York; Human Autonomic Neurophysiology (V.M.), Baker Heart and Diabetes Institute, Melbourne; Department of Medicine (W.D., M.D.C.B.), St. Vincent's Hospital, The University of Melbourne, Fitzroy; and Department of Medicine (S.F.B.), Austin Health, The University of Melbourne, Heidelberg, Australia
| | - Juliana Laze
- From the Department of Neuroscience, Central Clinical School (S.S., R.N., Z.C., M.B., V.M., P.K., P.P., T.J.O.), Clinical Epidemiology, School of Public Health and Preventive Medicine (Z.C., M.B.), and Department of Data Science and AI, Faculty of Information Technology (L.K.), Monash University; Department of Medicine (The Royal Melbourne Hospital) (S.S., R.N., Z.C., M.B., P.K., P.P., T.J.O.), The University of Melbourne; Department of Neurology (S.S., R.N., P.K., P.P., T.J.O.), The Royal Melbourne Hospital; Department of Neurology (S.S., R.N., P.K., P.P., T.J.O.), Alfred Health, Melbourne, Australia; Department of Neurology (D.F., J.L., S.D., O.D.), New York University Grossman School of Medicine, New York; Human Autonomic Neurophysiology (V.M.), Baker Heart and Diabetes Institute, Melbourne; Department of Medicine (W.D., M.D.C.B.), St. Vincent's Hospital, The University of Melbourne, Fitzroy; and Department of Medicine (S.F.B.), Austin Health, The University of Melbourne, Heidelberg, Australia
| | - Russell Nightscales
- From the Department of Neuroscience, Central Clinical School (S.S., R.N., Z.C., M.B., V.M., P.K., P.P., T.J.O.), Clinical Epidemiology, School of Public Health and Preventive Medicine (Z.C., M.B.), and Department of Data Science and AI, Faculty of Information Technology (L.K.), Monash University; Department of Medicine (The Royal Melbourne Hospital) (S.S., R.N., Z.C., M.B., P.K., P.P., T.J.O.), The University of Melbourne; Department of Neurology (S.S., R.N., P.K., P.P., T.J.O.), The Royal Melbourne Hospital; Department of Neurology (S.S., R.N., P.K., P.P., T.J.O.), Alfred Health, Melbourne, Australia; Department of Neurology (D.F., J.L., S.D., O.D.), New York University Grossman School of Medicine, New York; Human Autonomic Neurophysiology (V.M.), Baker Heart and Diabetes Institute, Melbourne; Department of Medicine (W.D., M.D.C.B.), St. Vincent's Hospital, The University of Melbourne, Fitzroy; and Department of Medicine (S.F.B.), Austin Health, The University of Melbourne, Heidelberg, Australia
| | - Zhibin Chen
- From the Department of Neuroscience, Central Clinical School (S.S., R.N., Z.C., M.B., V.M., P.K., P.P., T.J.O.), Clinical Epidemiology, School of Public Health and Preventive Medicine (Z.C., M.B.), and Department of Data Science and AI, Faculty of Information Technology (L.K.), Monash University; Department of Medicine (The Royal Melbourne Hospital) (S.S., R.N., Z.C., M.B., P.K., P.P., T.J.O.), The University of Melbourne; Department of Neurology (S.S., R.N., P.K., P.P., T.J.O.), The Royal Melbourne Hospital; Department of Neurology (S.S., R.N., P.K., P.P., T.J.O.), Alfred Health, Melbourne, Australia; Department of Neurology (D.F., J.L., S.D., O.D.), New York University Grossman School of Medicine, New York; Human Autonomic Neurophysiology (V.M.), Baker Heart and Diabetes Institute, Melbourne; Department of Medicine (W.D., M.D.C.B.), St. Vincent's Hospital, The University of Melbourne, Fitzroy; and Department of Medicine (S.F.B.), Austin Health, The University of Melbourne, Heidelberg, Australia
| | - Levin Kuhlmann
- From the Department of Neuroscience, Central Clinical School (S.S., R.N., Z.C., M.B., V.M., P.K., P.P., T.J.O.), Clinical Epidemiology, School of Public Health and Preventive Medicine (Z.C., M.B.), and Department of Data Science and AI, Faculty of Information Technology (L.K.), Monash University; Department of Medicine (The Royal Melbourne Hospital) (S.S., R.N., Z.C., M.B., P.K., P.P., T.J.O.), The University of Melbourne; Department of Neurology (S.S., R.N., P.K., P.P., T.J.O.), The Royal Melbourne Hospital; Department of Neurology (S.S., R.N., P.K., P.P., T.J.O.), Alfred Health, Melbourne, Australia; Department of Neurology (D.F., J.L., S.D., O.D.), New York University Grossman School of Medicine, New York; Human Autonomic Neurophysiology (V.M.), Baker Heart and Diabetes Institute, Melbourne; Department of Medicine (W.D., M.D.C.B.), St. Vincent's Hospital, The University of Melbourne, Fitzroy; and Department of Medicine (S.F.B.), Austin Health, The University of Melbourne, Heidelberg, Australia
