1
|
Tu JC, Millar PR, Strain JF, Eck A, Adeyemo B, Snyder AZ, Daniels A, Karch C, Huey ED, McDade E, Day GS, Yakushev I, Hassenstab J, Morris J, Llibre-Guerra JJ, Ibanez L, Jucker M, Mendez PC, Perrin RJ, Benzinger TLS, Jack CR, Betzel R, Ances BM, Eggebrecht AT, Gordon BA, Wheelock MD. Increasing hub disruption parallels dementia severity in autosomal dominant Alzheimer's disease. Netw Neurosci 2024; 8:1265-1290. [PMID: 39735502 PMCID: PMC11674321 DOI: 10.1162/netn_a_00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/23/2024] [Indexed: 12/31/2024] Open
Abstract
Hub regions in the brain, recognized for their roles in ensuring efficient information transfer, are vulnerable to pathological alterations in neurodegenerative conditions, including Alzheimer's disease (AD). Computational simulations and animal experiments have hinted at the theory of activity-dependent degeneration as the cause of this hub vulnerability. However, two critical issues remain unresolved. First, past research has not clearly distinguished between two scenarios: hub regions facing a higher risk of connectivity disruption (targeted attack) and all regions having an equal risk (random attack). Second, human studies offering support for activity-dependent explanations remain scarce. We refined the hub disruption index to demonstrate a hub disruption pattern in functional connectivity in autosomal dominant AD that aligned with targeted attacks. This hub disruption is detectable even in preclinical stages, 12 years before the expected symptom onset and is amplified alongside symptomatic progression. Moreover, hub disruption was primarily tied to regional differences in global connectivity and sequentially followed changes observed in amyloid-beta positron emission tomography cortical markers, consistent with the activity-dependent degeneration explanation. Taken together, our findings deepen the understanding of brain network organization in neurodegenerative diseases and could be instrumental in refining diagnostic and targeted therapeutic strategies for AD in the future.
Collapse
Affiliation(s)
- Jiaxin Cindy Tu
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Peter R. Millar
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Jeremy F. Strain
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Andrew Eck
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Babatunde Adeyemo
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Abraham Z. Snyder
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Alisha Daniels
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Celeste Karch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Edward D. Huey
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Eric McDade
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Gregory S. Day
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Igor Yakushev
- Department of Nuclear Medicine, Technical University of Munich, Munich, Germany
| | - Jason Hassenstab
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - John Morris
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Laura Ibanez
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Mathias Jucker
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | | | - Richard J. Perrin
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | | | | | - Richard Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Beau M. Ances
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Adam T. Eggebrecht
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Brian A. Gordon
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Muriah D. Wheelock
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | | |
Collapse
|
2
|
Diez I, Ortiz-Terán L, Ng TSC, Albers MW, Marshall G, Orwig W, Kim CM, Bueichekú E, Montal V, Olofsson J, Vannini P, El Fahkri G, Sperling R, Johnson K, Jacobs HIL, Sepulcre J. Tau propagation in the brain olfactory circuits is associated with smell perception changes in aging. Nat Commun 2024; 15:4809. [PMID: 38844444 PMCID: PMC11156945 DOI: 10.1038/s41467-024-48462-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 04/30/2024] [Indexed: 06/09/2024] Open
Abstract
The direct access of olfactory afferents to memory-related cortical systems has inspired theories about the role of the olfactory pathways in the development of cortical neurodegeneration in Alzheimer's disease (AD). In this study, we used baseline olfactory identification measures with longitudinal flortaucipir and PiB PET, diffusion MRI of 89 cognitively normal older adults (73.82 ± 8.44 years; 56% females), and a transcriptomic data atlas to investigate the spatiotemporal spreading and genetic vulnerabilities of AD-related pathology aggregates in the olfactory system. We find that odor identification deficits are predominantly associated with tau accumulation in key areas of the olfactory pathway, with a particularly strong predictive power for longitudinal tau progression. We observe that tau spreads from the medial temporal lobe structures toward the olfactory system, not the reverse. Moreover, we observed a genetic background of odor perception-related genes that might confer vulnerability to tau accumulation along the olfactory system.
