1
|
Onciul R, Tataru CI, Dumitru AV, Crivoi C, Serban M, Covache-Busuioc RA, Radoi MP, Toader C. Artificial Intelligence and Neuroscience: Transformative Synergies in Brain Research and Clinical Applications. J Clin Med 2025; 14:550. [PMID: 39860555 PMCID: PMC11766073 DOI: 10.3390/jcm14020550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
The convergence of Artificial Intelligence (AI) and neuroscience is redefining our understanding of the brain, unlocking new possibilities in research, diagnosis, and therapy. This review explores how AI's cutting-edge algorithms-ranging from deep learning to neuromorphic computing-are revolutionizing neuroscience by enabling the analysis of complex neural datasets, from neuroimaging and electrophysiology to genomic profiling. These advancements are transforming the early detection of neurological disorders, enhancing brain-computer interfaces, and driving personalized medicine, paving the way for more precise and adaptive treatments. Beyond applications, neuroscience itself has inspired AI innovations, with neural architectures and brain-like processes shaping advances in learning algorithms and explainable models. This bidirectional exchange has fueled breakthroughs such as dynamic connectivity mapping, real-time neural decoding, and closed-loop brain-computer systems that adaptively respond to neural states. However, challenges persist, including issues of data integration, ethical considerations, and the "black-box" nature of many AI systems, underscoring the need for transparent, equitable, and interdisciplinary approaches. By synthesizing the latest breakthroughs and identifying future opportunities, this review charts a path forward for the integration of AI and neuroscience. From harnessing multimodal data to enabling cognitive augmentation, the fusion of these fields is not just transforming brain science, it is reimagining human potential. This partnership promises a future where the mysteries of the brain are unlocked, offering unprecedented advancements in healthcare, technology, and beyond.
Collapse
Affiliation(s)
- Razvan Onciul
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.O.); (M.S.); (R.-A.C.-B.); (M.P.R.); (C.T.)
- Neurosurgery Department, Emergency University Hospital, 050098 Bucharest, Romania
| | - Catalina-Ioana Tataru
- Clinical Department of Ophthalmology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Ophthalmology, Clinical Hospital for Ophthalmological Emergencies, 010464 Bucharest, Romania
| | - Adrian Vasile Dumitru
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.O.); (M.S.); (R.-A.C.-B.); (M.P.R.); (C.T.)
- Department of Morphopathology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Emergency University Hospital, 050098 Bucharest, Romania
| | - Carla Crivoi
- Department of Computer Science, Faculty of Mathematics and Computer Science, University of Bucharest, 010014 Bucharest, Romania;
| | - Matei Serban
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.O.); (M.S.); (R.-A.C.-B.); (M.P.R.); (C.T.)
- Department of Vascular Neurosurgery, National Institute of Neurovascular Disease, 077160 Bucharest, Romania
- Puls Med Association, 051885 Bucharest, Romania
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.O.); (M.S.); (R.-A.C.-B.); (M.P.R.); (C.T.)
- Department of Vascular Neurosurgery, National Institute of Neurovascular Disease, 077160 Bucharest, Romania
- Puls Med Association, 051885 Bucharest, Romania
| | - Mugurel Petrinel Radoi
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.O.); (M.S.); (R.-A.C.-B.); (M.P.R.); (C.T.)
- Department of Vascular Neurosurgery, National Institute of Neurovascular Disease, 077160 Bucharest, Romania
| | - Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.O.); (M.S.); (R.-A.C.-B.); (M.P.R.); (C.T.)