| | - Sasha Devore
- From the Department of Neuroscience, Central Clinical School (S.S., R.N., Z.C., M.B., V.M., P.K., P.P., T.J.O.), Clinical Epidemiology, School of Public Health and Preventive Medicine (Z.C., M.B.), and Department of Data Science and AI, Faculty of Information Technology (L.K.), Monash University; Department of Medicine (The Royal Melbourne Hospital) (S.S., R.N., Z.C., M.B., P.K., P.P., T.J.O.), The University of Melbourne; Department of Neurology (S.S., R.N., P.K., P.P., T.J.O.), The Royal Melbourne Hospital; Department of Neurology (S.S., R.N., P.K., P.P., T.J.O.), Alfred Health, Melbourne, Australia; Department of Neurology (D.F., J.L., S.D., O.D.), New York University Grossman School of Medicine, New York; Human Autonomic Neurophysiology (V.M.), Baker Heart and Diabetes Institute, Melbourne; Department of Medicine (W.D., M.D.C.B.), St. Vincent's Hospital, The University of Melbourne, Fitzroy; and Department of Medicine (S.F.B.), Austin Health, The University of Melbourne, Heidelberg, Australia
| | - Vaughan Macefield
- From the Department of Neuroscience, Central Clinical School (S.S., R.N., Z.C., M.B., V.M., P.K., P.P., T.J.O.), Clinical Epidemiology, School of Public Health and Preventive Medicine (Z.C., M.B.), and Department of Data Science and AI, Faculty of Information Technology (L.K.), Monash University; Department of Medicine (The Royal Melbourne Hospital) (S.S., R.N., Z.C., M.B., P.K., P.P., T.J.O.), The University of Melbourne; Department of Neurology (S.S., R.N., P.K., P.P., T.J.O.), The Royal Melbourne Hospital; Department of Neurology (S.S., R.N., P.K., P.P., T.J.O.), Alfred Health, Melbourne, Australia; Department of Neurology (D.F., J.L., S.D., O.D.), New York University Grossman School of Medicine, New York; Human Autonomic Neurophysiology (V.M.), Baker Heart and Diabetes Institute, Melbourne; Department of Medicine (W.D., M.D.C.B.), St. Vincent's Hospital, The University of Melbourne, Fitzroy; and Department of Medicine (S.F.B.), Austin Health, The University of Melbourne, Heidelberg, Australia
| | - Patrick Kwan
- From the Department of Neuroscience, Central Clinical School (S.S., R.N., Z.C., M.B., V.M., P.K., P.P., T.J.O.), Clinical Epidemiology, School of Public Health and Preventive Medicine (Z.C., M.B.), and Department of Data Science and AI, Faculty of Information Technology (L.K.), Monash University; Department of Medicine (The Royal Melbourne Hospital) (S.S., R.N., Z.C., M.B., P.K., P.P., T.J.O.), The University of Melbourne; Department of Neurology (S.S., R.N., P.K., P.P., T.J.O.), The Royal Melbourne Hospital; Department of Neurology (S.S., R.N., P.K., P.P., T.J.O.), Alfred Health, Melbourne, Australia; Department of Neurology (D.F., J.L., S.D., O.D.), New York University Grossman School of Medicine, New York; Human Autonomic Neurophysiology (V.M.), Baker Heart and Diabetes Institute, Melbourne; Department of Medicine (W.D., M.D.C.B.), St. Vincent's Hospital, The University of Melbourne, Fitzroy; and Department of Medicine (S.F.B.), Austin Health, The University of Melbourne, Heidelberg, Australia
| | - Wendyl D'Souza
- From the Department of Neuroscience, Central Clinical School (S.S., R.N., Z.C., M.B., V.M., P.K., P.P., T.J.O.), Clinical Epidemiology, School of Public Health and Preventive Medicine (Z.C., M.B.), and Department of Data Science and AI, Faculty of Information Technology (L.K.), Monash University; Department of Medicine (The Royal Melbourne Hospital) (S.S., R.N., Z.C., M.B., P.K., P.P., T.J.O.), The University of Melbourne; Department of Neurology (S.S., R.N., P.K., P.P., T.J.O.), The Royal Melbourne Hospital; Department of Neurology (S.S., R.N., P.K., P.P., T.J.O.), Alfred Health, Melbourne, Australia; Department of Neurology (D.F., J.L., S.D., O.D.), New York University Grossman School of Medicine, New York; Human Autonomic Neurophysiology (V.M.), Baker Heart and Diabetes Institute, Melbourne; Department of Medicine (W.D., M.D.C.B.), St. Vincent's Hospital, The University of Melbourne, Fitzroy; and Department of Medicine (S.F.B.), Austin Health, The University of Melbourne, Heidelberg, Australia