Collapse
Affiliation(s)
- Ibai Diez
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Laura Ortiz-Terán
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- UMASS Memorial Medical Center, UMASS Chan Medical School, Worcester, MA, USA
| | - Thomas S C Ng
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark W Albers
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Gad Marshall
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - William Orwig
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Harvard University, Department of Psychology, Cambridge, MA, USA
| | - Chan-Mi Kim
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Elisenda Bueichekú
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Victor Montal
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Barcelona Supercomputing Center, Barcelona, Spain
| | - Jonas Olofsson
- Stockholm University, Department of Psychology, Stockholm, Sweden
| | - Patrizia Vannini
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Georges El Fahkri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Reisa Sperling
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Keith Johnson
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Heidi I L Jacobs
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jorge Sepulcre
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
3
|
Preziosa P, Storelli L, Tedone N, Margoni M, Mistri D, Azzimonti M, Filippi M, Rocca MA. Spatial correspondence among regional gene expressions and gray matter volume loss in multiple sclerosis. Mol Psychiatry 2024; 29:1833-1843. [PMID: 38326561 DOI: 10.1038/s41380-024-02452-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
In multiple sclerosis (MS), a non-random and clinically relevant pattern of gray matter (GM) volume loss has been described. Whether differences in regional gene expression might underlay distinctive pathological processes contributing to this regional variability has not been explored yet. Two hundred eighty-six MS patients and 172 healthy controls (HC) underwent a brain 3T MRI, a complete neurological evaluation and a neuropsychological assessment. Using Allen Human Brain Atlas, voxel-based morphometry and MENGA platform, we integrated brain transcriptome and neuroimaging data to explore the spatial cross-correlations between regional GM volume loss and expressions of 2710 genes involved in MS (p < 0.05, family-wise error-corrected). Enrichment analyses were performed to evaluate overrepresented molecular functions, biological processes and cellular components involving genes significantly associated with voxel-based morphometry-derived GM maps (p < 0.05, Bonferroni-corrected). A diffuse GM volume loss was found in MS patients compared to HC and it was spatially correlated with 74 genes involved in GABA neurotransmission and mitochondrial oxidoreductase activity mainly expressed in neurons and astrocytes. A more severe GM volume loss was spatially associated, in more disabled MS patients, with 44 genes involved in mitochondrial integrity of all resident cells of the central nervous system (CNS) and, in cognitively impaired MS patients, with 64 genes involved in mitochondrial protein heterodimerization and oxidoreductase activities expressed also in microglia and endothelial cells. Specific differences in the expressions of genes involved in synaptic GABA receptor activities and mitochondrial functions in resident CNS cells may influence regional susceptibility to MS-related excitatory/inhibitory imbalance and oxidative stress, and subsequently, to GM volume loss.