- Department of Vascular Neurosurgery, National Institute of Neurovascular Disease, 077160 Bucharest, Romania
| |
Collapse
|
2
|
Tanaka M. From Serendipity to Precision: Integrating AI, Multi-Omics, and Human-Specific Models for Personalized Neuropsychiatric Care. Biomedicines 2025; 13:167. [PMID: 39857751 PMCID: PMC11761901 DOI: 10.3390/biomedicines13010167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/04/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: The dual forces of structured inquiry and serendipitous discovery have long shaped neuropsychiatric research, with groundbreaking treatments such as lithium and ketamine resulting from unexpected discoveries. However, relying on chance is becoming increasingly insufficient to address the rising prevalence of mental health disorders like depression and schizophrenia, which necessitate precise, innovative approaches. Emerging technologies like artificial intelligence, induced pluripotent stem cells, and multi-omics have the potential to transform this field by allowing for predictive, patient-specific interventions. Despite these advancements, traditional methodologies such as animal models and single-variable analyses continue to be used, frequently failing to capture the complexities of human neuropsychiatric conditions. Summary: This review critically evaluates the transition from serendipity to precision-based methodologies in neuropsychiatric research. It focuses on key innovations such as dynamic systems modeling and network-based approaches that use genetic, molecular, and environmental data to identify new therapeutic targets. Furthermore, it emphasizes the importance of interdisciplinary collaboration and human-specific models in overcoming the limitations of traditional approaches. Conclusions: We highlight precision psychiatry's transformative potential for revolutionizing mental health care. This paradigm shift, which combines cutting-edge technologies with systematic frameworks, promises increased diagnostic accuracy, reproducibility, and efficiency, paving the way for tailored treatments and better patient outcomes in neuropsychiatric care.
Collapse
Affiliation(s)
- Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| |
Collapse
|
3
|
Anbarasi J, Kumari R, Ganesh M, Agrawal R. Translational Connectomics: overview of machine learning in macroscale Connectomics for clinical insights. BMC Neurol 2024; 24:364. [PMID: 39342171 PMCID: PMC11438080 DOI: 10.1186/s12883-024-03864-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
Connectomics is a neuroscience paradigm focused on noninvasively mapping highly intricate and organized networks of neurons. The advent of neuroimaging has led to extensive mapping of the brain functional and structural connectome on a macroscale level through modalities such as functional and diffusion MRI. In parallel, the healthcare field has witnessed a surge in the application of machine learning and artificial intelligence for diagnostics, especially in imaging. While reviews covering machine learn ing and macroscale connectomics exist for specific disorders, none provide an overview that captures their evolving role, especially through the lens of clinical application and translation. The applications include understanding disorders, classification, identifying neuroimaging biomarkers, assessing severity, predicting outcomes and intervention response, identifying potential targets for brain stimulation, and evaluating the effects of stimulation intervention on the brain and connectome mapping in patients before neurosurgery. The covered studies span neurodegenerative, neurodevelopmental, neuropsychiatric, and neurological disorders. Along with applications, the review provides a brief of common ML methods to set context. Conjointly, limitations in ML studies within connectomics and strategies to mitigate them have been covered.
Collapse
Affiliation(s)
- Janova Anbarasi
- BrainSightAI, No. 677, 1st Floor, 27th Main, 13th Cross, HSR Layout, Sector 1, Adugodi, Bengaluru, Karnataka, 560102, India
| | - Radha Kumari
- BrainSightAI, No. 677, 1st Floor, 27th Main, 13th Cross, HSR Layout, Sector 1, Adugodi, Bengaluru, Karnataka, 560102, India
| | - Malvika Ganesh
- BrainSightAI, No. 677, 1st Floor, 27th Main, 13th Cross, HSR Layout, Sector 1, Adugodi, Bengaluru, Karnataka, 560102, India
| | - Rimjhim Agrawal
- BrainSightAI, No. 677, 1st Floor, 27th Main, 13th Cross, HSR Layout, Sector 1, Adugodi, Bengaluru, Karnataka, 560102, India.