| | - Samuel F Berkovic
- From the Department of Neuroscience, Central Clinical School (S.S., R.N., Z.C., M.B., V.M., P.K., P.P., T.J.O.), Clinical Epidemiology, School of Public Health and Preventive Medicine (Z.C., M.B.), and Department of Data Science and AI, Faculty of Information Technology (L.K.), Monash University; Department of Medicine (The Royal Melbourne Hospital) (S.S., R.N., Z.C., M.B., P.K., P.P., T.J.O.), The University of Melbourne; Department of Neurology (S.S., R.N., P.K., P.P., T.J.O.), The Royal Melbourne Hospital; Department of Neurology (S.S., R.N., P.K., P.P., T.J.O.), Alfred Health, Melbourne, Australia; Department of Neurology (D.F., J.L., S.D., O.D.), New York University Grossman School of Medicine, New York; Human Autonomic Neurophysiology (V.M.), Baker Heart and Diabetes Institute, Melbourne; Department of Medicine (W.D., M.D.C.B.), St. Vincent's Hospital, The University of Melbourne, Fitzroy; and Department of Medicine (S.F.B.), Austin Health, The University of Melbourne, Heidelberg, Australia
| | - Piero Perucca
- From the Department of Neuroscience, Central Clinical School (S.S., R.N., Z.C., M.B., V.M., P.K., P.P., T.J.O.), Clinical Epidemiology, School of Public Health and Preventive Medicine (Z.C., M.B.), and Department of Data Science and AI, Faculty of Information Technology (L.K.), Monash University; Department of Medicine (The Royal Melbourne Hospital) (S.S., R.N., Z.C., M.B., P.K., P.P., T.J.O.), The University of Melbourne; Department of Neurology (S.S., R.N., P.K., P.P., T.J.O.), The Royal Melbourne Hospital; Department of Neurology (S.S., R.N., P.K., P.P., T.J.O.), Alfred Health, Melbourne, Australia; Department of Neurology (D.F., J.L., S.D., O.D.), New York University Grossman School of Medicine, New York; Human Autonomic Neurophysiology (V.M.), Baker Heart and Diabetes Institute, Melbourne; Department of Medicine (W.D., M.D.C.B.), St. Vincent's Hospital, The University of Melbourne, Fitzroy; and Department of Medicine (S.F.B.), Austin Health, The University of Melbourne, Heidelberg, Australia
| | - Terence J O'Brien
- From the Department of Neuroscience, Central Clinical School (S.S., R.N., Z.C., M.B., V.M., P.K., P.P., T.J.O.), Clinical Epidemiology, School of Public Health and Preventive Medicine (Z.C., M.B.), and Department of Data Science and AI, Faculty of Information Technology (L.K.), Monash University; Department of Medicine (The Royal Melbourne Hospital) (S.S., R.N., Z.C., M.B., P.K., P.P., T.J.O.), The University of Melbourne; Department of Neurology (S.S., R.N., P.K., P.P., T.J.O.), The Royal Melbourne Hospital; Department of Neurology (S.S., R.N., P.K., P.P., T.J.O.), Alfred Health, Melbourne, Australia; Department of Neurology (D.F., J.L., S.D., O.D.), New York University Grossman School of Medicine, New York; Human Autonomic Neurophysiology (V.M.), Baker Heart and Diabetes Institute, Melbourne; Department of Medicine (W.D., M.D.C.B.), St. Vincent's Hospital, The University of Melbourne, Fitzroy; and Department of Medicine (S.F.B.), Austin Health, The University of Melbourne, Heidelberg, Australia
| | - Orrin Devinsky
- From the Department of Neuroscience, Central Clinical School (S.S., R.N., Z.C., M.B., V.M., P.K., P.P., T.J.O.), Clinical Epidemiology, School of Public Health and Preventive Medicine (Z.C., M.B.), and Department of Data Science and AI, Faculty of Information Technology (L.K.), Monash University; Department of Medicine (The Royal Melbourne Hospital) (S.S., R.N., Z.C., M.B., P.K., P.P., T.J.O.), The University of Melbourne; Department of Neurology (S.S., R.N., P.K., P.P., T.J.O.), The Royal Melbourne Hospital; Department of Neurology (S.S., R.N., P.K., P.P., T.J.O.), Alfred Health, Melbourne, Australia; Department of Neurology (D.F., J.L., S.D., O.D.), New York University Grossman School of Medicine, New York; Human Autonomic Neurophysiology (V.M.), Baker Heart and Diabetes Institute, Melbourne; Department of Medicine (W.D., M.D.C.B.), St. Vincent's Hospital, The University of Melbourne, Fitzroy; and Department of Medicine (S.F.B.), Austin Health, The University of Melbourne, Heidelberg, Australia.
