1
|
Niu S, Guo J, Hanson NJ, Wang K, Chai J, Guo F. The effects of mental fatigue on fine motor performance in humans and its neural network connectivity mechanism: a dart throwing study. Cereb Cortex 2024; 34:bhae085. [PMID: 38489786 DOI: 10.1093/cercor/bhae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/17/2024] Open
Abstract
While it is well known that mental fatigue impairs fine motor performance, the investigation into its neural basis remains scant. Here, we investigate the impact of mental fatigue on fine motor performance and explore its underlying neural network connectivity mechanisms. A total of 24 healthy male university students were recruited and randomly divided into two groups: a mental fatigue group (MF) and a control group (Control). Both groups completed 50 dart throws, while electroencephalography (EEG) data were collected. Following the Stroop intervention, participants in the MF group exhibited a decrease in Stroop task accuracy and throwing performance, and an increase in reaction time along with VAS and NASA scores. The EEG data during dart-throwing revealed that the network connectivity strength of theta oscillations in the frontal and left central regions was significantly higher in the MF group compared with the Control group, while the network connectivity strength of alpha oscillations in the left parietal region was significantly enhanced. The interregional connectivity within the theta and alpha rhythm bands, particularly in the frontal-central-parietal network connections, also showed a significant increase in the MF group. Mental fatigue impairs dart throwing performance and is accompanied by increased connectivity in alpha and theta.
Collapse
Affiliation(s)
- Suoqing Niu
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China
| | - Jianrui Guo
- Laboratory Management Center, Shenyang Sport University, Shenyang 110102, China
| | - Nicholas J Hanson
- Department of Human Performance and Health Education, College of Education and Human Development, Western Michigan University, Michigan, Kalamazoo, MI 49008, United States
| | - KaiQi Wang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China
| | - Jinlei Chai
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China
| | - Feng Guo
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China
| |
Collapse
|
2
|
Chiang HS, Motes M, O'Hair R, Vanneste S, Kraut M, Hart J. Baseline delayed verbal recall predicts response to high definition transcranial direct current stimulation targeting the superior medial frontal cortex. Neurosci Lett 2021; 764:136204. [PMID: 34478816 DOI: 10.1016/j.neulet.2021.136204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/25/2021] [Accepted: 08/29/2021] [Indexed: 11/21/2022]
Abstract
Anodal high definition transcranial direct current stimulation (HD-tDCS) targeting the pre-supplementary motor area/dorsal anterior cingulate cortex (pre-SMA/dACC) has recently been shown to improve verbal retrieval deficits in veterans with chronic traumatic brain injury (TBI) (Motes et al., 2020), but predictors of treatment response are unclear. We hypothesized that baseline delayed verbal recall, a sensitive measure for post-TBI chronic cognitive decline, would predict therapeutic effects of HD-tDCS targeting the pre-SMA/dACC for verbal retrieval deficits. Standardized verbal retrieval measures were administered at baseline, immediately after and 8 weeks after treatment completion. We applied mixed generalized linear modeling as a post-hoc subgroup analysis to the verbal retrieval scores that showed significant improvement in Motes at el. (2020) to examine effects of active stimulation across the groups with baseline-intact delayed recall (N = 10) and baseline-impaired delayed recall (N = 8), compared to sham (N = 7). Individuals with impaired baseline delayed recall showed significant improvement (compared to baseline) in both category fluency and color-word inhibition/switch, while individuals with intact delayed recall showed significant improvement only in color-word inhibition/switch. Baseline delayed verbal recall may therefore be considered as a predictor for future electromodulation studies targeting frontal structures to treat TBI-related verbal deficits.
Collapse
Affiliation(s)
- Hsueh-Sheng Chiang
- Department of Neurology, The University of Texas Southwestern Medical Center, USA; School of Behavioral and Brain Sciences, The University of Texas at Dallas, USA.
| | - Michael Motes
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, USA
| | - Rachel O'Hair
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, USA
| | - Sven Vanneste
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, USA; Global Brain Health Institute, Trinity College Dublin, Ireland
| | - Michael Kraut
- Department of Radiology, The Johns Hopkins University School of Medicine, USA
| | - John Hart
- Department of Neurology, The University of Texas Southwestern Medical Center, USA; School of Behavioral and Brain Sciences, The University of Texas at Dallas, USA; Department of Psychiatry, The University of Texas Southwestern Medical Center, USA
| |
Collapse
|
3
|
Riva D. Sex and gender difference in cognitive and behavioral studies in developmental age: An introduction. J Neurosci Res 2021; 101:543-552. [PMID: 34687075 DOI: 10.1002/jnr.24970] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 11/09/2022]
Abstract
This paper introduces a special issue focused on sex and gender (s/g) cognitive/behavioral differences at developmental ages providing an overview of this multifaceted and debated topic. It will provide a description of the biological systems that are strongly interconnected to generate s/g differences, that is, genetic determinants, sex hormones, differences in brain structure, organization, and/or function, inherited or modifiable under environmental pressures. Developmental studies are rare. Some addressed whether s/g differences in cognitive/behavioral characteristics are evident early in life and are consistent throughout development, entailing that s/g differences can follow the evolving steps in girls and boys in different domains. The data are far from being homogeneous and consistent about s/g difference in language, social skills, and visuo/spatial abilities. The differences are small, often with overlapping performances, similar to what is seen in adulthood. Given that several variables and the interactions between them are implicated, further longitudinal studies adopting adequate assessment tools, very large size multicultural samples stratified in different, well-sized and precise age groups, considering biological and sociocultural variables, are needed. Due to the complexity of the issue, there is still the need to support and adopt an s/g difference approach also in cognitive and behavioral studies at developmental ages. Finally, these studies have not only scientific importance and relevant cultural, anthropological, and social implications, but are also useful for pedagogical programming as well as for the study of the different susceptibility to develop CNS diseases and consequently to promote different therapies and treatments.