Collapse
Affiliation(s)
- Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Loredana Storelli
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nicolò Tedone
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Monica Margoni
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Damiano Mistri
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Azzimonti
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
4
|
Tu JC, Millar PR, Strain JF, Eck A, Adeyemo B, Daniels A, Karch C, Huey ED, McDade E, Day GS, Yakushev I, Hassenstab J, Morris J, Llibre-Guerra JJ, Ibanez L, Jucker M, Mendez PC, Bateman RJ, Perrin RJ, Benzinger T, Jack CR, Betzel R, Ances BM, Eggebrecht AT, Gordon BA, Wheelock MD. Increasing hub disruption parallels dementia severity in autosomal dominant Alzheimer disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.29.564633. [PMID: 37961586 PMCID: PMC10634945 DOI: 10.1101/2023.10.29.564633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Hub regions in the brain, recognized for their roles in ensuring efficient information transfer, are vulnerable to pathological alterations in neurodegenerative conditions, including Alzheimer Disease (AD). Given their essential role in neural communication, disruptions to these hubs have profound implications for overall brain network integrity and functionality. Hub disruption, or targeted impairment of functional connectivity at the hubs, is recognized in AD patients. Computational models paired with evidence from animal experiments hint at a mechanistic explanation, suggesting that these hubs may be preferentially targeted in neurodegeneration, due to their high neuronal activity levels-a phenomenon termed "activity-dependent degeneration". Yet, two critical issues were unresolved. First, past research hasn't definitively shown whether hub regions face a higher likelihood of impairment (targeted attack) compared to other regions or if impairment likelihood is uniformly distributed (random attack). Second, human studies offering support for activity-dependent explanations remain scarce. We applied a refined hub disruption index to determine the presence of targeted attacks in AD. Furthermore, we explored potential evidence for activity-dependent degeneration by evaluating if hub vulnerability is better explained by global connectivity or connectivity variations across functional systems, as well as comparing its timing relative to amyloid beta deposition in the brain. Our unique cohort of participants with autosomal dominant Alzheimer Disease (ADAD) allowed us to probe into the preclinical stages of AD to determine the hub disruption timeline in relation to expected symptom emergence. Our findings reveal a hub disruption pattern in ADAD aligned with targeted attacks, detectable even in pre-clinical stages. Notably, the disruption's severity amplified alongside symptomatic progression. Moreover, since excessive local neuronal activity has been shown to increase amyloid deposition and high connectivity regions show high level of neuronal activity, our observation that hub disruption was primarily tied to regional differences in global connectivity and sequentially followed changes observed in Aβ PET cortical markers is consistent with the activity-dependent degeneration model. Intriguingly, these disruptions were discernible 8 years before the expected age of symptom onset. Taken together, our findings not only align with the targeted attack on hubs model but also suggest that activity-dependent degeneration might be the cause of hub vulnerability. This deepened understanding could be instrumental in refining diagnostic techniques and developing targeted therapeutic strategies for AD in the future.
Collapse
Affiliation(s)
- Jiaxin Cindy Tu
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Peter R Millar
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Jeremy F Strain
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Andrew Eck
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Babatunde Adeyemo
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Alisha Daniels
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Celeste Karch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Edward D Huey
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, 02912
| | - Eric McDade
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Gregory S Day
- Department of Neurology, Mayo Clinic College of Medicine, Jacksonville, FL, USA, 32224
| | - Igor Yakushev
- Department of Nuclear Medicine, Technical University of Munich, Munich, Germany, 81675
| | - Jason Hassenstab
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - John Morris
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Jorge J Llibre-Guerra
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Laura Ibanez
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA, 63108
- NeuroGenomics and Informatics Center, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Mathias Jucker
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany, 72076
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany, 72076
| | | | - Randell J Bateman
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Richard J Perrin
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Tammie Benzinger
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN, USA 55905
| | - Richard Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN USA, 47405
| | - Beau M Ances
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Adam T Eggebrecht
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Brian A Gordon
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Muriah D Wheelock
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| |
Collapse
|
5
|
Chehimi SN, Crist RC, Reiner BC. Unraveling Psychiatric Disorders through Neural Single-Cell Transcriptomics Approaches. Genes (Basel) 2023; 14:771. [PMID: 36981041 PMCID: PMC10047992 DOI: 10.3390/genes14030771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The development of single-cell and single-nucleus transcriptome technologies is enabling the unraveling of the molecular and cellular heterogeneity of psychiatric disorders. The complexity of the brain and the relationships between different brain regions can be better understood through the classification of individual cell populations based on their molecular markers and transcriptomic features. Analysis of these unique cell types can explain their involvement in the pathology of psychiatric disorders. Recent studies in both human and animal models have emphasized the importance of transcriptome analysis of neuronal cells in psychiatric disorders but also revealed critical roles for non-neuronal cells, such as oligodendrocytes and microglia. In this review, we update current findings on the brain transcriptome and explore molecular studies addressing transcriptomic alterations identified in human and animal models in depression and stress, neurodegenerative disorders (Parkinson's and Alzheimer's disease), schizophrenia, opioid use disorder, and alcohol and psychostimulant abuse. We also comment on potential future directions in single-cell and single-nucleus studies.