| | | |
Collapse
|
13
|
Shaker KK, Al Mahdawi AM, Hamdan FB. Interictal autonomic dysfunction in patients with epilepsy. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2021. [DOI: 10.1186/s41983-021-00422-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Abstract
Background
Autonomic nervous system (ANS) symptoms are frequently present in people with epilepsy (PwE). They are generally more prominent when they originate from the temporal lobe. We aim to investigate the alterations of autonomic functions during the interictal period in patient with temporal lobe epilepsy (TLE) and idiopathic generalized epilepsy (IGE) using heart-based tests, blood pressure (BP)-based tests and sympathetic skin response (SSR). Forty-eight PwE with disease duration ranging from 2 to 15 years and 51 healthy individuals were studied. Long-term electroencephalography (EEG) monitoring, the heart rate variability (HRV) during normal breathing, deep breathing, Valsalva maneuver and standing, BP responses during standing, to isometric hand grip and to mental arithmetic, and the SSR was recorded for all participants.
Results
31 patients with TLE and 17 with IGE showed lower RR-IV values during deep breathing, Valsalva maneuver and standing, but not during rest, impaired BP responses during standing, isometric hand grip, and mental arithmetic. Also, prolonged SSR latencies. Within PwE group, no difference was noticed between males and females, nor between the left and right temporal lobes.
Conclusion
Abnormal autonomic (sympathetic and parasympathetic) regulatory functions suggest that epilepsy may alter the autonomic function and this is not only in TLE but rather in IGE too. These autonomic changes are irrespective of the localization of epilepsy between the two hemispheres. The ANS changes in epileptic patients, particularly those with autonomic symptoms, confirm that electrophysiologic measures of autonomic function may be of value in preventing sudden unexpected death in epilepsy.
Collapse
|
14
|
Tran TPY, Pouliot P, Assi EB, Rainville P, Myers KA, Robert M, Bouthillier A, Keezer MR, Nguyen DK. Heart Rate Variability in Insulo-Opercular Epilepsy. Brain Sci 2021; 11:brainsci11111505. [PMID: 34827504 PMCID: PMC8615554 DOI: 10.3390/brainsci11111505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Background: We aimed to evaluate heart rate variability (HRV) changes in insulo-opercular epilepsy (IOE) and after insulo-opercular surgery. Methods: We analyzed 5-min resting HRV of IOE patients before and after surgery. Patients’ SUDEP-7 risk inventory scores were also calculated. Results were compared with age- and sex-matched patients with temporal lobe epilepsy (TLE) and healthy individuals. Results: There were no differences in HRV measurements between IOE, TLE, and healthy control groups (and within each IOE group and TLE group) in preoperative and postoperative periods. In IOE patients, the SUDEP-7 score was positively correlated with pNN50 (percentage of successive RR intervals that differ by more than 50 ms) (p = 0.008) and RMSSD (root mean square of successive RR interval differences) (p = 0.019). We stratified IOE patients into those whose preoperative RMSSD values were below (Group 1a = 7) versus above (Group 1b = 9) a cut-off threshold of 31 ms (median value of a healthy population from a previous study). In group 1a, all HRV values significantly increased after surgery. In group 1b, time-domain parameters significantly decreased postoperatively. Conclusions: Our results suggest that in IOE, HRV may be either decreased in parasympathetic tone or increased globally in both sympathetic and parasympathetic tones. We found no evidence that insulo-opercular surgeries lead to major autonomic dysfunction when a good seizure outcome is reached. The increase in parasympathetic tone observed preoperatively may be of clinical concern, as it was positively correlated with the SUDEP-7 score.
