1
|
Malatt C, Maghzi H, Hogg E, Tan E, Khatiwala I, Tagliati M. Adrenergic blockers, statins, and non-steroidal anti-inflammatory drugs are associated with later age at onset in Parkinson's disease. J Neurol 2025; 272:255. [PMID: 40047945 PMCID: PMC11885381 DOI: 10.1007/s00415-025-12989-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/07/2025] [Accepted: 02/23/2025] [Indexed: 03/09/2025]
Abstract
BACKGROUND Several factors have been shown to modify the risk of developing Parkinson's disease (PD), including commonly prescribed medications. However, there is little data describing their correlation with age at onset (AAO) of clinical symptoms. The objective of this study was to evaluate the association of treatment with anti-hypertensives, non-steroidal anti-inflammatories (NSAIDs), statins, as well as smoking and family history of PD with AAO in a large clinical cohort. METHODS A retrospective review of 1201 initial encounters collected information on known risk-modulating factors for PD, including smoking status and family history, anti-hypertensives, statins, NSAIDs, anti-diabetic medications, and beta-agonists. In addition to general exposure, we determined whether medications of interest were started before or after onset of symptoms. Mean AAO was calculated for each set of variables. T-test and multiple regression analyses were used to evaluate association with AAO. RESULTS Exposure to all studied medications showed a strong correlation with older PD AAO, except for smoking and family history, which correlated with younger AAO. Multiple regression analysis identified exposure to adrenergic blockers (AB) (β = 5.7), statins (β = 5.6), and NSAIDs (β = 4.1) as the strongest independent predictors of older PD AAO (p < 0.001). Patients who were started on AB prior to onset of PD symptoms showed the largest average delay of PD AAO (at 72.3 ± 10.1 years), almost 10 years later as compared with those not on AB (62.7 ± 10.7 years) or those who started taking AB after onset of symptoms (63.0 ± 10.6 years). CONCLUSIONS Multiple common medications are associated with a considerable delay of PD onset.
Collapse
Affiliation(s)
- Camille Malatt
- Department of Neurology, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd. #A6600, Los Angeles, CA, 90048, US.
| | - Helia Maghzi
- Department of Neurology, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd. #A6600, Los Angeles, CA, 90048, US
| | - Elliot Hogg
- Department of Neurology, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd. #A6600, Los Angeles, CA, 90048, US
| | - Echo Tan
- Department of Neurology, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd. #A6600, Los Angeles, CA, 90048, US
| | - Ishani Khatiwala
- Department of Neurology, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd. #A6600, Los Angeles, CA, 90048, US
| | - Michele Tagliati
- Department of Neurology, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd. #A6600, Los Angeles, CA, 90048, US
| |
Collapse
|
2
|
Zhang S, Lu J, Jin Z, Xu H, Zhang D, Chen J, Wang J. Gut microbiota metabolites: potential therapeutic targets for Alzheimer's disease? Front Pharmacol 2024; 15:1459655. [PMID: 39355779 PMCID: PMC11442227 DOI: 10.3389/fphar.2024.1459655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/05/2024] [Indexed: 10/03/2024] Open
Abstract
Background Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive decline in cognitive function, which significantly increases pain and social burden. However, few therapeutic interventions are effective in preventing or mitigating the progression of AD. An increasing number of recent studies support the hypothesis that the gut microbiome and its metabolites may be associated with upstream regulators of AD pathology. Methods In this review, we comprehensively explore the potential mechanisms and currently available interventions targeting the microbiome for the improvement of AD. Our discussion is structured around modern research advancements in AD, the bidirectional communication between the gut and brain, the multi-target regulatory effects of microbial metabolites on AD, and therapeutic strategies aimed at modulating gut microbiota to manage AD. Results The gut microbiota plays a crucial role in the pathogenesis of AD through continuous bidirectional communication via the microbiota-gut-brain axis. Among these, microbial metabolites such as lipids, amino acids, bile acids and neurotransmitters, especially sphingolipids and phospholipids, may serve as central components of the gut-brain axis, regulating AD-related pathogenic mechanisms including β-amyloid metabolism, Tau protein phosphorylation, and neuroinflammation. Additionally, interventions such as probiotic administration, fecal microbiota transplantation, and antibiotic use have also provided evidence supporting the association between gut microbiota and AD. At the same time, we propose an innovative strategy for treating AD: a healthy lifestyle combined with targeted probiotics and other potential therapeutic interventions, aiming to restore intestinal ecology and microbiota balance. Conclusion Despite previous efforts, the molecular mechanisms by which gut microbes act on AD have yet to be fully described. However, intestinal microorganisms may become an essential target for connecting the gut-brain axis and improving the symptoms of AD. At the same time, it requires joint exploration by multiple centers and multiple disciplines.