| |
Collapse
|
4
|
Khalilullah KMI, Agcaoglu O, Sui J, Duda M, Adali T, Calhoun VD. Parallel Multilink Group Joint ICA: Fusion of 3D Structural and 4D Functional Data Across Multiple Resting fMRI Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586091. [PMID: 38585901 PMCID: PMC10996497 DOI: 10.1101/2024.03.21.586091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Multimodal neuroimaging research plays a pivotal role in understanding the complexities of the human brain and its disorders. Independent component analysis (ICA) has emerged as a widely used and powerful tool for disentangling mixed independent sources, particularly in the analysis of functional magnetic resonance imaging (fMRI) data. This paper extends the use of ICA as a unifying framework for multimodal fusion, introducing a novel approach termed parallel multilink group joint ICA (pmg-jICA). The method allows for the fusion of gray matter maps from structural MRI (sMRI) data to multiple fMRI intrinsic networks, addressing the limitations of previous models. The effectiveness of pmg-jICA is demonstrated through its application to an Alzheimer's dataset, yielding linked structure-function outputs for 53 brain networks. Our approach leverages the complementary information from various imaging modalities, providing a unique perspective on brain alterations in Alzheimer's disease. The pmg-jICA identifies several components with significant differences between HC and AD groups including thalamus, caudate, putamen with in the subcortical (SC) domain, insula, parahippocampal gyrus within the cognitive control (CC) domain, and the lingual gyrus within the visual (VS) domain, providing localized insights into the links between AD and specific brain regions. In addition, because we link across multiple brain networks, we can also compute functional network connectivity (FNC) from spatial maps and subject loadings, providing a detailed exploration of the relationships between different brain regions and allowing us to visualize spatial patterns and loading parameters in sMRI along with intrinsic networks and FNC from the fMRI data. In essence, developed approach combines concepts from joint ICA and group ICA to provide a rich set of output characterizing data-driven links between covarying gray matter networks, and a (potentially large number of) resting fMRI networks allowing further study in the context of structure/function links. We demonstrate the utility of the approach by highlighting key structure/function disruptions in Alzheimer's individuals.
Collapse
Affiliation(s)
- K M Ibrahim Khalilullah
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
| | - Oktay Agcaoglu
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
| | - Jing Sui
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
| | - Marlena Duda
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
| | - Tülay Adali
- Department of Electrical and Computer Engineering, University of Maryland, Baltimore, Maryland, USA
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Batta I, Abrol A, Calhoun VD. Multimodal active subspace analysis for computing assessment oriented subspaces from neuroimaging data. J Neurosci Methods 2024; 406:110109. [PMID: 38494061 PMCID: PMC11100582 DOI: 10.1016/j.jneumeth.2024.110109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 02/12/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND For successful biomarker discovery, it is essential to develop computational frameworks that summarize high-dimensional neuroimaging data in terms of involved sub-systems of the brain, while also revealing underlying heterogeneous functional and structural changes covarying with specific cognitive and biological traits. However, unsupervised decompositions do not inculcate clinical assessment information, while supervised approaches extract only individual feature importance, thereby impeding qualitative interpretation at the level of subspaces. NEW METHOD We present a novel framework to extract robust multimodal brain subspaces associated with changes in a given cognitive or biological trait. Our approach involves active subspace learning on the gradients of a trained machine learning model followed by clustering to extract and summarize the most salient and consistent subspaces associated with the target variable. RESULTS Through a rigorous cross-validation procedure on an Alzheimer's disease (AD) dataset, our framework successfully extracts multimodal subspaces specific to a given clinical assessment (e.g., memory and other cognitive skills), and also retains predictive performance in standard machine learning algorithms. We also show that the salient active subspace directions occur consistently across randomly sub-sampled repetitions of the analysis. COMPARISON WITH EXISTING METHOD(S) Compared to existing unsupervised decompositions based on principle component analysis, the subspace components in our framework retain higher predictive information. CONCLUSIONS As an important step towards biomarker discovery, our framework not only uncovers AD-related brain regions in the associated brain subspaces, but also enables automated identification of multiple underlying structural and functional sub-systems of the brain that collectively characterize changes in memory and proficiency in cognitive skills related to brain disorders like AD.
Collapse
Affiliation(s)
- Ishaan Batta
- Center for Translational Research in Neuroimaging and Data Science (TReNDS): Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, USA; Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA.