Collapse
Affiliation(s)
- Daria Riva
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy.,Fondazione Pierfranco e Luisa Mariani, Milano, Italy.,Fondazione Together To Go, Milano, Italy
| |
Collapse
|
4
|
Javeed F, Rehman L, Afzal A, Abbas A. Outcome of diffuse axonal injury in moderate and severe traumatic brain injury. Surg Neurol Int 2021; 12:384. [PMID: 34513151 PMCID: PMC8422474 DOI: 10.25259/sni_573_2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 07/01/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Diffuse axonal injury (DAI) is a common presentation in neurotrauma. Prognosis is variable but can be dependent on the initial presentation of the patient. In our study, we evaluated the outcome of diffuse axonal injury. Methods: This study was conducted at a tertiary care center from September 2018 to December 2019 and included 133 adult patients with moderate or severe head injury (GCS ≤ 12) diagnosed to have the DAI on the basis of MRI. At 3 months, the result was assessed using the Extended Glasgow Outcome Scale (GOS-E). Results: There were a total of 97 (72.9%) males and 36 (27.1%) females with an average age of 32.4 ± 10 years with a mean GCS of 9 at admission. The most common mode of head trauma was road traffic accidents (RTAs) in 51.9% of patients followed by fall from height in 27.1%. Most patients were admitted with moderate traumatic brain injury (64.7%) and suffered Grade I diffuse axonal injury (41.4%). The average hospital stay was 9 days but majority of patients stayed in hospital for ≤ 11 days. At 3 months, mortality rate was 25.6% and satisfactory outcome observed in 48.1% of patients. The highest mortality was observed in the Grade III DAI. Conclusion: We conclude that the severity of the traumatic head injury and the grade of the DAI impact the outcome. Survivors require long-term hospitalization and rehabilitation to improve their chances of recovery.
Collapse
Affiliation(s)
- Farrukh Javeed
- Department of Neurosurgery, Jinnah Postgraduate Medical Centre, Karachi, Pakistan
| | - Lal Rehman
- Department of Neurosurgery, Jinnah Postgraduate Medical Centre, Karachi, Pakistan
| | - Ali Afzal
- Department of Neurosurgery, Jinnah Postgraduate Medical Centre, Karachi, Pakistan
| | - Asad Abbas
- Department of Neurosurgery, Jinnah Postgraduate Medical Centre, Karachi, Pakistan
| |
Collapse
|
5
|
Shenoy Handiru V, Alivar A, Hoxha A, Saleh S, Suviseshamuthu ES, Yue GH, Allexandre D. Graph-theoretical analysis of EEG functional connectivity during balance perturbation in traumatic brain injury: A pilot study. Hum Brain Mapp 2021; 42:4427-4447. [PMID: 34312933 PMCID: PMC8410544 DOI: 10.1002/hbm.25554] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/08/2021] [Accepted: 05/27/2021] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) often results in balance impairment, increasing the risk of falls, and the chances of further injuries. However, the underlying neural mechanisms of postural control after TBI are not well understood. To this end, we conducted a pilot study to explore the neural mechanisms of unpredictable balance perturbations in 17 chronic TBI participants and 15 matched healthy controls (HC) using the EEG, MRI, and diffusion tensor imaging (DTI) data. As quantitative measures of the functional integration and segregation of the brain networks during the postural task, we computed the global graph-theoretic network measures (global efficiency and modularity) of brain functional connectivity derived from source-space EEG in different frequency bands. We observed that the TBI group showed a lower balance performance as measured by the center of pressure displacement during the task, and the Berg Balance Scale (BBS). They also showed reduced brain activation and connectivity during the balance task. Furthermore, the decrease in brain network segregation in alpha-band from baseline to task was smaller in TBI than HC. The DTI findings revealed widespread structural damage. In terms of the neural correlates, we observed a distinct role played by different frequency bands: theta-band modularity during the task was negatively correlated with the BBS in the TBI group; lower beta-band network connectivity was associated with the reduction in white matter structural integrity. Our future studies will focus on how postural training will modulate the functional brain networks in TBI.
