1
|
Teixeira FG, Carvalho MM, Panchalingam KM, Rodrigues AJ, Mendes‐Pinheiro B, Anjo S, Manadas B, Behie LA, Sousa N, Salgado AJ. Impact of the Secretome of Human Mesenchymal Stem Cells on Brain Structure and Animal Behavior in a Rat Model of Parkinson's Disease. Stem Cells Transl Med 2016; 6:634-646. [PMID: 28191785 PMCID: PMC5442797 DOI: 10.5966/sctm.2016-0071] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 08/09/2016] [Indexed: 12/24/2022] Open
Abstract
Research in the last decade strongly suggests that mesenchymal stem cell (MSC)‐mediated therapeutic benefits are mainly due to their secretome, which has been proposed as a possible therapeutic tool for the treatment of Parkinson's disease (PD). Indeed, it has been shown that the MSC secretome increases neurogenesis and cell survival, and has numerous neuroprotective actions under different conditions. Additionally, using dynamic culturing conditions (through computer‐controlled bioreactors) can further modulate the MSC secretome, thereby generating a more potent neurotrophic factor cocktail (i.e., conditioned medium). In this study, we have characterized the MSC secretome by proteomic‐based analysis, investigating its therapeutic effects on the physiological recovery of a 6‐hydroxidopamine (6‐OHDA) PD rat model. For this purpose, we injected MSC secretome into the substantia nigra (SNc) and striatum (STR), characterizing the behavioral performance and determining histological parameters for injected animals versus untreated groups. We observed that the secretome potentiated the increase of dopaminergic neurons (i.e., tyrosine hydroxylase‐positive cells) and neuronal terminals in the SNc and STR, respectively, thereby supporting the recovery observed in the Parkinsonian rats’ motor performance outcomes (assessed by rotarod and staircase tests). Finally, proteomic characterization of the MSC secretome (through combined mass spectrometry analysis and Bioplex assays) revealed the presence of important neuroregulatory molecules, namely cystatin C, glia‐derived nexin, galectin‐1, pigment epithelium‐derived factor, vascular endothelial growth factor, brain‐derived neurotrophic factor, interleukin‐6, and glial cell line‐derived neurotrophic factor. Overall, we concluded that the use of human MSC secretome alone was able to partially revert the motor phenotype and the neuronal structure of 6‐OHDA PD animals. This indicates that the human MSC secretome could represent a novel therapeutic for the treatment of PD. Stem Cells Translational Medicine2017;6:634–646
Collapse
Affiliation(s)
- Fábio G. Teixeira
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B's ‐ PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Miguel M. Carvalho
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B's ‐ PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Krishna M. Panchalingam
- Pharmaceutical Production Research Facility, Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Ana J. Rodrigues
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B's ‐ PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bárbara Mendes‐Pinheiro
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B's ‐ PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sandra Anjo
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Bruno Manadas
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Biocant ‐ Biotechnology Innovation Center, Cantanhede, Portugal
| | - Leo A. Behie
- Pharmaceutical Production Research Facility, Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Nuno Sousa
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B's ‐ PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António J. Salgado
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B's ‐ PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
2
|
Mathys C, Caspers J, Langner R, Südmeyer M, Grefkes C, Reetz K, Moldovan AS, Michely J, Heller J, Eickhoff CR, Turowski B, Schnitzler A, Hoffstaedter F, Eickhoff SB. Functional Connectivity Differences of the Subthalamic Nucleus Related to Parkinson's Disease. Hum Brain Mapp 2015; 37:1235-53. [PMID: 26700444 DOI: 10.1002/hbm.23099] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/12/2015] [Accepted: 12/13/2015] [Indexed: 01/29/2023] Open
Abstract
A typical feature of Parkinson's disease (PD) is pathological activity in the subthalamic nucleus (STN). Here, we tested whether in patients with PD under dopaminergic treatment functional connectivity of the STN differs from healthy controls (HC) and whether some brain regions show (anti-) correlations between functional connectivity with STN and motor symptoms. We used functional magnetic resonance imaging to investigate whole-brain resting-state functional connectivity with STN in 54 patients with PD and 55 HC matched for age, gender, and within-scanner motion. Compared to HC, we found attenuated negative STN-coupling with Crus I of the right cerebellum and with right ventromedial prefrontal regions in patients with PD. Furthermore, we observed enhanced negative STN-coupling with bilateral intraparietal sulcus/superior parietal cortex, right sensorimotor, right premotor, and left visual cortex compared to HC. Finally, we found a decline in positive STN-coupling with the left insula related to severity of motor symptoms and a decline of inter-hemispheric functional connectivity between left and right STN with progression of PD-related motor symptoms. Motor symptom related uncoupling of the insula, a key region in the saliency network and for executive function, from the STN might be associated with well-known executive dysfunction in PD. Moreover, uncoupling between insula and STN might also induce an insufficient setting of thresholds for the discrimination between relevant and irrelevant salient environmental stimuli, explaining observations of disturbed response control in PD. In sum, motor symptoms in PD are associated with a reduced coupling between STN and a key region for executive function.