| | - Anees Abrol
- Center for Translational Research in Neuroimaging and Data Science (TReNDS): Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, USA
| | - Vince D Calhoun
- Center for Translational Research in Neuroimaging and Data Science (TReNDS): Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, USA; Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA
| |
Collapse
|
6
|
Yan W, Pearlson GD, Fu Z, Li X, Iraji A, Chen J, Sui J, Volkow ND, Calhoun VD. A Brainwide Risk Score for Psychiatric Disorder Evaluated in a Large Adolescent Population Reveals Increased Divergence Among Higher-Risk Groups Relative to Control Participants. Biol Psychiatry 2024; 95:699-708. [PMID: 37769983 PMCID: PMC10942727 DOI: 10.1016/j.biopsych.2023.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Accurate psychiatric risk assessment requires biomarkers that are both stable and adaptable to development. Functional network connectivity (FNC), which steadily reconfigures over time, potentially contains abundant information to assess psychiatric risks. However, the absence of suitable analytical methodologies has constrained this area of investigation. METHODS We investigated the brainwide risk score (BRS), a novel FNC-based metric that contrasts the relative distances of an individual's FNC to that of psychiatric disorders versus healthy control references. To generate group-level disorder and healthy control references, we utilized a large brain imaging dataset containing 5231 total individuals diagnosed with schizophrenia, autism spectrum disorder, major depressive disorder, and bipolar disorder and their corresponding healthy control individuals. The BRS metric was employed to assess the psychiatric risk in 2 new datasets: Adolescent Brain Cognitive Development (ABCD) Study (n = 8191) and Human Connectome Project Early Psychosis (n = 170). RESULTS The BRS revealed a clear, reproducible gradient of FNC patterns from low to high risk for each psychiatric disorder in unaffected adolescents. We found that low-risk ABCD Study adolescent FNC patterns for each disorder were strongly present in over 25% of the ABCD Study participants and homogeneous, whereas high-risk patterns of each psychiatric disorder were strongly present in about 1% of ABCD Study participants and heterogeneous. The BRS also showed its effectiveness in predicting psychosis scores and distinguishing individuals with early psychosis from healthy control individuals. CONCLUSIONS The BRS could be a new image-based tool for assessing psychiatric vulnerability over time and in unaffected individuals, and it could also serve as a potential biomarker, facilitating early screening and monitoring interventions.
Collapse
Affiliation(s)
- Weizheng Yan
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia; National Institute on Alcohol Abuse and Alcoholism, Laboratory of Neuroimaging, National Institutes of Health, Bethesda, Maryland.
| | - Godfrey D Pearlson
- Department of Psychiatry and Neuroscience, Yale School of Medicine, New Haven, Connecticut
| | - Zening Fu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia
| | - Xinhui Li
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia; School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Armin Iraji
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia
| | - Jiayu Chen
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia
| | - Jing Sui
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, Laboratory of Neuroimaging, National Institutes of Health, Bethesda, Maryland
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia.
| |
Collapse
|
7
|
Vipin A, Lee BTK, Kumar D, Soo SA, Leow YJ, Ghildiyal S, Lee FPHE, Hilal S, Kandiah N. The role of perfusion, grey matter volume and behavioural phenotypes in the data-driven classification of cognitive syndromes. Alzheimers Res Ther 2024; 16:40. [PMID: 38368378 PMCID: PMC10874041 DOI: 10.1186/s13195-024-01410-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 02/05/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND The use of structural and perfusion brain imaging in combination with behavioural information in the prediction of cognitive syndromes using a data-driven approach remains to be explored. Here, we thus examined the contribution of brain structural and perfusion imaging and behavioural features to the existing classification of cognitive syndromes using a data-driven approach. METHODS Study participants belonged to the community-based Biomarker and Cognition Cohort Study in Singapore who underwent neuropsychological assessments, structural-functional MRI and blood biomarkers. Participants had a diagnosis of cognitively normal (CN), subjective cognitive impairment (SCI), mild cognitive impairment (MCI) and dementia. Cross-sectional structural and cerebral perfusion imaging, behavioural scale data including mild behaviour impairment checklist, Pittsburgh Sleep Quality Index and Depression, Anxiety and Stress scale data were obtained. RESULTS Three hundred seventy-three participants (mean age 60.7 years; 56% female sex) with complete data were included. Principal component analyses demonstrated that no single modality was informative for the classification of cognitive syndromes. However, multivariate glmnet analyses revealed a specific combination of frontal perfusion and temporo-frontal grey matter volume were key protective factors while the severity of mild behaviour impairment interest sub-domain and poor sleep quality were key at-risk factors contributing to the classification of CN, SCI, MCI and dementia (p < 0.0001). Moreover, the glmnet model showed best classification accuracy in differentiating between CN and MCI cognitive syndromes (AUC = 0.704; sensitivity = 0.698; specificity = 0.637). CONCLUSIONS Brain structure, perfusion and behavioural features are important in the classification of cognitive syndromes and should be incorporated by clinicians and researchers. These findings illustrate the value of using multimodal data when examining syndrome severity and provide new insights into how cerebral perfusion and behavioural impairment influence classification of cognitive syndromes.
