1
|
Silva S, Peran P, Kerhuel L, Malagurski B, Chauveau N, Bataille B, Lotterie JA, Celsis P, Aubry F, Citerio G, Jean B, Chabanne R, Perlbarg V, Velly L, Galanaud D, Vanhaudenhuyse A, Fourcade O, Laureys S, Puybasset L. Brain Gray Matter MRI Morphometry for Neuroprognostication After Cardiac Arrest. Crit Care Med 2017; 45:e763-e771. [PMID: 28272153 PMCID: PMC5515639 DOI: 10.1097/ccm.0000000000002379] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES We hypothesize that the combined use of MRI cortical thickness measurement and subcortical gray matter volumetry could provide an early and accurate in vivo assessment of the structural impact of cardiac arrest and therefore could be used for long-term neuroprognostication in this setting. DESIGN Prospective cohort study. SETTING Five Intensive Critical Care Units affiliated to the University in Toulouse (France), Paris (France), Clermont-Ferrand (France), Liège (Belgium), and Monza (Italy). PATIENTS High-resolution anatomical T1-weighted images were acquired in 126 anoxic coma patients ("learning" sample) 16 ± 8 days after cardiac arrest and 70 matched controls. An additional sample of 18 anoxic coma patients, recruited in Toulouse, was used to test predictive model generalization ("test" sample). All patients were followed up 1 year after cardiac arrest. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Cortical thickness was computed on the whole cortical ribbon, and deep gray matter volumetry was performed after automatic segmentation. Brain morphometric data were employed to create multivariate predictive models using learning machine techniques. Patients displayed significantly extensive cortical and subcortical brain volumes atrophy compared with controls. The accuracy of a predictive classifier, encompassing cortical and subcortical components, has a significant discriminative power (learning area under the curve = 0.87; test area under the curve = 0.96). The anatomical regions which volume changes were significantly related to patient's outcome were frontal cortex, posterior cingulate cortex, thalamus, putamen, pallidum, caudate, hippocampus, and brain stem. CONCLUSIONS These findings are consistent with the hypothesis of pathologic disruption of a striatopallidal-thalamo-cortical mesocircuit induced by cardiac arrest and pave the way for the use of combined brain quantitative morphometry in this setting.
Collapse
Affiliation(s)
- Stein Silva
- 1Department of Anaesthesiology and Critical Care, Critical Care Unit, University Teaching Hospital of Purpan, Place du Dr Baylac, Toulouse Cedex 9, France.2Critical Care and Anaesthesiology Department, University Teaching Hospital of Purpan, Place du Dr Baylac, Toulouse Cedex 9, France.3Toulouse NeuroImaging Center, Toulouse University, Inserm, UPS, France.4Department of Anaesthesiology and Critical Care, Critical Care Unit, Hopital Dieu Hospital, Narbonne, France.5Department of Anaesthesiology and Critical Care, School of medicine and Surgery, University Milano Bicocca and Hospital San Gerardo, Monza, Italy.6Department of Neuroradiology, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France.7Department of Anaesthesiology and Critical Care, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France.8Laboratoire d'Imagerie Biomédicale (UMR S 1146/UMR 7371), Université Pierre-et-Marie-Curie-Paris 06, Paris, France.9Critical Care and Anaesthesiology Department, Groupe Hospitalier Pitié-Salpétrière, APHP, Paris, France.10Department of Neuroradiology, Groupe Hospitalier Pitié-Salpétrière, APHP, Paris, France.11Cyclotron Research Center and Department of Neurology, University Hospital and University of Liège, Liège, Belgium.12Algology and Palliative Care Department, University Hospital and University of Liège, Liège, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Kirsch M, Guldenmund P, Ali Bahri M, Demertzi A, Baquero K, Heine L, Charland-Verville V, Vanhaudenhuyse A, Bruno MA, Gosseries O, Di Perri C, Ziegler E, Brichant JF, Soddu A, Bonhomme V, Laureys S. Sedation of Patients With Disorders of Consciousness During Neuroimaging: Effects on Resting State Functional Brain Connectivity. Anesth Analg 2017; 124:588-598. [PMID: 27941576 DOI: 10.1213/ane.0000000000001721] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND To reduce head movement during resting state functional magnetic resonance imaging, post-coma patients with disorders of consciousness (DOC) are frequently sedated with propofol. However, little is known about the effects of this sedation on the brain connectivity patterns in the damaged brain essential for differential diagnosis. In this