Collapse
Affiliation(s)
- Vikram Shenoy Handiru
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, New Jersey, USA.,Department of Physical Medicine and Rehabilitation, Rutgers University New Jersey Medical School, Newark, New Jersey, USA
| | - Alaleh Alivar
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, New Jersey, USA.,Department of Physical Medicine and Rehabilitation, Rutgers University New Jersey Medical School, Newark, New Jersey, USA
| | - Armand Hoxha
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, New Jersey, USA
| | - Soha Saleh
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, New Jersey, USA.,Department of Physical Medicine and Rehabilitation, Rutgers University New Jersey Medical School, Newark, New Jersey, USA
| | - Easter S Suviseshamuthu
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, New Jersey, USA.,Department of Physical Medicine and Rehabilitation, Rutgers University New Jersey Medical School, Newark, New Jersey, USA
| | - Guang H Yue
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, New Jersey, USA.,Department of Physical Medicine and Rehabilitation, Rutgers University New Jersey Medical School, Newark, New Jersey, USA
| | - Didier Allexandre
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, New Jersey, USA.,Department of Physical Medicine and Rehabilitation, Rutgers University New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
6
|
Calzolari E, Chepisheva M, Smith RM, Mahmud M, Hellyer PJ, Tahtis V, Arshad Q, Jolly A, Wilson M, Rust H, Sharp DJ, Seemungal BM. Vestibular agnosia in traumatic brain injury and its link to imbalance. Brain 2021; 144:128-143. [PMID: 33367536 PMCID: PMC7880674 DOI: 10.1093/brain/awaa386] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/21/2020] [Accepted: 09/05/2020] [Indexed: 12/16/2022] Open
Abstract
Vestibular dysfunction, causing dizziness and imbalance, is a common yet poorly understood feature in patients with TBI. Damage to the inner ear, nerve, brainstem, cerebellum and cerebral hemispheres may all affect vestibular functioning, hence, a multi-level assessment—from reflex to perception—is required. In a previous report, postural instability was the commonest neurological feature in ambulating acute patients with TBI. During ward assessment, we also frequently observe a loss of vertigo sensation in patients with acute TBI, common inner ear conditions and a related vigorous vestibular-ocular reflex nystagmus, suggesting a ‘vestibular agnosia’. Patients with vestibular agnosia were also more unbalanced; however, the link between vestibular agnosia and imbalance was confounded by the presence of inner ear conditions. We investigated the brain mechanisms of imbalance in acute TBI, its link with vestibular agnosia, and potential clinical impact, by prospective laboratory assessment of vestibular function, from reflex to perception, in patients with preserved peripheral vestibular function. Assessment included: vestibular reflex function, vestibular perception by participants’ report of their passive yaw rotations in the dark, objective balance via posturography, subjective symptoms via questionnaires, and structural neuroimaging. We prospectively screened 918 acute admissions, assessed 146 and recruited 37. Compared to 37 matched controls, patients showed elevated vestibular-perceptual thresholds (patients 12.92°/s versus 3.87°/s) but normal vestibular-ocular reflex thresholds (patients 2.52°/s versus 1.78°/s). Patients with elevated vestibular-perceptual thresholds [3 standard deviations (SD) above controls’ average], were designated as having vestibular agnosia, and displayed worse posturography than non-vestibular-agnosia patients, despite no difference in vestibular symptom scores. Only in patients with impaired postural control (3 SD above controls’ mean), whole brain diffusion tensor voxel-wise analysis showed elevated mean diffusivity (and trend lower fractional anisotropy) in the inferior longitudinal fasciculus in the right temporal lobe that correlated with vestibular agnosia severity. Thus, impaired balance and vestibular agnosia are co-localized to the inferior longitudinal fasciculus in the right temporal lobe. Finally, a clinical audit showed a sevenfold reduction in clinician recognition of a common peripheral vestibular condition (benign paroxysmal positional vertigo) in acute patients with clinically apparent vestibular agnosia. That vestibular agnosia patients show worse balance, but without increased dizziness symptoms, explains why clinicians may miss treatable vestibular diagnoses in these patients. In conclusion, vestibular agnosia mediates imbalance in traumatic brain injury both directly via white matter tract damage in the right temporal lobe, and indirectly via reduced clinical recognition of common, treatable vestibular diagnoses.
Collapse
Affiliation(s)
- Elena Calzolari
- Brain and Vestibular Group, Neuro-Otology Unit, Department of Brain Sciences, Charing Cross Hospital, Imperial College London, London, W6 8RF, UK
| | - Mariya Chepisheva
- Brain and Vestibular Group, Neuro-Otology Unit, Department of Brain Sciences, Charing Cross Hospital, Imperial College London, London, W6 8RF, UK
| | - Rebecca M Smith
- Brain and Vestibular Group, Neuro-Otology Unit, Department of Brain Sciences, Charing Cross Hospital, Imperial College London, London, W6 8RF, UK
| | - Mohammad Mahmud
- Brain and Vestibular Group, Neuro-Otology Unit, Department of Brain Sciences, Charing Cross Hospital, Imperial College London, London, W6 8RF, UK
| | - Peter J Hellyer
- Centre for Neuroimaging Sciences, King's College London, London WC2R 2LS, UK
| | - Vassilios Tahtis