Collapse
Affiliation(s)
- Ashwati Vipin
- Dementia Research Centre (Singapore), 11 Mandalay Road, Lee Kong Chian School of Medicine, Nanyang Technology University, Singapore, 308232, Singapore
| | - Bernett Teck Kwong Lee
- Centre for Biomedical Informatics, 11 Mandalay Road, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Dilip Kumar
- Dementia Research Centre (Singapore), 11 Mandalay Road, Lee Kong Chian School of Medicine, Nanyang Technology University, Singapore, 308232, Singapore
| | - See Ann Soo
- Dementia Research Centre (Singapore), 11 Mandalay Road, Lee Kong Chian School of Medicine, Nanyang Technology University, Singapore, 308232, Singapore
| | - Yi Jin Leow
- Dementia Research Centre (Singapore), 11 Mandalay Road, Lee Kong Chian School of Medicine, Nanyang Technology University, Singapore, 308232, Singapore
| | - Smriti Ghildiyal
- Dementia Research Centre (Singapore), 11 Mandalay Road, Lee Kong Chian School of Medicine, Nanyang Technology University, Singapore, 308232, Singapore
| | - Faith Phemie Hui En Lee
- Dementia Research Centre (Singapore), 11 Mandalay Road, Lee Kong Chian School of Medicine, Nanyang Technology University, Singapore, 308232, Singapore
| | - Saima Hilal
- Saw Swee Hock School of Public Health, Tahir Foundation Building, 12 Science Drive 2, National University of Singapore and National University Health System, Singapore, 117549, Singapore
- Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Nagaendran Kandiah
- Dementia Research Centre (Singapore), 11 Mandalay Road, Lee Kong Chian School of Medicine, Nanyang Technology University, Singapore, 308232, Singapore.
- Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
| |
Collapse
|
8
|
Schulz MA, Bzdok D, Haufe S, Haynes JD, Ritter K. Performance reserves in brain-imaging-based phenotype prediction. Cell Rep 2024; 43:113597. [PMID: 38159275 PMCID: PMC11215805 DOI: 10.1016/j.celrep.2023.113597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 07/03/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
This study examines the impact of sample size on predicting cognitive and mental health phenotypes from brain imaging via machine learning. Our analysis shows a 3- to 9-fold improvement in prediction performance when sample size increases from 1,000 to 1 M participants. However, despite this increase, the data suggest that prediction accuracy remains worryingly low and far from fully exploiting the predictive potential of brain imaging data. Additionally, we find that integrating multiple imaging modalities boosts prediction accuracy, often equivalent to doubling the sample size. Interestingly, the most informative imaging modality often varied with increasing sample size, emphasizing the need to consider multiple modalities. Despite significant performance reserves for phenotype prediction, achieving substantial improvements may necessitate prohibitively large sample sizes, thus casting doubt on the practical or clinical utility of machine learning in some areas of neuroimaging.
Collapse
Affiliation(s)
- Marc-Andre Schulz
- Charité - Universitätsmedizin Berlin (corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health), Department of Psychiatry and Psychotherapy, Berlin, Germany; Bernstein Center for Computational Neuroscience, Berlin, Germany.