Collapse
Affiliation(s)
| | - Richard C. Crist
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
6
|
Li J, Keller SS, Seidlitz J, Chen H, Li B, Weng Y, Meng Y, Yang S, Xu Q, Zhang Q, Yang F, Lu G, Bernhardt BC, Zhang Z, Liao W. Cortical morphometric vulnerability to generalised epilepsy reflects chromosome- and cell type-specific transcriptomic signatures. Neuropathol Appl Neurobiol 2023; 49:e12857. [PMID: 36278258 DOI: 10.1111/nan.12857] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022]
Abstract
AIMS Generalised epilepsy is thought to involve distributed brain networks. However, the molecular and cellular factors that render different brain regions more vulnerable to epileptogenesis remain largely unknown. We aimed to investigate epilepsy-related morphometric similarity network (MSN) abnormalities at the macroscale level and their relationships with microscale gene expressions at the microscale level. METHODS We compared the MSN of genetic generalised epilepsy with generalised tonic-clonic seizure patients (GGE-GTCS, n = 101) to demographically matched healthy controls (HC, n = 150). Cortical MSNs were estimated by combining seven morphometric features derived from structural magnetic resonance imaging for each individual. Regional gene expression profiles were derived from brain-wide microarray measurements provided by the Allen Human Brain Atlas. RESULTS GGE-GTCS patients exhibited decreased regional MSNs in primary motor, prefrontal and temporal regions and increases in occipital, insular and posterior cingulate cortices, when compared with the HC. These case-control neuroimaging differences were validated using split-half analyses and were not affected by medication or drug response effects. When assessing associations with gene expression, genes associated with GGE-GTCS-related MSN differences were enriched in several biological processes, including 'synapse organisation', 'neurotransmitter transport' pathways and excitatory/inhibitory neuronal cell types. Collectively, the GGE-GTCS-related cortical vulnerabilities were associated with chromosomes 4, 5, 11 and 16 and were dispersed bottom-up at the cellular, pathway and disease levels, which contributed to epileptogenesis, suggesting diverse neurobiologically relevant enrichments in GGE-GTCS. CONCLUSIONS By bridging the gaps between transcriptional signatures and in vivo neuroimaging, we highlighted the importance of using MSN abnormalities of the human brain in GGE-GTCS patients to investigate disease-relevant genes and biological processes.
Collapse
Affiliation(s)
- Jiao Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Simon S Keller
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Jakob Seidlitz
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Bing Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Yifei Weng
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.,Department of Radiology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yao Meng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Siqi Yang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiang Xu
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Qirui Zhang
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Fang Yang
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Zhiqiang Zhang
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
7
|
Suñol M, Alemany S, Bustamante M, Diez I, Contreras-Rodríguez O, Laudo B, Macià D, Martínez-Vilavella G, Martínez-Zalacaín I, Menchón JM, Pujol J, Sunyer J, Sepulcre J, Soriano-Mas C. Neurogenetics of Dynamic Connectivity Patterns Associated With Obsessive-Compulsive Symptoms in Healthy Children. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 2:411-420. [PMID: 36324658 PMCID: PMC9616269 DOI: 10.1016/j.bpsgos.2021.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/28/2021] [Accepted: 11/14/2021] [Indexed: 01/31/2023] Open
Abstract
Background Obsessive-compulsive symptoms (OCSs) during childhood predispose to obsessive-compulsive disorder and have been associated with changes in brain circuits altered in obsessive-compulsive disorder samples. OCSs may arise from disturbed glutamatergic neurotransmission, impairing cognitive oscillations and promoting overstable functional states. Methods A total of 227 healthy children completed the Obsessive Compulsive Inventory-Child Version and underwent a resting-state functional magnetic resonance imaging examination. Genome-wide data were obtained from 149 of them. We used a graph theory-based approach and characterized associations between OCSs and dynamic functional connectivity (dFC). dFC evaluates fluctuations over time in FC between brain regions, which allows characterizing regions with stable connectivity patterns (attractors). We then compared the spatial similarity between OCS-dFC correlation maps and mappings of genetic expression across brain regions to identify genes potentially associated with connectivity changes. In post hoc analyses, we investigated which specific single nucleotide polymorphisms of these genes moderated the association between OCSs and patterns of dFC. Results OCSs correlated with decreased attractor properties in the left ventral putamen and increased attractor properties in (pre)motor areas and the left hippocampus. At the specific symptom level, increased attractor properties in the right superior parietal cortex correlated with ordering symptoms. In the hippocampus, we identified two single nucleotide polymorphisms in glutamatergic neurotransmission genes (GRM7, GNAQ) that moderated the association between OCSs and attractor features. Conclusions We provide evidence that in healthy children, the association between dFC changes and OCSs may be mapped onto brain circuits predicted by prevailing neurobiological models of obsessive-compulsive disorder. Moreover, our findings support the involvement of glutamatergic neurotransmission in such brain network changes.