- Brain and Vestibular Group, Neuro-Otology Unit, Department of Brain Sciences, Charing Cross Hospital, Imperial College London, London, W6 8RF, UK.,King's College Hospital NHS Foundation Trust, SE5 9RS, UK
| | - Qadeer Arshad
- InAmind Laboratory, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, LE1 7RH, UK
| | - Amy Jolly
- C3NL, Department of Brain Sciences, Hammersmith Hospital, Imperial College London, London, W12 0NN, UK
| | - Mark Wilson
- St Mary's Hospital Major Trauma Centre, Imperial College Healthcare NHS Trust, London, W2 1NY, UK
| | - Heiko Rust
- Brain and Vestibular Group, Neuro-Otology Unit, Department of Brain Sciences, Charing Cross Hospital, Imperial College London, London, W6 8RF, UK
| | - David J Sharp
- C3NL, Department of Brain Sciences, Hammersmith Hospital, Imperial College London, London, W12 0NN, UK
| | - Barry M Seemungal
- Brain and Vestibular Group, Neuro-Otology Unit, Department of Brain Sciences, Charing Cross Hospital, Imperial College London, London, W6 8RF, UK.,St Mary's Hospital Major Trauma Centre, Imperial College Healthcare NHS Trust, London, W2 1NY, UK
| |
Collapse
|
7
|
Mott RE, von Reyn CR, Firestein BL, Meaney DF. Regional Neurodegeneration in vitro: The Protective Role of Neural Activity. Front Comput Neurosci 2021; 15:580107. [PMID: 33854425 PMCID: PMC8039287 DOI: 10.3389/fncom.2021.580107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 02/11/2021] [Indexed: 12/20/2022] Open
Abstract
Traumatic brain injury is a devastating public health problem, the eighth leading cause of death across the world. To improve our understanding of how injury at the cellular scale affects neural circuit function, we developed a protocol to precisely injure individual neurons within an in vitro neural network. We used high speed calcium imaging to estimate alterations in neural activity and connectivity that occur followed targeted microtrauma. Our studies show that mechanically injured neurons inactivate following microtrauma and eventually re-integrate into the network. Single neuron re-integration is dependent on its activity prior to injury and initial connections in the network: more active and integrated neurons are more resistant to microtrauma and more likely to re-integrate into the network. Micromechanical injury leads to neuronal death 6 h post-injury in a subset of both injured and uninjured neurons. Interestingly, neural activity and network participation after injury were associated with survival in linear discriminate analysis (77.3% correct prediction, Wilks' Lambda = 0.838). Based on this observation, we modulated neuronal activity to rescue neurons after microtrauma. Inhibition of neuronal activity provided much greater survivability than did activation of neurons (ANOVA, p < 0.01 with post-hoc Tukey HSD, p < 0.01). Rescue of neurons by blocking activity in the post-acute period is partially mediated by mitochondrial energetics, as we observed silencing neurons after micromechanical injury led to a significant reduction in mitochondrial calcium accumulation. Overall, the present study provides deeper insight into the propagation of injury within networks, demonstrating that together the initial activity, network structure, and post-injury activity levels contribute to the progressive changes in a neural circuit after mechanical trauma.
Collapse
Affiliation(s)
| | - Catherine R von Reyn
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States.,Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - David F Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States.,Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
8
|
Resting-State Network Plasticity Induced by Music Therapy after Traumatic Brain Injury. Neural Plast 2021; 2021:6682471. [PMID: 33763126 PMCID: PMC7964116 DOI: 10.1155/2021/6682471] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/22/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) is characterized by a complex pattern of abnormalities in resting-state functional connectivity (rsFC) and network dysfunction, which can potentially be ameliorated by rehabilitation. In our previous randomized controlled trial, we found that a 3-month neurological music therapy intervention enhanced executive function (EF) and increased grey matter volume in the right inferior frontal gyrus (IFG) in patients with moderate-to-severe TBI (N = 40). Extending this study, we performed longitudinal rsFC analyses of resting-state fMRI data using a ROI-to-ROI approach assessing within-network and between-network rsFC in the frontoparietal (FPN), dorsal attention (DAN), default mode (DMN), and salience (SAL) networks, which all have been associated with cognitive impairment after TBI. We also performed a seed-based connectivity analysis between the right IFG and whole-brain rsFC. The results showed that neurological music therapy increased the coupling between the FPN and DAN as well as between these networks and primary sensory networks. By contrast, the DMN was less connected with sensory networks after the intervention. Similarly, there was a shift towards a less connected state within the FPN and SAL networks, which are typically hyperconnected following TBI. Improvements in EF were correlated with rsFC within the FPN and between the DMN and sensorimotor networks. Finally, in the seed-based connectivity analysis, the right IFG showed increased rsFC with the right inferior parietal and left frontoparietal (Rolandic operculum) regions. Together, these results indicate that the rehabilitative effects of neurological music therapy after TBI are underpinned by a pattern of within- and between-network connectivity changes in cognitive networks as well as increased connectivity between frontal and parietal regions associated with music processing.