Collapse
Affiliation(s)
- Thi Phuoc Yen Tran
- CHUM Research Center, University of Montreal, Montreal, QC H2X 0A9, Canada; (T.P.Y.T.); (E.B.A.); (M.R.); (M.R.K.)
| | - Philippe Pouliot
- Safe Engineering Services and Technologies, Laval, QC H7L 6E8, Canada;
- Labeo Technologies, Montreal, QC H3V 1A2, Canada
| | - Elie Bou Assi
- CHUM Research Center, University of Montreal, Montreal, QC H2X 0A9, Canada; (T.P.Y.T.); (E.B.A.); (M.R.); (M.R.K.)
| | - Pierre Rainville
- Department of Somatology, University of Montreal, Montreal, QC H3T 1J7, Canada;
- Research Centre of Institut Universitaire de Gériatrie de Montréal, Montreal, QC H3C 3J7, Canada
| | - Kenneth A. Myers
- Research Institute of the McGill University Medical Centre, Montreal, QC H3H 2R9, Canada;
- Division of Neurology, Department of Pediatrics, Montreal Children’s Hospital, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Manon Robert
- CHUM Research Center, University of Montreal, Montreal, QC H2X 0A9, Canada; (T.P.Y.T.); (E.B.A.); (M.R.); (M.R.K.)
| | - Alain Bouthillier
- Division of Neurosurgery, CHUM, University of Montreal, Montreal, QC H2X 0C1, Canada;
| | - Mark R. Keezer
- CHUM Research Center, University of Montreal, Montreal, QC H2X 0A9, Canada; (T.P.Y.T.); (E.B.A.); (M.R.); (M.R.K.)
- Division of Neurology, CHUM, University of Montreal, Montreal, QC H2X 0C1, Canada
| | - Dang Khoa Nguyen
- CHUM Research Center, University of Montreal, Montreal, QC H2X 0A9, Canada; (T.P.Y.T.); (E.B.A.); (M.R.); (M.R.K.)
- Division of Neurology, CHUM, University of Montreal, Montreal, QC H2X 0C1, Canada
- Correspondence:
| |
Collapse
|
15
|
Karoly PJ, Stirling RE, Freestone DR, Nurse ES, Maturana MI, Halliday AJ, Neal A, Gregg NM, Brinkmann BH, Richardson MP, La Gerche A, Grayden DB, D'Souza W, Cook MJ. Multiday cycles of heart rate are associated with seizure likelihood: An observational cohort study. EBioMedicine 2021; 72:103619. [PMID: 34649079 PMCID: PMC8517288 DOI: 10.1016/j.ebiom.2021.103619] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/23/2021] [Accepted: 09/23/2021] [Indexed: 11/30/2022] Open
Abstract
Background Circadian and multiday rhythms are found across many biological systems, including cardiology, endocrinology, neurology, and immunology. In people with epilepsy, epileptic brain activity and seizure occurrence have been found to follow circadian, weekly, and monthly rhythms. Understanding the relationship between these cycles of brain excitability and other physiological systems can provide new insight into the causes of multiday cycles. The brain-heart link has previously been considered in epilepsy research, with potential implications for seizure forecasting, therapy, and mortality (i.e., sudden unexpected death in epilepsy). Methods We report the results from a non-interventional, observational cohort study, Tracking Seizure Cycles. This study sought to examine multiday cycles of heart rate and seizures in adults with diagnosed uncontrolled epilepsy (N=31) and healthy adult controls (N=15) using wearable smartwatches and mobile seizure diaries over at least four months (M=12.0, SD=5.9; control M=10.6, SD=6.4). Cycles in heart rate were detected using a continuous wavelet transform. Relationships between heart rate cycles and seizure occurrence were measured from the distributions of seizure likelihood with respect to underlying cycle phase. Findings Heart rate cycles were found in all 46 participants (people with epilepsy and healthy controls), with circadian (N=46), about-weekly (N=25) and about-monthly (N=13) rhythms being the most prevalent. Of the participants with epilepsy, 19 people had at least 20 reported seizures, and 10 of these had seizures significantly phase locked to their multiday heart rate cycles. Interpretation Heart rate cycles showed similarities to multiday epileptic rhythms and may be comodulated with seizure likelihood. The relationship between heart rate and seizures is relevant for epilepsy therapy, including seizure forecasting, and may also have implications for cardiovascular disease. More broadly, understanding the link between multiday cycles in the heart and brain can shed new light on endogenous physiological rhythms in humans. Funding This research received funding from the Australian Government National Health and Medical Research Council (investigator grant 1178220), the Australian Government BioMedTech Horizons program, and the Epilepsy Foundation of America's ‘My Seizure Gauge’ grant.