study, we aimed to assess these effects. METHODS Using resting state functional magnetic resonance imaging 3T data obtained over several years of scanning patients for diagnostic and research purposes, we employed a seed-based approach to examine resting state connectivity in higher-order (default mode, bilateral external control, and salience) and lower-order (auditory, sensorimotor, and visual) resting state networks and connectivity with the thalamus, in 20 healthy unsedated controls, 8 unsedated patients with DOC, and 8 patients with DOC sedated with propofol. The DOC groups were matched for age at onset, etiology, time spent in DOC, diagnosis, standardized behavioral assessment scores, movement intensities, and pattern of structural brain injury (as assessed with T1-based voxel-based morphometry). RESULTS DOC were associated with severely impaired resting state network connectivity in all but the visual network. Thalamic connectivity to higher-order network regions was also reduced. Propofol administration to patients was associated with minor further decreases in thalamic and insular connectivity. CONCLUSIONS Our findings indicate that connectivity decreases associated with propofol sedation, involving the thalamus and insula, are relatively small compared with those already caused by DOC-associated structural brain injury. Nonetheless, given the known importance of the thalamus in brain arousal, its disruption could well reflect the diminished movement obtained in these patients. However, more research is needed on this topic to fully address the research question.
Collapse
Affiliation(s)
- Muriëlle Kirsch
- From the *Coma Science Group and §MoVeRe Group, Cyclotron Research Center, University of Liège, Liège, Belgium; †Department of Anesthesia and Intensive Care Medicine, CHU Sart Tilman Hospital, University of Liège, Liège, Belgium; ‡Computer Imaging and Medical Applications Laboratory, National University of Colombia, Bogotá, Colombia; ‖Department of Neurology, CHU Sart Tilman Hospital University of Liège, Liège, Belgium; ¶Department of Algology and Palliative Care, University Hospital of Liège, University of Liège, Liège, Belgium; #Center for Sleep and Consciousness and Postle Laboratory, Department of Psychiatry, University of Wisconsin, Madison, Wisconsin; **Department of Physics and Astronomy, Brain & Mind Institute, University of Western Ontario, London, Ontario, Canada; and ††Department of Anesthesia and Intensive Care Medicine, CHR Citadelle and CHU Liège, University of Liège, Liège, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Yuan L, Wei X, Xu C, Jin Y, Wang G, Li Y, Tian H, Chen S. Use of multisequence 3.0-T MRI to detect severe traumatic brain injury and predict the outcome. Br J Radiol 2015; 88:20150129. [PMID: 26067919 DOI: 10.1259/bjr.20150129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE The aim of this study was to evaluate multisequence 3.0-T MRI in the detection of severe traumatic brain injury (sTBI) and in predicting the outcome. METHODS 32 patients with sTBI were prospectively enrolled, and multisequence 3.0-T MRI was performed 4-8 weeks post injury. Quantitative data were recorded on each sequence. The ability to display the parenchymal lesions was compared with that of 64-slice spiral CT. The clinical and radiological results were correlated with the Glasgow Outcome Scale Extended scores 6 months after injury. RESULTS 3.0-T MRI could display more lesions than CT, especially when the lesion was deeply located. The lesion volumes and diffuse axonal injury (DAI) scores were different between good and poor outcome groups on fluid attenuated inversion recovery (p < 0.05). The apparent diffusion coefficient (ADC) values of the splenium of the corpus callosum and brain stem were also different (p < 0.05). Patients with unfavourable outcome showed a significantly higher volume of haemorrhage on susceptibility-weighted imaging than those with favourable outcomes and had haemorrhages generally located more deeply. Logistic regression analysis revealed that the location of haemorrhage and the ADC values of the splenium of the corpus callosum were independent risk factors for poor outcome, with an overall predictive accuracy of 91.4%. CONCLUSION The joint use of conventional and advanced sequences of 3.0-T MRI can comprehensively detect the pathological changes occurring after sTBI. Haemorrhagic and non-haemorrhagic DAIs in deep structures strongly suggest poor outcome. ADVANCES IN KNOWLEDGE This article improves the understanding of advanced MRI sequences in the detection of patients with sTBI and prediction of prognosis.