Collapse
Affiliation(s)
- Shanshan Zhang
- The School to Changchun University of Chinese Medicine, Changchun, China
| | - Jing Lu
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Ziqi Jin
- The School to Changchun University of Chinese Medicine, Changchun, China
| | - Hanying Xu
- Department of Encephalopathy, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Dongmei Zhang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Jianan Chen
- The School to Changchun University of Chinese Medicine, Changchun, China
| | - Jian Wang
- Department of Encephalopathy, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
3
|
Lagarde J, Olivieri P, Tonietto M, Noiray C, Lehericy S, Valabrègue R, Caillé F, Gervais P, Moussion M, Bottlaender M, Sarazin M. Combined in vivo MRI assessment of locus coeruleus and nucleus basalis of Meynert integrity in amnestic Alzheimer's disease, suspected-LATE and frontotemporal dementia. Alzheimers Res Ther 2024; 16:97. [PMID: 38702802 PMCID: PMC11067144 DOI: 10.1186/s13195-024-01466-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND The locus coeruleus (LC) and the nucleus basalis of Meynert (NBM) are altered in early stages of Alzheimer's disease (AD). Little is known about LC and NBM alteration in limbic-predominant age-related TDP-43 encephalopathy (LATE) and frontotemporal dementia (FTD). The aim of the present study is to investigate in vivo LC and NBM integrity in patients with suspected-LATE, early-amnestic AD and FTD in comparison with controls. METHODS Seventy-two participants (23 early amnestic-AD patients, 17 suspected-LATE, 17 FTD patients, defined by a clinical-biological diagnosis reinforced by amyloid and tau PET imaging, and 15 controls) underwent neuropsychological assessment and 3T brain MRI. We analyzed the locus coeruleus signal intensity (LC-I) and the NBM volume as well as their relation with cognition and with medial temporal/cortical atrophy. RESULTS We found significantly lower LC-I and NBM volume in amnestic-AD and suspected-LATE in comparison with controls. In FTD, we also observed lower NBM volume but a slightly less marked alteration of the LC-I, independently of the temporal or frontal phenotype. NBM volume was correlated with the global cognitive efficiency in AD patients. Strong correlations were found between NBM volume and that of medial temporal structures, particularly the amygdala in both AD and FTD patients. CONCLUSIONS The alteration of LC and NBM in amnestic-AD, presumed-LATE and FTD suggests a common vulnerability of these structures to different proteinopathies. Targeting the noradrenergic and cholinergic systems could be effective therapeutic strategies in LATE and FTD.
Collapse
Affiliation(s)
- Julien Lagarde
- Department of Neurology of Memory and Language, GHU Paris Psychiatry and Neurosciences, Hôpital Sainte Anne, Paris, France.
- Université Paris-Saclay, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, BioMaps, Orsay, F- 91401, France.