Collapse
Affiliation(s)
- Philippa J Karoly
- Graeme Clark Institute for Biomedical Engineering, The University of Melbourne, Australia; Seer Medical, Australia.
| | - Rachel E Stirling
- Department of Biomedical Engineering, The University of Melbourne, Australia
| | | | - Ewan S Nurse
- Seer Medical, Australia; Departments of Medicine and Neurology, The University of Melbourne, St Vincent's Hospital, Melbourne, Australia
| | - Matias I Maturana
- Seer Medical, Australia; Departments of Medicine and Neurology, The University of Melbourne, St Vincent's Hospital, Melbourne, Australia
| | - Amy J Halliday
- Departments of Medicine and Neurology, The University of Melbourne, St Vincent's Hospital, Melbourne, Australia
| | - Andrew Neal
- Departments of Medicine and Neurology, The University of Melbourne, St Vincent's Hospital, Melbourne, Australia
| | - Nicholas M Gregg
- Bioelectronics Neurophysiology and Engineering Lab, Department of Neurology, Mayo Clinic, Rochester, MN
| | - Benjamin H Brinkmann
- Bioelectronics Neurophysiology and Engineering Lab, Department of Neurology, Mayo Clinic, Rochester, MN
| | | | - Andre La Gerche
- Sports Cardiology Laboratory, Baker Heart & Diabetes Institute, Melbourne, Australia
| | - David B Grayden
- Department of Biomedical Engineering, The University of Melbourne, Australia
| | - Wendyl D'Souza
- Departments of Medicine and Neurology, The University of Melbourne, St Vincent's Hospital, Melbourne, Australia
| | - Mark J Cook
- Graeme Clark Institute for Biomedical Engineering, The University of Melbourne, Australia; Departments of Medicine and Neurology, The University of Melbourne, St Vincent's Hospital, Melbourne, Australia
| |
Collapse
|
16
|
Yeh WC, Lin HC, Chuang YC, Hsu CY. Exploring factors associated with interictal heart rate variability in patients with medically controlled focal epilepsy. Seizure 2021; 92:24-28. [PMID: 34416420 DOI: 10.1016/j.seizure.2021.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/28/2021] [Accepted: 08/06/2021] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Heart rate variability (HRV) reflects the balance between the functional outputs of the sympathetic and parasympathetic nervous systems. It is lower in patients with epilepsy than in the healthy controls. However, HRV has been inadequately studied in different patient subgroups with medically controlled epilepsy. Hence, this study aimed to investigate factors associated with interictal HRV in patients with medically controlled epilepsy. METHODS This retrospective cohort study included 54 patients (24 males and 30 females) with medically controlled focal epilepsy who only received monotherapy to eliminate the confounding effect of different antiseizure medications (ASMs). Patients with major systemic or psychiatric disorder comorbidities were excluded. For HRV analysis, electroencephalography and 5-minute well-qualified electrocardiogram segment recording were conducted during stage N1 or N2 sleep. In addition, the association between age, gender, seizure onset type, ASMs, and the time domain and frequency-domain HRV measures was analyzed. RESULTS HRV negatively correlated with advanced age. Patients with focal to bilateral tonic-clonic seizure (FBTCS) had a significantly lower HRV than focal impaired awareness seizures (FIAS). HRV was not associated with any gender and ASMs. CONCLUSIONS HRV negatively correlated with age, and patients with FBTCS had a decreased HRV. Thus, these patients may have a declining autonomic function. Therefore, different seizure types may carry different risks of autonomic dysfunction in patients with medically controlled focal epilepsy.