Collapse
|
9
|
Zhang Y, Li L, He L. Radiological-prognostic correlation of diffusion tensor imaging in a mild traumatic brain injury model. Exp Ther Med 2020; 20:256. [PMID: 33199982 DOI: 10.3892/etm.2020.9386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022] Open
Abstract
Diffusion tensor imaging (DTI) parameters can detect changes in the brain microstructure in mild traumatic brain injury (mTBI). Whether these parameter changes can predict neural functional recovery after mTBI is still relatively unknown. The present study aimed to investigate the radiological-prognostic correlation between these radiological parameters and learning and memory deficits using an in-house constructed rat model of mTBI. We established a rat model of diffuse axonal injury (DAI) at different injury levels, followed by magnetic resonance imaging at 6, 24, and 72 h, and 1, 2 weeks post injury, and randomly selected the rats for analysis of histopathology and learning and memory deficits. DTI parameters and β-amyloid precursor protein (β-APP) levels were obtained to estimate the extent of brain injury and the correlation with the times of crossing the safety platform as measured using a water maze test. The results revealed that fractional anisotropy (FA) was sensitive to axonal integrity. FA values of the corpus callosum in the injury groups decreased at all time points post injury, except in the mild injury group, which recovered to normal levels at 1 and 2 weeks post-injury. The neural function of the mild injury group recovered to normal compared with the normal control group. FA value, β-APP of corpus callosum in different groups at 24 h post injury showed obvious correlation with learning and memory deficits at the recovery stage (r=0.881, r=-0.931). In conclusion, DTI can reflect varying injury states of DAI over time with direct comparison to histopathology and could be used to predict the neural functional recovery at the early stage post-injury in a rat model.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Key Laboratory of Pediatrics in Chongqing, Chongqing 400014, P.R. China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Lusheng Li
- Key Laboratory of Pediatrics in Chongqing, Chongqing 400014, P.R. China.,Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Ling He
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Key Laboratory of Pediatrics in Chongqing, Chongqing 400014, P.R. China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| |
Collapse
|
10
|
Wende T, Hoffmann KT, Meixensberger J. Tractography in Neurosurgery: A Systematic Review of Current Applications. J Neurol Surg A Cent Eur Neurosurg 2020; 81:442-455. [PMID: 32176926 DOI: 10.1055/s-0039-1691823] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ability to visualize the brain's fiber connections noninvasively in vivo is relatively young compared with other possibilities of functional magnetic resonance imaging. Although many studies showed tractography to be of promising value for neurosurgical care, the implications remain inconclusive. An overview of current applications is presented in this systematic review. A search was conducted for (("tractography" or "fiber tracking" or "fibre tracking") and "neurosurgery") that produced 751 results. We identified 260 relevant articles and added 20 more from other sources. Most publications concerned surgical planning for resection of tumors (n = 193) and vascular lesions (n = 15). Preoperative use of transcranial magnetic stimulation was discussed in 22 of these articles. Tractography in skull base surgery presents a special challenge (n = 29). Fewer publications evaluated traumatic brain injury (TBI) (n = 25) and spontaneous intracranial bleeding (n = 22). Twenty-three articles focused on tractography in pediatric neurosurgery. Most authors found tractography to be a valuable addition in neurosurgical care. The accuracy of the technique has increased over time. There are articles suggesting that tractography improves patient outcome after tumor resection. However, no reliable biomarkers have yet been described. The better rehabilitation potential after TBI and spontaneous intracranial bleeding compared with brain tumors offers an insight into the process of neurorehabilitation. Tractography and diffusion measurements in some studies showed a correlation with patient outcome that might help uncover the neuroanatomical principles of rehabilitation itself. Alternative corticofugal and cortico-cortical networks have been implicated in motor recovery after ischemic stroke, suggesting more complex mechanisms in neurorehabilitation that go beyond current models. Hence tractography may potentially be able to predict clinical deficits and rehabilitation potential, as well as finding possible explanations for neurologic disorders in retrospect. However, large variations of the results indicate a lack of data to establish robust diagnostical concepts at this point. Therefore, in vivo tractography should still be interpreted with caution and by experienced surgeons.
Collapse
Affiliation(s)
- Tim Wende
- Department of Neurosurgery, University Hospital Leipzig, Leipzig, Germany
| | | | | |
Collapse
|
11
|
Siponkoski ST, Martínez-Molina N, Kuusela L, Laitinen S, Holma M, Ahlfors M, Jordan-Kilkki P, Ala-Kauhaluoma K, Melkas S, Pekkola J, Rodriguez-Fornells A, Laine M, Ylinen A, Rantanen P, Koskinen S, Lipsanen J, Särkämö T. Music Therapy Enhances Executive Functions and Prefrontal Structural Neuroplasticity after Traumatic Brain Injury: Evidence from a Randomized Controlled Trial. J Neurotrauma 2020; 37:618-634. [DOI: 10.1089/neu.2019.6413] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Sini-Tuuli Siponkoski
- Department of Psychology and Logopedics, Cognitive Brain Research Unit, University of Helsinki, Helsinki, Finland
| | - Noelia Martínez-Molina
- Department of Psychology and Logopedics, Cognitive Brain Research Unit, University of Helsinki, Helsinki, Finland
| | - Linda Kuusela
- HUS Medical Imaging Center, Department of Radiology, Helsinki Central University Hospital and University of Helsinki, Helsinki, Finland
- Department of Physics, University of Helsinki, Helsinki, Finland
| | | | - Milla Holma
- Musiikkiterapiaosuuskunta InstruMental (Music Therapy Cooperative InstruMental), Helsinki, Finland