- Université Paris-Cité, Paris, France.
| | - Pauline Olivieri
- Department of Neurology of Memory and Language, GHU Paris Psychiatry and Neurosciences, Hôpital Sainte Anne, Paris, France
| | - Matteo Tonietto
- Université Paris-Saclay, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, BioMaps, Orsay, F- 91401, France
| | - Camille Noiray
- Department of Neurology of Memory and Language, GHU Paris Psychiatry and Neurosciences, Hôpital Sainte Anne, Paris, France
| | - Stéphane Lehericy
- Centre de NeuroImagerie de Recherche - CENIR, Institut du Cerveau et de la Moelle épinière - ICM, Paris, F-75013, France
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICM, Paris, F-75013, France
| | - Romain Valabrègue
- Centre de NeuroImagerie de Recherche - CENIR, Institut du Cerveau et de la Moelle épinière - ICM, Paris, F-75013, France
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICM, Paris, F-75013, France
| | - Fabien Caillé
- Université Paris-Saclay, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, BioMaps, Orsay, F- 91401, France
| | - Philippe Gervais
- Université Paris-Saclay, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, BioMaps, Orsay, F- 91401, France
| | - Martin Moussion
- Centre d'Evaluation Troubles Psychiques et Vieillissement, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, Paris, F-75014, France
| | - Michel Bottlaender
- Université Paris-Saclay, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, BioMaps, Orsay, F- 91401, France
- UNIACT, Neurospin, Gif-sur-Yvette, CEA, F-91191, France
| | - Marie Sarazin
- Department of Neurology of Memory and Language, GHU Paris Psychiatry and Neurosciences, Hôpital Sainte Anne, Paris, France
- Université Paris-Saclay, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, BioMaps, Orsay, F- 91401, France
- Université Paris-Cité, Paris, France
| |
Collapse
|
4
|
Laurencin C, Lancelot S, Brosse S, Mérida I, Redouté J, Greusard E, Lamberet L, Liotier V, Le Bars D, Costes N, Thobois S, Boulinguez P, Ballanger B. Noradrenergic alterations in Parkinson's disease: a combined 11C-yohimbine PET/neuromelanin MRI study. Brain 2024; 147:1377-1388. [PMID: 37787503 PMCID: PMC10994534 DOI: 10.1093/brain/awad338] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023] Open
Abstract
Degeneration of the noradrenergic system is now considered a pathological hallmark of Parkinson's disease, but little is known about its consequences in terms of parkinsonian manifestations. Here, we evaluated two aspects of the noradrenergic system using multimodal in vivo imaging in patients with Parkinson's disease and healthy controls: the pigmented cell bodies of the locus coeruleus with neuromelanin sensitive MRI; and the density of α2-adrenergic receptors (ARs) with PET using 11C-yohimbine. Thirty patients with Parkinson's disease and 30 age- and sex-matched healthy control subjects were included. The characteristics of the patients' symptoms were assessed using the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS). Patients showed reduced neuromelanin signal intensity in the locus coeruleus compared with controls and diminished 11C-yohimbine binding in widespread cortical regions, including the motor cortex, as well as in the insula, thalamus and putamen. Clinically, locus coeruleus neuronal loss was correlated with motor (bradykinesia, motor fluctuations, tremor) and non-motor (fatigue, apathy, constipation) symptoms. A reduction of α2-AR availability in the thalamus was associated with tremor, while a reduction in the putamen, the insula and the superior temporal gyrus was associated with anxiety. These results highlight a multifaceted alteration of the noradrenergic system in Parkinson's disease since locus coeruleus and α2-AR degeneration were found to be partly uncoupled. These findings raise important issues about noradrenergic dysfunction that may encourage the search for new drugs targeting this system, including α2-ARs, for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Chloé Laurencin
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, University Lyon 1, F-69000 Lyon, France
- Department of Neurology C, Expert Parkinson Centre, Hospices Civils de Lyon, Pierre Wertheimer Neurological Hospital, NS-Park/F-CRIN, 69500 Bron, France
| | - Sophie Lancelot
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, University Lyon 1, F-69000 Lyon, France
- CERMEP-Imagerie du Vivant, PET-MRI Department, 69500 Bron, France
| | - Sarah Brosse