Collapse
Affiliation(s)
- Wei-Chih Yeh
- Department of Neurology, Kaohsiung Medical University Hospital, No. 100, Tzyou 1st. Road, Kaohsiung City 80754, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung City 80708, Taiwan
| | - Hsun-Chang Lin
- Department of Neurology, Health and Welfare Ministry Pingtung Hospital, No.270, Ziyou Rd., Pingtung City, Pingtung County 900, Taiwan
| | - Yao-Chung Chuang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung, University College of Medicine, Kaohsiung, Taiwan
| | - Chung-Yao Hsu
- Department of Neurology, Kaohsiung Medical University Hospital, No.100, Tzyou 1st Rd., Kaohsiung City 80754, Taiwan; Department of Neurology, Faculty of Medicine, College of Medicine, Kaohsiung Medical, University, Kaohsiung City 80708, Taiwan..
| |
Collapse
|
17
|
Ibrahim A, Soliman WM, Mesbah BEDM, Salem AS. Left ventricular dysfunction and cardiac autonomic imbalance in children with drug-resistant epilepsy. Epilepsy Res 2021; 176:106709. [PMID: 34252747 DOI: 10.1016/j.eplepsyres.2021.106709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Resistance to antiepileptic drug treatment increases the risk of comorbidities and mortality due to a cardio-autonomic imbalance and left ventricular (LV) dysfunction. OBJECTIVE To assess the prevalence of LV dysfunction and cardio-autonomic imbalance in children with drug-resistant epilepsy (DRE). PATIENTS AND METHODS This cross-sectional study included 40 children with DRE and 40 healthy age- and sex-matched controls. LV function was evaluated by M-mode, two-dimensional, pulse-wave Doppler echocardiography, and tissue Doppler imaging (TDI). Cardio-autonomic function was assessed by 24 -h Holter monitoring of heart rate variability. RESULTS All time domain measures were significantly lower in the epilepsy group than in the control group (all Ps<0.01). Additionally, the mean high frequency (HF) parameters were significantly lower (P = 0.035), whereas the mean low frequency (LF) parameters and the LF/HF ratio were significantly higher (P < 0.001) in the epilepsy group than in the control group. LV function did not differ between groups regarding all standard echocardiographic parameters. There was evidence of subclinical LVdysfunction by tissue doppler among the epileptic group, as evidenced by the elevated Myocardial Performance Index, isovolumetric relaxation time and mitral E/Em ratio. There was no significant correlation between the duration of epilepsy or seizure frequency with any cardiac abnormality. CONCLUSIONS Children with DRE exhibited cardio-autonomic and subclinical LV dysfunction, independent of the duration of epilepsy, frequency, and seizure type.
Collapse
Affiliation(s)
- Ahmed Ibrahim
- Department of Pediatrics, Faculty of Medicine, Suez Canal University, Egypt.
| | - Walaa M Soliman
- Department of Pediatrics, Faculty of Medicine, Suez Canal University, Egypt
| | | | - Ahmed S Salem
- Department of Cardiology, Faculty of Medicine, Suez Canal University, Egypt
| |
Collapse
|
18
|
Scorza FA, de Almeida ACG, Scorza CA, Rodrigues AM, Cysneiros RM. Hypertension and epilepsy: A deadly combination. Epilepsy Behav 2021; 119:107978. [PMID: 33941499 DOI: 10.1016/j.yebeh.2021.107978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Fulvio A Scorza
- Disciplina de Neurociência, Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, Brazil; Centro de Neurociências e Saúde da Mulher "Professor, Geraldo Rodrigues de Lima.", Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, Brazil.