Collapse
Affiliation(s)
- Maria Suñol
- Department of Psychiatry, Bellvitge University Hospital and Bellvitge Biomedical Research Institute, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
- Mental Health Networking Biomedical Research Centre, Carlos III Health Institute, Barcelona, Spain
- Gordon Center for Medical Imaging, Department of Radiology and Nuclear Medicine, Harvard Medical School, Boston
| | - Silvia Alemany
- Epidemiology and Public Health Networking Biomedical Research Centre, Carlos III Health Institute, Barcelona, Spain
- Barcelona Institute for Global Health, Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Mariona Bustamante
- Epidemiology and Public Health Networking Biomedical Research Centre, Carlos III Health Institute, Barcelona, Spain
- Barcelona Institute for Global Health, Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ibai Diez
- Gordon Center for Medical Imaging, Department of Radiology and Nuclear Medicine, Harvard Medical School, Boston
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts
| | - Oren Contreras-Rodríguez
- Department of Psychiatry, Bellvitge University Hospital and Bellvitge Biomedical Research Institute, Barcelona, Spain
- Mental Health Networking Biomedical Research Centre, Carlos III Health Institute, Barcelona, Spain
| | - Berta Laudo
- Department of Psychiatry, Bellvitge University Hospital and Bellvitge Biomedical Research Institute, Barcelona, Spain
| | - Dídac Macià
- Barcelona Institute for Global Health, Barcelona, Spain
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain
| | | | - Ignacio Martínez-Zalacaín
- Department of Psychiatry, Bellvitge University Hospital and Bellvitge Biomedical Research Institute, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
| | - José Manuel Menchón
- Department of Psychiatry, Bellvitge University Hospital and Bellvitge Biomedical Research Institute, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
- Mental Health Networking Biomedical Research Centre, Carlos III Health Institute, Barcelona, Spain
| | - Jesús Pujol
- Mental Health Networking Biomedical Research Centre, Carlos III Health Institute, Barcelona, Spain
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain
| | - Jordi Sunyer
- Epidemiology and Public Health Networking Biomedical Research Centre, Carlos III Health Institute, Barcelona, Spain
- Barcelona Institute for Global Health, Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Medical Research Institute, Hospital del Mar, Barcelona, Spain
| | - Jorge Sepulcre
- Gordon Center for Medical Imaging, Department of Radiology and Nuclear Medicine, Harvard Medical School, Boston
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts
| | - Carles Soriano-Mas
- Department of Psychiatry, Bellvitge University Hospital and Bellvitge Biomedical Research Institute, Barcelona, Spain
- Mental Health Networking Biomedical Research Centre, Carlos III Health Institute, Barcelona, Spain
- Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Jungilligens J, Popkirov S, Perez DL, Diez I. Linking gene expression patterns and brain morphometry to trauma and symptom severity in patients with functional seizures. Psychiatry Res Neuroimaging 2022; 326:111533. [PMID: 36055038 PMCID: PMC9968826 DOI: 10.1016/j.pscychresns.2022.111533] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/05/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022]
Abstract