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, University Lyon 1, F-69000 Lyon, France
| | - Inés Mérida
- CERMEP-Imagerie du Vivant, PET-MRI Department, 69500 Bron, France
| | - Jérôme Redouté
- CERMEP-Imagerie du Vivant, PET-MRI Department, 69500 Bron, France
| | - Elise Greusard
- CERMEP-Imagerie du Vivant, PET-MRI Department, 69500 Bron, France
| | - Ludovic Lamberet
- CERMEP-Imagerie du Vivant, PET-MRI Department, 69500 Bron, France
| | | | - Didier Le Bars
- CERMEP-Imagerie du Vivant, PET-MRI Department, 69500 Bron, France
| | - Nicolas Costes
- CERMEP-Imagerie du Vivant, PET-MRI Department, 69500 Bron, France
| | - Stéphane Thobois
- Department of Neurology C, Expert Parkinson Centre, Hospices Civils de Lyon, Pierre Wertheimer Neurological Hospital, NS-Park/F-CRIN, 69500 Bron, France
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, CNRS, 69500 Bron, France
| | - Philippe Boulinguez
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, University Lyon 1, F-69000 Lyon, France
| | - Bénédicte Ballanger
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, University Lyon 1, F-69000 Lyon, France
| |
Collapse
|
5
|
Palermo G, Galgani A, Bellini G, Lombardo F, Martini N, Morganti R, Paoli D, De Cori S, Frijia F, Siciliano G, Ceravolo R, Giorgi FS. Neurogenic orthostatic hypotension in Parkinson's disease: is there a role for locus coeruleus magnetic resonance imaging? J Neural Transm (Vienna) 2024; 131:157-164. [PMID: 38032367 PMCID: PMC10791951 DOI: 10.1007/s00702-023-02721-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/05/2023] [Indexed: 12/01/2023]
Abstract
Locus coeruleus (LC) is the main noradrenergic nucleus of the brain, and degenerates early in Parkinson's disease (PD). The objective of this study is to test whether degeneration of the LC is associated with orthostatic hypotension (OH) in PD. A total of 22 cognitively intact PD patients and 52 age-matched healthy volunteers underwent 3 T magnetic resonance (MRI) with neuromelanin-sensitive T1-weighted sequences (LC-MRI). For each subject, a template space-based LC-MRI was used to calculate LC signal intensity (LC contrast ratio-LCCR) and the estimated number of voxels (LCVOX) belonging to LC. Then, we compared the LC-MRI parameters in PD patients with OH (PDOH+) versus without OH (PDOH-) (matched for sex, age, and disease duration) using one-way analysis of variance followed by multiple comparison tests. We also tested for correlations between subject's LC-MRI features and orthostatic drop in systolic blood pressure (SBP). PDOH- and PDOH+ did not differ significantly (p > 0.05) based on demographics and clinical characteristics, except for blood pressure measurements and SCOPA-AUT cardiovascular domain (p < 0.05). LCCR and LCVOX measures were significantly lower in PD compared to HC, while no differences were observed between PDOH- and PDOH+. Additionally, no correlation was found between the LC-MRI parameters and the orthostatic drop in SBP or the clinical severity of autonomic symptoms (p > 0.05). Conversely, RBD symptom severity negatively correlated with several LC-MRI parameters. Our results failed to indicate a link between the LC-MRI features and the presence of OH in PD but confirmed a marked alteration of LC signal in PD patients.
Collapse
Affiliation(s)
- Giovanni Palermo
- Center for Neurodegenerative diseases-Parkinson's disease and Movement disorders, Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessandro Galgani
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Gabriele Bellini
- Center for Neurodegenerative diseases-Parkinson's disease and Movement disorders, Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Nicola Martini
- Deep Health Unit, Fondazione Monasterio/CNR, Pisa, Italy
| | | | - Davide Paoli
- Center for Neurodegenerative diseases-Parkinson's disease and Movement disorders, Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Sara De Cori
- Department of Radiology, Fondazione Monasterio/CNR, Pisa, Italy
| | - Francesca Frijia
- Deep Health Unit, Fondazione Monasterio/CNR, Pisa, Italy
- Bioengineering Unit, Fondazione Monasterio/CNR, Pisa, Italy
| | - Gabriele Siciliano
- Center for Neurodegenerative diseases-Parkinson's disease and Movement disorders, Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Center for Neurodegenerative diseases-Parkinson's disease and Movement disorders, Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Filippo Sean Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy.
| |
Collapse
|