| | - Danilo Bzdok
- McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, QC, Canada; Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, QC, Canada; Mila - Quebec Artificial Intelligence Institute, Montreal, QC, Canada
| | - Stefan Haufe
- Bernstein Center for Computational Neuroscience, Berlin, Germany; Technische Universität Berlin, Berlin, Germany; Physikalisch-Technische Bundesanstalt, Berlin, Germany; Charité - Universitätsmedizin Berlin (corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health), Department of Neurology, Berlin Center for Advanced Neuroimaging, Berlin, Germany
| | - John-Dylan Haynes
- Bernstein Center for Computational Neuroscience, Berlin, Germany; Charité - Universitätsmedizin Berlin (corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health), Department of Neurology, Berlin Center for Advanced Neuroimaging, Berlin, Germany
| | - Kerstin Ritter
- Charité - Universitätsmedizin Berlin (corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health), Department of Psychiatry and Psychotherapy, Berlin, Germany; Bernstein Center for Computational Neuroscience, Berlin, Germany
| |
Collapse
|
9
|
Arachchige ASPM, Verma Y. Revolutionizing stress-related disorder regulation through neuroinformatics and data analysis: An editorial. AIMS Neurosci 2023; 10:252-254. [PMID: 37841345 PMCID: PMC10567583 DOI: 10.3934/neuroscience.2023019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/30/2023] [Indexed: 10/17/2023] Open
|
10
|
Brynildsen JK, Rajan K, Henderson MX, Bassett DS. Network models to enhance the translational impact of cross-species studies. Nat Rev Neurosci 2023; 24:575-588. [PMID: 37524935 PMCID: PMC10634203 DOI: 10.1038/s41583-023-00720-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2023] [Indexed: 08/02/2023]
Abstract
Neuroscience studies are often carried out in animal models for the purpose of understanding specific aspects of the human condition. However, the translation of findings across species remains a substantial challenge. Network science approaches can enhance the translational impact of cross-species studies by providing a means of mapping small-scale cellular processes identified in animal model studies to larger-scale inter-regional circuits observed in humans. In this Review, we highlight the contributions of network science approaches to the development of cross-species translational research in neuroscience. We lay the foundation for our discussion by exploring the objectives of cross-species translational models. We then discuss how the development of new tools that enable the acquisition of whole-brain data in animal models with cellular resolution provides unprecedented opportunity for cross-species applications of network science approaches for understanding large-scale brain networks. We describe how these tools may support the translation of findings across species and imaging modalities and highlight future opportunities. Our overarching goal is to illustrate how the application of network science tools across human and animal model studies could deepen insight into the neurobiology that underlies phenomena observed with non-invasive neuroimaging methods and could simultaneously further our ability to translate findings across species.
Collapse
Affiliation(s)
- Julia K Brynildsen
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Kanaka Rajan
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael X Henderson
- Parkinson's Disease Center, Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA.
- Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
11
|
Pan D, Zeng A, Yang B, Lai G, Hu B, Song X, Jiang T. Deep Learning for Brain MRI Confirms Patterned Pathological Progression in Alzheimer's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204717. [PMID: 36575159 PMCID: PMC9951348 DOI: 10.1002/advs.202204717] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Deep learning (DL) on brain magnetic resonance imaging (MRI) data has shown excellent performance in differentiating individuals with Alzheimer's disease (AD). However, the value of DL in detecting progressive structural MRI (sMRI) abnormalities linked to AD pathology has yet to be established. In this study, an interpretable DL algorithm named the Ensemble of 3-dimensional convolutional neural network (Ensemble 3DCNN) with enhanced parsing techniques is proposed to investigate the longitudinal trajectories of whole-brain sMRI changes denoting AD onset and progression. A set of 2369 T1-weighted images from the multi-centre Alzheimer's Disease Neuroimaging Initiative and Open Access Series of Imaging Studies cohorts are applied to model derivation, validation, testing, and pattern analysis. An Ensemble-3DCNN-based P-score is generated, based on which multiple brain regions, including amygdala, insular, parahippocampal, and temporal gyrus, exhibit early and connected progressive neurodegeneration. Complex individual variability in the sMRI is also observed. This study combining non-invasive sMRI and interpretable DL in detecting patterned sMRI changes confirmed AD pathological progression, shedding new light on predicting AD progression using whole-brain sMRI.