Within stress-diathesis models, adverse life experiences (ALEs) increase the susceptibility to functional neurological symptoms through neuroplasticity effects. We aimed to characterize potential genetic influences on this relationship in 20 patients with functional seizures. Questionnaires, structural MRIs and Allen Human Brain Atlas gene expression information were used to probe the intersection of symptom severity (Somatoform Dissociation Questionnaire, SDQ-20), ALE burden, and gray matter volumes. SDQ-20 scores positively correlated with sexual trauma, emotional neglect, and threat to life experiences. Higher SDQ-20 scores related to lower bilateral insula, left orbitofrontal, right amygdala, and perigenual/posterior cingulate volumes. Higher sexual trauma burden correlated with lower right posterior insula and putamen volumes; higher emotional neglect related to lower bilateral insula/right amygdala volumes. Findings in left insula/ventral precentral gyrus (SDQ-20), right insula/putamen (sexual trauma), and right amygdala (emotional neglect) held when controlling for comorbid psychopathology. At the intersection of symptom severity and sexual trauma volumetric findings, genes overrepresented in adrenergic, serotonergic, and oxytocin receptor signaling as well as in cortical and amygdala development were spatially correlated. In conclusion, ALEs and symptom severity were associated with gray matter volumes in cingulo-insular and amygdala areas, spatially overlapping with expression patterns of genes involved in stress-related signaling and neurodevelopment.
Collapse
Affiliation(s)
- Johannes Jungilligens
- Department of Neurology, University Hospital Knappschaftskrankenhaus, Ruhr University Bochum, Bochum, Germany; Functional Neurological Disorder Unit, Division of Cognitive Behavioral Neurology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America.
| | - Stoyan Popkirov
- Department of Neurology, University Hospital Knappschaftskrankenhaus, Ruhr University Bochum, Bochum, Germany
| | - David L Perez
- Functional Neurological Disorder Unit, Division of Cognitive Behavioral Neurology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America; Division of Neuropsychiatry, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Ibai Diez
- Functional Neurological Disorder Unit, Division of Cognitive Behavioral Neurology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America; Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
9
|
Montal V, Diez I, Kim CM, Orwig W, Bueichekú E, Gutiérrez-Zúñiga R, Bejanin A, Pegueroles J, Dols-Icardo O, Vannini P, El-Fakhri G, Johnson KA, Sperling RA, Fortea J, Sepulcre J. Network Tau spreading is vulnerable to the expression gradients of APOE and glutamatergic-related genes. Sci Transl Med 2022; 14:eabn7273. [PMID: 35895837 PMCID: PMC9942690 DOI: 10.1126/scitranslmed.abn7273] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A key hallmark of Alzheimer's disease (AD) pathology is the intracellular accumulation of tau protein in the form of neurofibrillary tangles across large-scale networks of the human brain cortex. Currently, it is still unclear how tau accumulates within specific cortical systems and whether in situ genetic traits play a role in this circuit-based propagation progression. In this study, using two independent cohorts of cognitively normal older participants, we reveal the brain network foundation of tau spreading and its association with using high-resolution transcriptomic genetic data. We observed that specific connectomic and genetic gradients exist along the tau spreading network. In particular, we identified 577 genes whose expression is associated with the spatial spreading of tau. Within this set of genes, APOE and glutamatergic synaptic genes, such as SLC1A2, play a central role. Thus, our study characterizes neurogenetic topological vulnerabilities in distinctive brain circuits of tau spreading and suggests that drug development strategies targeting the gradient expression of this set of genes should be explored to help reduce or prevent pathological tau accumulation.