Collapse
Affiliation(s)
- L Yuan
- 1 Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - X Wei
- 2 Department of Diagnostic Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - C Xu
- 1 Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Y Jin
- 1 Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - G Wang
- 1 Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Y Li
- 2 Department of Diagnostic Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - H Tian
- 1 Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - S Chen
- 1 Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
4
|
Tshibanda L, Vanhaudenhuyse A, Boly M, Soddu A, Bruno MA, Moonen G, Laureys S, Noirhomme Q. Neuroimaging after coma. Neuroradiology 2010; 52:15-24. [PMID: 19862509 DOI: 10.1007/s00234-009-0614-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 10/07/2009] [Indexed: 01/12/2023]
Abstract
Following coma, some patients will recover wakefulness without signs of consciousness (only showing reflex movements, i.e., the vegetative state) or may show non-reflex movements but remain without functional communication (i.e., the minimally conscious state). Currently, there remains a high rate of misdiagnosis of the vegetative state (Schnakers et. al. BMC Neurol, 9:35, 8) and the clinical and electrophysiological markers of outcome from the vegetative and minimally conscious states remain unsatisfactory. This should incite clinicians to use multimodal assessment to detect objective signs of consciousness and validate para-clinical prognostic markers in these challenging patients. This review will focus on advanced magnetic resonance imaging (MRI) techniques such as magnetic resonance spectroscopy, diffusion tensor imaging, and functional MRI (fMRI studies in both "activation" and "resting state" conditions) that were recently introduced in the assessment of patients with chronic disorders of consciousness.
Collapse
Affiliation(s)
- Luaba Tshibanda
- Coma Science Group, Cyclotron Research Center, University and University Hospital of Liège, Sart-Tilman, B30 Liège, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Noirhomme Q, Soddu A, Vanhaudenhuyse A, Lehembre R, Bruno MA, Gosseries O, Demertzi A, Maudoux A, Schnakers C, Boveroux P, Boly M, Laureys S. Functional Neuroimaging Approaches to the Changing Borders of Consciousness. J PSYCHOPHYSIOL 2010. [DOI: 10.1027/0269-8803/a000015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The bedside diagnosis of vegetative and minimally conscious patients is extremely challenging, and prediction of individual long-term outcome remains difficult. State-of the art neuroimaging methods could help disentangle complex cases and offer new prognostic criteria. These methods can be divided into to three categories: First, new anatomical MRI neuroimaging methods, like diffusion tensor imaging (DTI) or spectroscopy, and passive functional imaging methods (looking at the brain’s activation induced by external stimuli), could provide new diagnostic and prognostic markers. Second, neuroimaging methods based on active collaboration from the patient could help to detect clinically unnoticed signs of consciousness. Third, developments in brain-computer interfaces based on EEG, functional MRI, or EMG offer communication possibilities in brain-damaged patients who can neither verbally nor nonverbally express their thoughts or wishes. These new approaches raise important issues not only from a clinical and ethical perspective (i.e., patients’ diagnosis, prognosis and management) but also from a neuroscientific standpoint, as they enrich our current understanding of the emergence and function of the conscious human mind.