Collapse
Affiliation(s)
- Dan Pan
- School of Electronics and InformationGuangdong Polytechnic Normal UniversityGuangzhou510665China
| | - An Zeng
- Faculty of Computers, Guangdong University of TechnologyGuangzhou510006China
| | - Baoyao Yang
- Faculty of Computers, Guangdong University of TechnologyGuangzhou510006China
| | - Gangyong Lai
- Faculty of Computers, Guangdong University of TechnologyGuangzhou510006China
| | - Bing Hu
- Department of RadiologyThe Third Affiliated Hospital of SUN Yat‐sen UniversityGuangzhou510630China
| | - Xiaowei Song
- Clinical Research CentreSurrey Memorial HospitalFraser HealthSurreyBritish ColumbiaV3V 1Z2Canada
| | - Tianzi Jiang
- Brainnetome Center & National Laboratory of Pattern RecognitionInstitute of AutomationChinese Academy of SciencesBeijing100190China
| | | |
Collapse
|
12
|
MRI data quality assessment for the RIN - Neuroimaging Network using the ACR phantoms. Phys Med 2022; 104:93-100. [PMID: 36379160 DOI: 10.1016/j.ejmp.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/20/2022] [Accepted: 10/08/2022] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Generating big-data is becoming imperative with the advent of machine learning. RIN-Neuroimaging Network addresses this need by developing harmonized protocols for multisite studies to identify quantitative MRI (qMRI) biomarkers for neurological diseases. In this context, image quality control (QC) is essential. Here, we present methods and results of how the RIN performs intra- and inter-site reproducibility of geometrical and image contrast parameters, demonstrating the relevance of such QC practice. METHODS American College of Radiology (ACR) large and small phantoms were selected. Eighteen sites were equipped with a 3T scanner that differed by vendor, hardware/software versions, and receiver coils. The standard ACR protocol was optimized (in-plane voxel, post-processing filters, receiver bandwidth) and repeated monthly. Uniformity, ghosting, geometric accuracy, ellipse's ratio, slice thickness, and high-contrast detectability tests were performed using an automatic QC script. RESULTS Measures were mostly within the ACR tolerance ranges for both T1- and T2-weighted acquisitions, for all scanners, regardless of vendor, coil, and signal transmission chain type. All measurements showed good reproducibility over time. Uniformity and slice thickness failed at some sites. Scanners that upgraded the signal transmission chain showed a decrease in geometric distortion along the slice encoding direction. Inter-vendor differences were observed in uniformity and geometric measurements along the slice encoding direction (i.e. ellipse's ratio). CONCLUSIONS Use of the ACR phantoms highlighted issues that triggered interventions to correct performance at some sites and to improve the longitudinal stability of the scanners. This is relevant for establishing precision levels for future multisite studies of qMRI biomarkers.
Collapse
|
13
|
Singh NM, Harrod JB, Subramanian S, Robinson M, Chang K, Cetin-Karayumak S, Dalca AV, Eickhoff S, Fox M, Franke L, Golland P, Haehn D, Iglesias JE, O'Donnell LJ, Ou Y, Rathi Y, Siddiqi SH, Sun H, Westover MB, Whitfield-Gabrieli S, Gollub RL. How Machine Learning is Powering Neuroimaging to Improve Brain Health. Neuroinformatics 2022; 20:943-964. [PMID: 35347570 PMCID: PMC9515245 DOI: 10.1007/s12021-022-09572-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2022] [Indexed: 12/31/2022]
Abstract
This report presents an overview of how machine learning is rapidly advancing clinical translational imaging in ways that will aid in the early detection, prediction, and treatment of diseases that threaten brain health. Towards this goal, we aresharing the information presented at a symposium, "Neuroimaging Indicators of Brain Structure and Function - Closing the Gap Between Research and Clinical Application", co-hosted by the McCance Center for Brain Health at Mass General Hospital and the MIT HST Neuroimaging Training Program on February 12, 2021. The symposium focused on the potential for machine learning approaches, applied to increasingly large-scale neuroimaging datasets, to transform healthcare delivery and change the trajectory of brain health by addressing brain care earlier in the lifespan. While not exhaustive, this overview uniquely addresses many of the technical challenges from image formation, to analysis and visualization, to synthesis and incorporation into the clinical workflow. Some of the ethical challenges inherent to this work are also explored, as are some of the regulatory requirements for implementation. We seek to educate, motivate, and inspire graduate students, postdoctoral fellows, and early career investigators to contribute to a future where neuroimaging meaningfully contributes to the maintenance of brain health.