Collapse
Affiliation(s)
- Victor Montal
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School; Boston, Massachusetts, USA.,Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autonoma de Barcelona; Barcelona, Spain.,Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED); Madrid, Spain
| | - Ibai Diez
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School; Boston, Massachusetts, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School; Charlestown, Massachusetts, USA
| | - Chan-Mi Kim
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School; Boston, Massachusetts, USA
| | - William Orwig
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School; Boston, Massachusetts, USA
| | - Elisenda Bueichekú
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School; Boston, Massachusetts, USA
| | - Raquel Gutiérrez-Zúñiga
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School; Boston, Massachusetts, USA
| | - Alexandre Bejanin
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autonoma de Barcelona; Barcelona, Spain.,Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED); Madrid, Spain
| | - Jordi Pegueroles
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autonoma de Barcelona; Barcelona, Spain.,Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED); Madrid, Spain
| | - Oriol Dols-Icardo
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autonoma de Barcelona; Barcelona, Spain.,Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED); Madrid, Spain
| | - Patrizia Vannini
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School; Charlestown, Massachusetts, USA.,Center for Alzheimer research and treatment, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School; Boston, MA
| | - Georges El-Fakhri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School; Boston, Massachusetts, USA
| | - Keith A. Johnson
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School; Boston, Massachusetts, USA
| | - Reisa A. Sperling
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School; Charlestown, Massachusetts, USA
| | - Juan Fortea
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autonoma de Barcelona; Barcelona, Spain.,Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED); Madrid, Spain
| | - Jorge Sepulcre
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School; Boston, Massachusetts, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School; Charlestown, Massachusetts, USA.,Correspondence should be addressed to Jorge Sepulcre, 149 13th St, Office 5.209, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts; ; +1 617 726 2899
| |
Collapse
|
10
|
Toriumi K, Wang GZ, Berto S, Usui N. Editorial: Decoding Brain Function Through Genetics. Front Genet 2022; 13:874350. [PMID: 35480329 PMCID: PMC9035695 DOI: 10.3389/fgene.2022.874350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kazuya Toriumi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Guang-Zhong Wang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Stefano Berto
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Noriyoshi Usui
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Osaka, Japan
- United Graduate School of Child Development, Osaka University, Suita, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, Japan
- *Correspondence: Noriyoshi Usui,
| |
Collapse
|
11
|
Basaia S, Agosta F, Diez I, Bueichekú E, d'Oleire Uquillas F, Delgado-Alvarado M, Caballero-Gaudes C, Rodriguez-Oroz M, Stojkovic T, Kostic VS, Filippi M, Sepulcre J. Neurogenetic traits outline vulnerability to cortical disruption in Parkinson's disease. Neuroimage Clin 2022; 33:102941. [PMID: 35091253 PMCID: PMC8800137 DOI: 10.1016/j.nicl.2022.102941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/03/2021] [Accepted: 01/10/2022] [Indexed: 01/18/2023]
Abstract
The genetic traits that underlie vulnerability to neuronal damage across specific brain circuits in Parkinson's disease (PD) remain to be elucidated. In this study, we characterized the brain topological intersection between propagating connectivity networks in controls and PD participants and gene expression patterns across the human cortex - such as the SNCA gene. We observed that brain connectivity originated from PD-related pathology epicenters in the brainstem recapitulated the anatomical distribution of alpha-synuclein histopathology in postmortem data. We also discovered that the gene set most related to cortical propagation patterns of PD-related pathology was primarily involved in microtubule cellular components. Thus, this study sheds light on new avenues for enhancing detection of PD neuronal vulnerability via an evaluation of in vivo connectivity trajectories across the human brain and successful integration of neuroimaging-genetic strategies.
Collapse
Affiliation(s)
- Silvia Basaia
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy
| | - Ibai Diez
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Elisenda Bueichekú
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Federico d'Oleire Uquillas
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Manuel Delgado-Alvarado
- Neurology Department, Sierrallana Hospital, Torrelavega, Spain; IDIVAL, Valdecilla Biomedical Research Institute, Santander, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Madrid, Spain
| | | | - MariCruz Rodriguez-Oroz
- Neurology Department, Clínica Universidad de Navarra, Neuroscience Unit, CIMA Universidad de Navarra, Spain
| | - Tanja Stojkovic
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir S Kostic
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy
| | - Jorge Sepulcre
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|