Collapse
Affiliation(s)
- Quentin Noirhomme
- Coma Science Group, Cyclotron Research Centre and Neurology Department, University and University Hospital of Liège, Belgium
| | - Andrea Soddu
- Coma Science Group, Cyclotron Research Centre and Neurology Department, University and University Hospital of Liège, Belgium
| | - Audrey Vanhaudenhuyse
- Coma Science Group, Cyclotron Research Centre and Neurology Department, University and University Hospital of Liège, Belgium
| | - Rémy Lehembre
- Coma Science Group, Cyclotron Research Centre and Neurology Department, University and University Hospital of Liège, Belgium
| | - Marie-Aurélie Bruno
- Coma Science Group, Cyclotron Research Centre and Neurology Department, University and University Hospital of Liège, Belgium
| | - Olivia Gosseries
- Coma Science Group, Cyclotron Research Centre and Neurology Department, University and University Hospital of Liège, Belgium
| | - Athena Demertzi
- Coma Science Group, Cyclotron Research Centre and Neurology Department, University and University Hospital of Liège, Belgium
| | - Audrey Maudoux
- Coma Science Group, Cyclotron Research Centre and Neurology Department, University and University Hospital of Liège, Belgium
| | - Caroline Schnakers
- Coma Science Group, Cyclotron Research Centre and Neurology Department, University and University Hospital of Liège, Belgium
| | - Pierre Boveroux
- Coma Science Group, Cyclotron Research Centre and Neurology Department, University and University Hospital of Liège, Belgium
| | - Mélanie Boly
- Coma Science Group, Cyclotron Research Centre and Neurology Department, University and University Hospital of Liège, Belgium
| | - Steven Laureys
- Coma Science Group, Cyclotron Research Centre and Neurology Department, University and University Hospital of Liège, Belgium
| |
Collapse
|
6
|
[Ethical aspects of dealing with coma patients]. Wien Med Wochenschr 2009; 159:457-61. [PMID: 19823792 DOI: 10.1007/s10354-009-0704-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2008] [Accepted: 01/17/2009] [Indexed: 10/20/2022]
Abstract
The number of patients who survive severe brain injury increased due to progress in neurosurgery and intensive care. To establish a proper prognosis on the coma stage and the possible potential of remission is difficult in many cases. The treatment of patients in chronic coma leads to economic and ethical problems. Progress in functional radiology may help to obtain a proper prognosis in future. While numerous issues deal with ethical aspects in case of brain death only few do so with treatment decisions in chronic coma patients.
Collapse
|
7
|
Experience of diffusion tensor imaging and 1H spectroscopy for outcome prediction in severe traumatic brain injury: Preliminary results. Crit Care Med 2009; 37:1448-55. [PMID: 19242330 DOI: 10.1097/ccm.0b013e31819cf050] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE The objective of the study is to test whether multimodal magnetic resonance imaging can provide a reliable outcome prediction of the clinical status, focusing on consciousness at 1 year after severe traumatic brain injury (TBI). DESIGN Single center prospective cohort with consecutive inclusions. SETTING Critical Care Neurosurgical Unit of a university hospital. PATIENTS Forty-three TBI patients not responding to simple orders after sedation cessation and 15 healthy controls. INTERVENTIONS A multimodal magnetic resonance imaging combining morphologic sequences, diffusion tensor imaging (DTI), and H proton magnetic resonance spectroscopy (MRS) was performed 24 +/- 11 days after severe TBI. The ability of DTI and MRS to predict 1-year outcome was assessed by linear discriminant analysis (LDA). Robustness of the classification was tested using a bootstrap procedure. MEASUREMENTS AND MAIN RESULTS Fractional anisotropy (FA) was computed as the mean of values at discrete brain sites in the infratentorial and supratentorial regions. The N-acetyl aspartate/creatine (NAA/Cr) ratio was measured in the thalamus, lenticular nucleus, insular cortex, occipital periventricular white matter, and pons. After 1 year, 19 (44%) patients had unfavorable outcomes (death, persistent vegetative state, or minimally conscious state) and 24 (56%) favorable outcomes (normal consciousness with or without functional impairments). Analysis of variance was performed to compare FA and NAA/Cr in the two outcome groups and controls. FA and MRS findings showed highly significant differences between the outcome groups, with significant variables by LDA being supratentorial FA, NAA/Cr (pons), NAA/Cr (thalamus), NAA/Cr (insula), and infratentorial FA. LDA of combined FA and MRS data clearly separated the unfavorable outcome, favorable outcome, and control groups, with no overlap. Unfavorable outcome was predicted with up to 86% sensitivity and 97% specificity; these values were better than those obtained with DTI or MRS alone. CONCLUSION FA and NAA/Cr hold potential as quantitative outcome-prediction tools at the subacute phase of TBI.
Collapse
|
8
|
MRI of neuronal network structure, function, and plasticity. PROGRESS IN BRAIN RESEARCH 2009; 175:483-96. [DOI: 10.1016/s0079-6123(09)17532-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|