| | | | | | - Katja Ala-Kauhaluoma
- Ludus Oy Tutkimus- ja kuntoutuspalvelut (Assessment and Intervention Services), Helsinki, Finland
| | - Susanna Melkas
- Department of Neurology and Brain Injury Outpatient Clinic, Helsinki University Central Hospital, Helsinki, Finland
| | - Johanna Pekkola
- HUS Medical Imaging Center, Department of Radiology, Helsinki Central University Hospital and University of Helsinki, Helsinki, Finland
| | - Antoni Rodriguez-Fornells
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Matti Laine
- Department of Psychology, Åbo Akademi University, Turku, Finland
| | - Aarne Ylinen
- Department of Neurology and Brain Injury Outpatient Clinic, Helsinki University Central Hospital, Helsinki, Finland
- Tampere University Hospital, Tampere, Finland
| | | | - Sanna Koskinen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Jari Lipsanen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Teppo Särkämö
- Department of Psychology and Logopedics, Cognitive Brain Research Unit, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Wu K, Liu M, He L, Tan Y. Abnormal degree centrality in delayed encephalopathy after carbon monoxide poisoning: a resting-state fMRI study. Neuroradiology 2020; 62:609-616. [PMID: 31955235 PMCID: PMC7186243 DOI: 10.1007/s00234-020-02369-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/10/2020] [Indexed: 01/15/2023]
Abstract
Purpose To explore neuropathologic mechanisms in functional brain regions in patients with delayed encephalopathy after carbon monoxide poisoning (DEACMP) from the perspective of the brain network nodes by resting-state functional magnetic resonance imaging (rs-fMRI). Methods The fMRI and cognitive assessments were performed in 25 patients with DEACMP and 25 age-, sex- and education-matched healthy controls (HCs). Data analysis was performed via the degree centrality (DC) method. Then, the associations between the cognitive assessments and DC in the identified abnormal brain regions were assessed by using a correlation analysis. Results Compared with the HCs, the DEACMP patients displayed significantly decreased DC values in the right superior frontal gyrus, right precentral gyrus, right angular gyrus, right marginal gyrus, right hippocampus, and left thalamus but increased DC values in the right inferior frontal gyrus, right cingulate gyrus, left superior temporal gyrus, left medial temporal gyrus, right lingual gyrus, and right posterior cerebellar lobe, pons, and midbrain (GRF correction, voxel P value < 0.001, cluster P value < 0.01). The correlation analysis in the DEACMP group revealed that there was a negative correlation between the DC values in the right hippocampus and MMSE scores, whereas a positive correlation was observed in the right cingulate gyrus. Conclusions Patients with DEACMP exhibited abnormal degree centrality in the brain network. This finding may provide a new approach for examining the neuropathologic mechanisms underlying DEACMP.
Collapse
Affiliation(s)
- Kaifu Wu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Meng Liu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Laichang He
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yongming Tan
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
13
|
Abstract
Traumatic brain injury (TBI) represents a major clinical and economic challenge for health systems worldwide, and it is considered one of the leading causes of disability in young adults. The recent development of brain-computer interface (BCI) tools to target cognitive and motor impairments has led to the exploration of these techniques as potential therapeutic tools in patients with TBI. However, little evidence has been gathered so far to support applicability and efficacy of BCIs for TBI in a clinical setting. In the present chapter, results from studies using BCI approaches in conscious patients with TBI or in animal models of TBI as well as an overview of future directions in the use of BCIs to treat cognitive symptoms in this patient population will be presented.
Collapse
Affiliation(s)
- Virginia Conde
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark; Clinical Neuroscience Laboratory, Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark.
| |
Collapse
|
14
|
Tuerk C, Dégeilh F, Catroppa C, Dooley JJ, Kean M, Anderson V, Beauchamp MH. Altered resting-state functional connectivity within the developing social brain after pediatric traumatic brain injury. Hum Brain Mapp 2019; 41:561-576. [PMID: 31617298 PMCID: PMC7267957 DOI: 10.1002/hbm.24822] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/03/2019] [Indexed: 01/31/2023] Open
Abstract
Traumatic brain injury (TBI) in childhood and adolescence can interrupt expected development, compromise the integrity of the social brain network (SBN) and impact social skills. Yet, no study has investigated functional alterations of the SBN following pediatric TBI. This study explored functional connectivity within the SBN following TBI in two independent adolescent samples. First, 14 adolescents with mild complex, moderate or severe TBI and 16 typically developing controls (TDC) underwent resting‐state functional magnetic resonance imaging 12–24 months post‐injury. Region of interest analyses were conducted to compare the groups' functional connectivity using selected SBN seeds. Then, replicative analysis was performed in an independent sample of adolescents with similar characteristics (9 TBI, 9 TDC). Results were adjusted for age, sex, socioeconomic status and total gray matter volume, and corrected for multiple comparisons. Significant between‐group differences were detected for functional connectivity in the dorsomedial prefrontal cortex and left fusiform gyrus, and between the left fusiform gyrus and left superior frontal gyrus, indicating positive functional connectivity for the TBI group (negative for TDC). The replication study revealed group differences in the same direction between the left superior frontal gyrus and right fusiform gyrus. This study indicates that pediatric TBI may alter functional connectivity of the social brain. Frontal‐fusiform connectivity has previously been shown to support affect recognition and changes in the function of this network could relate to more effortful processing and broad social impairments.