| | - Antonio-Carlos G de Almeida
- Centro de Neurociências e Saúde da Mulher "Professor, Geraldo Rodrigues de Lima.", Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, Brazil; Laboratório de Neurociência Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei (UFSJ), Brazil
| | - Carla A Scorza
- Disciplina de Neurociência, Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, Brazil; Centro de Neurociências e Saúde da Mulher "Professor, Geraldo Rodrigues de Lima.", Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, Brazil
| | - Antônio Márcio Rodrigues
- Laboratório de Neurociência Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei (UFSJ), Brazil
| | - Roberta M Cysneiros
- Centro de Neurociências e Saúde da Mulher "Professor, Geraldo Rodrigues de Lima.", Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, Brazil; Programa de Pós-Graduação em Distúrbios do Desenvolvimento do Centro de Ciências Biológicas e da Saúde - Universidade Presbiteriana Mackenzie, São Paulo, Brazil
| |
Collapse
|
19
|
Costagliola G, Orsini A, Coll M, Brugada R, Parisi P, Striano P. The brain-heart interaction in epilepsy: implications for diagnosis, therapy, and SUDEP prevention. Ann Clin Transl Neurol 2021; 8:1557-1568. [PMID: 34047488 PMCID: PMC8283165 DOI: 10.1002/acn3.51382] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/15/2021] [Accepted: 04/27/2021] [Indexed: 12/17/2022] Open
Abstract
The influence of the central nervous system and autonomic system on cardiac activity is being intensively studied, as it contributes to the high rate of cardiologic comorbidities observed in people with epilepsy. Indeed, neuroanatomic connections between the brain and the heart provide links that allow cardiac arrhythmias to occur in response to brain activation, have been shown to produce arrhythmia both experimentally and clinically. Moreover, seizures may induce a variety of transient cardiac effects, which include changes in heart rate, heart rate variability, arrhythmias, asystole, and other ECG abnormalities, and can trigger the development of Takotsubo syndrome. People with epilepsy are at a higher risk of death than the general population, and sudden unexpected death in epilepsy (SUDEP) is the most important direct epilepsy-related cause of death. Although the cause of SUDEP is still unknown, cardiac abnormalities during and between seizures could play a significant role in its pathogenesis, as highlighted by studies on animal models of SUDEP and registration of SUDEP events. Recently, genetic mutations in genes co-expressed in the heart and brain, which may result in epilepsy and cardiac comorbidity/increased risk for SUDEP, have been described. Recognition and a better understanding of brain-heart interactions, together with new advances in sequencing techniques, may provide new insights into future novel therapies and help in the prevention of cardiac dysfunction and sudden death in epileptic individuals.
Collapse
Affiliation(s)
- Giorgio Costagliola
- Pediatric Clinic, Santa Chiara's University Hospital, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Alessandro Orsini
- Pediatric Clinic, Santa Chiara's University Hospital, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Monica Coll
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
| | - Ramon Brugada
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain.,Medical Science Department, School of Medicine, University of Girona, Girona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Cardiology Service, Hospital Josep Trueta, Girona, Spain
| | - Pasquale Parisi
- Chair of Pediatrics, NESMOS Department, Faculty of Medicine and Psychology, Sapienza University, Sant' Andrea Hospital, Rome, Italy
| | - Pasquale Striano
- IRCCS Istituto Giannina Gaslini, Genova, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| |
Collapse
|
20
|
Scorza FA, de Almeida ACG, Scorza CA, Finsterer J. Sudden death in a patient with epilepsy and arterial hypertension: time for re-assessment. Clinics (Sao Paulo) 2021; 76:e3023. [PMID: 34133664 PMCID: PMC8158671 DOI: 10.6061/clinics/2021/e3023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Fulvio A. Scorza
- Disciplina de Neurociencia, Escola Paulista de Medicina/Universidade Federal de Sao Paulo (EPM/UNIFESP), Sao Paulo, SP, BR
- Centro de Neurociencias e Saude da Mulher “Professor Geraldo Rodrigues de Lima”, Escola Paulista de Medicina/Universidade Federal de Sao Paulo (EPM/UNIFESP), Sao Paulo, SP, BR
- Corresponding author. E-mail:
| | - Antonio Carlos G. de Almeida
- Centro de Neurociencias e Saude da Mulher “Professor Geraldo Rodrigues de Lima”, Escola Paulista de Medicina/Universidade Federal de Sao Paulo (EPM/UNIFESP), Sao Paulo, SP, BR
- Laboratorio de Neurociencia Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de Sao Joao del-Rei (UFSJ), Sao Joao del-Rei, MG, BR
| | - Carla A. Scorza
- Disciplina de Neurociencia, Escola Paulista de Medicina/Universidade Federal de Sao Paulo (EPM/UNIFESP), Sao Paulo, SP, BR
- Centro de Neurociencias e Saude da Mulher “Professor Geraldo Rodrigues de Lima”, Escola Paulista de Medicina/Universidade Federal de Sao Paulo (EPM/UNIFESP), Sao Paulo, SP, BR
| | - Josef Finsterer
- Krankenanstalt Rudolfstiftung, Messerli Institute, Vienna, Austria
| |
Collapse
|