Collapse
Affiliation(s)
- Christian Mathys
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany
| | - Julian Caspers
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany.,Institute of Neuroscience and Medicine (INM-1, INM-3, INM-4), Research Centre Jülich, Jülich, Germany
| | - Robert Langner
- Institute of Neuroscience and Medicine (INM-1, INM-3, INM-4), Research Centre Jülich, Jülich, Germany.,Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany
| | - Martin Südmeyer
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany.,Center for Movement Disorders and Neuromodulation, Department of Neurology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany
| | - Christian Grefkes
- Institute of Neuroscience and Medicine (INM-1, INM-3, INM-4), Research Centre Jülich, Jülich, Germany.,Department of Neurology, Neuromodulation & Neurorehabilitation Group, University of Cologne, Cologne, Germany
| | - Kathrin Reetz
- Institute of Neuroscience and Medicine (INM-1, INM-3, INM-4), Research Centre Jülich, Jülich, Germany.,Department of Neurology and JARA BRAIN, RWTH Aachen University, Aachen, Germany
| | - Alexia-Sabine Moldovan
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany
| | - Jochen Michely
- Institute of Neuroscience and Medicine (INM-1, INM-3, INM-4), Research Centre Jülich, Jülich, Germany.,Department of Neurology, Neuromodulation & Neurorehabilitation Group, University of Cologne, Cologne, Germany
| | - Julia Heller
- Department of Neurology and JARA BRAIN, RWTH Aachen University, Aachen, Germany
| | - Claudia R Eickhoff
- Institute of Neuroscience and Medicine (INM-1, INM-3, INM-4), Research Centre Jülich, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Bernd Turowski
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany.,Center for Movement Disorders and Neuromodulation, Department of Neurology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany
| | - Felix Hoffstaedter
- Institute of Neuroscience and Medicine (INM-1, INM-3, INM-4), Research Centre Jülich, Jülich, Germany.,Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-1, INM-3, INM-4), Research Centre Jülich, Jülich, Germany.,Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
3
|
Barnaure I, Pollak P, Momjian S, Horvath J, Lovblad KO, Boëx C, Remuinan J, Burkhard P, Vargas MI. Evaluation of electrode position in deep brain stimulation by image fusion (MRI and CT). Neuroradiology 2015; 57:903-8. [PMID: 26022355 DOI: 10.1007/s00234-015-1547-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/21/2015] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Imaging has an essential role in the evaluation of correct positioning of electrodes implanted for deep brain stimulation (DBS). Although MRI offers superior anatomic visualization of target sites, there are safety concerns in patients with implanted material; imaging guidelines are inconsistent and vary. The fusion of postoperative CT with preoperative MRI images can be an alternative for the assessment of electrode positioning. The purpose of this study was to assess the accuracy of measurements realized on fused images (acquired without a stereotactic frame) using a manufacturer-provided software. METHODS Data from 23 Parkinson's disease patients who underwent bilateral electrode placement for subthalamic nucleus (STN) DBS were acquired. Preoperative high-resolution T2-weighted sequences at 3 T, and postoperative CT series were fused using a commercially available software. Electrode tip position was measured on the obtained images in three directions (in relation to the midline, the AC-PC line and an AC-PC line orthogonal, respectively) and assessed in relation to measures realized on postoperative 3D T1 images acquired at 1.5 T. RESULTS Mean differences between measures carried out on fused images and on postoperative MRI lay between 0.17 and 0.97 mm. CONCLUSION Fusion of CT and MRI images provides a safe and fast technique for postoperative assessment of electrode position in DBS.
Collapse
Affiliation(s)
- I Barnaure
- Department of Neuroradiology, Geneva University Hospital, Gabrielle Perret Gentil, 4, 1211, Geneva 14, Switzerland
| | - P Pollak
- Department of Neurology, Geneva University Hospital, Geneva, Switzerland
| | - S Momjian
- Department of Neurosurgery, Geneva University Hospital, Geneva, Switzerland
| | - J Horvath
- Department of Neurology, Geneva University Hospital, Geneva, Switzerland
| | - K O Lovblad
- Department of Neuroradiology, Geneva University Hospital, Gabrielle Perret Gentil, 4, 1211, Geneva 14, Switzerland
| | - C Boëx
- Department of Neurology, Geneva University Hospital, Geneva, Switzerland
| | - J Remuinan
- Department of Radiology, Geneva University Hospital, Geneva, Switzerland
| | - P Burkhard
- Department of Neurology, Geneva University Hospital, Geneva, Switzerland
| | - M I Vargas
- Department of Neuroradiology, Geneva University Hospital, Gabrielle Perret Gentil, 4, 1211, Geneva 14, Switzerland.
| |
Collapse
|