Collapse
Affiliation(s)
- Carola Tuerk
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| | - Fanny Dégeilh
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada.,Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada
| | - Cathy Catroppa
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Victoria, Australia.,Melbourne School of Psychological Science and Department of Pediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Julian J Dooley
- Cuyahoga County Juvenile Court, Diagnostic Clinic, Cleveland, Ohio
| | - Michael Kean
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Vicki Anderson
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Victoria, Australia.,Melbourne School of Psychological Science and Department of Pediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Miriam H Beauchamp
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada.,Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada
| |
Collapse
|
15
|
Kullberg-Turtiainen M, Vuorela K, Huttula L, Turtiainen P, Koskinen S. Individualized goal directed dance rehabilitation in chronic state of severe traumatic brain injury: A case study. Heliyon 2019; 5:e01184. [PMID: 30805564 PMCID: PMC6374582 DOI: 10.1016/j.heliyon.2019.e01184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/13/2018] [Accepted: 01/25/2019] [Indexed: 12/31/2022] Open
Abstract
Few long-term studies report late outcomes after severe traumatic brain injury. New rehabilitation techniques are needed for this heterogenous patient group. We present a dance intervention six and half years after an extreme severe TBI including excessive diffuse axonal injury, which disconnects the brain networks. Given the fact, that efficient brain function depends on the integrated operation of large-scale brain networks like default mode network (DMN), we created an intervention with multisensory and multimodal approach and goal-directed behavior. The intervention lasted four months including weekly one-hour dance lessons with the help of a physiotherapist and dance teacher. The measures included functional independence measure (FIM), repeated electroencephalogram (EEG) analysis of three subnets of DMN and clinical evaluations and observations. The results showed clear improvement after the intervention, and FIM stayed in elevated level during several years after the intervention. We present suggestion for further studies using larger patient groups.
Collapse
Affiliation(s)
| | | | | | | | - Sanna Koskinen
- University of Helsinki, Department of Psychology and Logopedics, Faculty of Medicine, Finland
| |
Collapse
|
16
|
Filley CM, Kelly JP. White Matter and Cognition in Traumatic Brain Injury. J Alzheimers Dis 2018; 65:345-362. [DOI: 10.3233/jad-180287] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Christopher M. Filley
- Behavioral Neurology Section, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO, USA
- Marcus Institute for Brain Health, University of Colorado School of Medicine, Aurora, CO, USA
| | - James P. Kelly
- Behavioral Neurology Section, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
- Marcus Institute for Brain Health, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
17
|
Coyle HL, Ponsford J, Hoy KE. Understanding individual variability in symptoms and recovery following mTBI: A role for TMS-EEG? Neurosci Biobehav Rev 2018; 92:140-149. [PMID: 29885426 DOI: 10.1016/j.neubiorev.2018.05.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 05/15/2018] [Accepted: 05/25/2018] [Indexed: 10/14/2022]
Abstract
The pathophysiology associated with mild traumatic brain injury (mTBI) includes neurometabolic and cytoskeletal changes that have been shown to impair structural and functional connectivity. Evidence that persistent neuropsychological impairments post injury are linked to structural and functional connectivity changes is increasing. However, to date the relationship between connectivity changes, heterogeneity of persistent symptoms and recovery post mTBI has been poorly characterised. Recent innovations in neuroimaging provide new ways of exploring connectivity changes post mTBI. Namely, combined transcranial magnetic stimulation and electroencephalography (TMS-EEG) offers several advantages over traditional approaches for studying connectivity changes post TBI. Its ability to perturb neural function in a controlled manner allows for measurement of causal interactions or effective connectivity between brain regions. We review the current literature assessing structural and functional connectivity following mTBI and outline the rationale for the use of TMS-EEG as an ideal tool for investigating the neural substrates of connectivity dysfunction and reorganisation post mTBI. The diagnostic, prognostic and potential therapeutic implications will also be explored.
Collapse
Affiliation(s)
- Hannah L Coyle
- Monash Alfred Psychiatry Research Centre, The Alfred and Monash University, Central Clinical School, Melbourne, Australia.
| | - Jennie Ponsford
- School of Psychological Sciences, Monash University, Clayton, Australia
| | - Kate E Hoy
- Monash Alfred Psychiatry Research Centre, The Alfred and Monash University, Central Clinical School, Melbourne, Australia
| |
Collapse
|
18
|
Azouvi P, Arnould A, Dromer E, Vallat-Azouvi C. Neuropsychology of traumatic brain injury: An expert overview. Rev Neurol (Paris) 2017; 173:461-472. [PMID: 28847474 DOI: 10.1016/j.neurol.2017.07.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/13/2017] [Indexed: 01/12/2023]
Abstract
Traumatic brain injury (TBI) is a serious healthcare problem, and this report is a selective review of recent findings on the epidemiology, pathophysiology and neuropsychological impairments following TBI. Patients who survive moderate-to-severe TBI frequently suffer from a wide range of cognitive deficits and behavioral changes due to diffuse axonal injury. These deficits include slowed information-processing and impaired long-term memory, attention, working memory, executive function, social cognition and self-awareness. Mental fatigue is frequently also associated and can exacerbate the consequences of neuropsychological deficits. Personality and behavioral changes can include combinations of impulsivity and apathy. Even mild TBI raises specific problems: while most patients recover within a few weeks or months, a minority of patients may suffer from long-lasting symptoms (post-concussion syndrome). The pathophysiology of such persistent problems remains a subject of debate, but seems to be due to both injury-related and non-injury-related factors.