Collapse
Affiliation(s)
- Nalini M Singh
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jordan B Harrod
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sandya Subramanian
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Mitchell Robinson
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ken Chang
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Suheyla Cetin-Karayumak
- Department of Psychiatry, Brigham and Women's Hospital and Harvard Medical School, Boston, 02115, USA
| | | | - Simon Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7) Research Centre Jülich, Jülich, Germany
| | - Michael Fox
- Center for Brain Circuit Therapeutics, Department of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital and Harvard Medical School, 02115, Boston, USA
| | - Loraine Franke
- University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Polina Golland
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Daniel Haehn
- University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Juan Eugenio Iglesias
- Centre for Medical Image Computing, University College London, London, UK
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Lauren J O'Donnell
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, MA, 02115, Boston, USA
| | - Yangming Ou
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yogesh Rathi
- Department of Psychiatry, Brigham and Women's Hospital and Harvard Medical School, Boston, 02115, USA
| | - Shan H Siddiqi
- Department of Psychiatry, Brigham and Women's Hospital and Harvard Medical School, Boston, 02115, USA
| | - Haoqi Sun
- Department of Neurology and McCance Center for Brain Health / Harvard Medical School, Massachusetts General Hospital, Boston, 02114, USA
| | - M Brandon Westover
- Department of Neurology and McCance Center for Brain Health / Harvard Medical School, Massachusetts General Hospital, Boston, 02114, USA
| | | | - Randy L Gollub
- Department of Psychiatry and Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA.
| |
Collapse
|
14
|
Rosano C. A training program for researchers in population neuroimaging: Early experiences. FRONTIERS IN NEUROIMAGING 2022; 1:896350. [PMID: 37555144 PMCID: PMC10406197 DOI: 10.3389/fnimg.2022.896350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/28/2022] [Indexed: 08/10/2023]
Abstract
Recent advances in neuroimaging create groundbreaking opportunities to better understand human neurological and psychiatric diseases, but also bring new challenges. With the advent of more and more sophisticated and efficient multimodal image processing software, we can now study much larger populations and integrate information from multiple modalities. In consequence, investigators that use neuroimaging techniques must also understand and apply principles of population sampling and contemporary data analytic techniques. The next generation of neuroimaging researchers must be skilled in numerous previously distinct disciplines and so a new integrated model of training is needed. This tutorial presents the rationale for such a new training model and presents the results from the first years of the training program focused on population neuroimaging of Alzheimer's Disease. This approach is applicable to other areas of population neuroimaging.
Collapse
Affiliation(s)
- Caterina Rosano
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
15
|
Batta I, Abrol A, Calhoun VD, the Alzheimer’s Disease Neuroimaging Initiative. SVR-based Multimodal Active Subspace Analysis for the Brain using Neuroimaging Data.. [DOI: 10.1101/2022.07.28.501879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
ABSTRACTUnderstanding the patterns of changes in brain function and structure due to various disorders and diseases is of utmost importance. There have been numerous efforts toward successful biomarker discovery for complex brain disorders by evaluating neuroimaging datasets with novel analytical frameworks. However, due to the multi-faceted nature of the disorders involving a wide and overlapping range of symptoms as well as complex changes in structural and functional brain networks, it is increasingly important to devise computational frameworks that can consider the underlying patterns of heterogeneous changes with specific target assessments, at the same time producing a summarizing output from the high-dimensional neuroimaging data. While various machine learning approaches focus on diagnostic prediction, many learning frameworks analyze important features at the level of brain regions involved in prediction using supervised methods. Unsupervised learning methods have also been utilized to break down the neuroimaging features into lower dimensional components. However, most learning frameworks either do not consider the target assessment information while extracting brain subspaces, or can extract only higher dimensional importance associations as an ordered list of involved features, making manual interpretation at the level of subspaces difficult. We present a novel multimodal active subspace learning framework to understand various subspaces within the brain that are associated with changes in particular biological and cognitive traits. For a given cognitive or biological trait, our framework performs a decomposition of the feature importances to extract robust multimodal subspaces that define the most significant change in the given trait. Through a rigorous cross-validation procedure on an Alzheimer’s disease (AD) dataset, we show that our framework can extract subspaces covering both functional and structural modalities, which are specific to a given clinical assessment (like memory and other cognitive skills) and also retain predictive performance in standard machine learning algorithms. We show that our framework not only uncovers AD-related brain regions (e.g., hippocampus, entorhinal cortex) in the associated brain subspaces, but also enables an automated identification of multiple underlying structural and functional sub-systems of the brain that collectively characterize changes in memory and cognitive skill proficiency related to brain disorders like AD.
Collapse
|