Collapse
Affiliation(s)
- P Azouvi
- Service de médecine physique et de réadaptation, hôpital Raymond-Poincaré, AP-HP, 104, boulevard Raymond-Poincaré, 92380 Garches, France; HANDIReSP EA 4047, université de Versailles Saint-Quentin, 78423 Montigny-Le-Bretonneux, France.
| | - A Arnould
- Service de médecine physique et de réadaptation, hôpital Raymond-Poincaré, AP-HP, 104, boulevard Raymond-Poincaré, 92380 Garches, France; HANDIReSP EA 4047, université de Versailles Saint-Quentin, 78423 Montigny-Le-Bretonneux, France
| | - E Dromer
- Service de médecine physique et de réadaptation, hôpital Raymond-Poincaré, AP-HP, 104, boulevard Raymond-Poincaré, 92380 Garches, France; HANDIReSP EA 4047, université de Versailles Saint-Quentin, 78423 Montigny-Le-Bretonneux, France
| | - C Vallat-Azouvi
- HANDIReSP EA 4047, université de Versailles Saint-Quentin, 78423 Montigny-Le-Bretonneux, France; Laboratoire de psychopathologie et neuropsychologie, EA 2027, université Paris-8-Saint-Denis, 2, rue de la Liberté, 93526 Saint-Denis, France; Antenne UEROS- UGECAMIDF, hôpital Raymond-Poincaré, 104, boulevard Raymond-Poincaré, 92380 Garches, France
| |
Collapse
|
19
|
Feeney C, Sharp DJ, Hellyer PJ, Jolly AE, Cole JH, Scott G, Baxter D, Jilka S, Ross E, Ham TE, Jenkins PO, Li LM, Gorgoraptis N, Midwinter M, Goldstone AP. Serum insulin-like growth factor-I levels are associated with improved white matter recovery after traumatic brain injury. Ann Neurol 2017; 82:30-43. [PMID: 28574152 PMCID: PMC5601275 DOI: 10.1002/ana.24971] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 05/26/2017] [Accepted: 05/26/2017] [Indexed: 02/06/2023]
Abstract
Objective Traumatic brain injury (TBI) is a common disabling condition with limited treatment options. Diffusion tensor imaging measures recovery of axonal injury in white matter (WM) tracts after TBI. Growth hormone deficiency (GHD) after TBI may impair axonal and neuropsychological recovery, and serum insulin‐like growth factor‐I (IGF‐I) may mediate this effect. We conducted a longitudinal study to determine the effects of baseline serum IGF‐I concentrations on WM tract and neuropsychological recovery after TBI. Methods Thirty‐nine adults after TBI (84.6% male, median age = 30.5 years, 87.2% moderate–severe, median time since TBI = 16.3 months, n = 4 with GHD) were scanned twice, 13.3 months (range = 12.1–14.9) apart, and 35 healthy controls were scanned once. Symptom and quality of life questionnaires and cognitive assessments were completed at both visits (n = 33). Our main outcome measure was fractional anisotropy (FA), a measure of WM tract integrity, in a priori regions of interest: splenium of corpus callosum (SPCC) and posterior limb of internal capsule (PLIC). Results At baseline, FA was reduced in many WM tracts including SPCC and PLIC following TBI compared to controls, indicating axonal injury, with longitudinal increases indicating axonal recovery. There was a significantly greater increase in SPCC FA over time in patients with serum IGF‐I above versus below the median for age. Only the higher IGF‐I group had significant improvements in immediate verbal memory recall over time. Interpretation WM recovery and memory improvements after TBI were greater in patients with higher serum IGF‐I at baseline. These findings suggest that the growth hormone/IGF‐I system may be a potential therapeutic target following TBI. Ann Neurol 2017;82:30–43
Collapse
Affiliation(s)
- Claire Feeney
- Computational, Cognitive, and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom.,Imperial Centre for Endocrinology, Imperial College Healthcare NHS Trust, St Mary's and Charing Cross Hospitals, London, United Kingdom
| | - David J Sharp
- Computational, Cognitive, and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Peter J Hellyer
- Computational, Cognitive, and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Amy E Jolly
- Computational, Cognitive, and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - James H Cole
- Computational, Cognitive, and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Gregory Scott
- Computational, Cognitive, and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - David Baxter
- Computational, Cognitive, and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom.,Royal Centre for Defence Medicine, Academic Department of Military Surgery and Trauma, Birmingham, United Kingdom
| | - Sagar Jilka
- Computational, Cognitive, and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Ewan Ross
- Computational, Cognitive, and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Timothy E Ham
- Computational, Cognitive, and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Peter O Jenkins
- Computational, Cognitive, and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Lucia M Li
- Computational, Cognitive, and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Nikos Gorgoraptis
- Computational, Cognitive, and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Mark Midwinter
- Royal Centre for Defence Medicine, Academic Department of Military Surgery and Trauma, Birmingham, United Kingdom.,Academic Section for Musculoskeletal Disease, Chapel Allerton Hospital, University of Leeds, Leeds
| | - Anthony P Goldstone
- Computational, Cognitive, and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom.,Imperial Centre for Endocrinology, Imperial College Healthcare NHS Trust, St Mary's and Charing Cross Hospitals, London, United Kingdom.,PsychoNeuroEndocrinology Research Group, Neuropsychopharmacology Unit, Centre for Psychiatry, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| |
Collapse
|
20
|
Galetto V, Sacco K. Neuroplastic Changes Induced by Cognitive Rehabilitation in Traumatic Brain Injury: A Review. Neurorehabil Neural Repair 2017; 31:800-813. [DOI: 10.1177/1545968317723748] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background. Cognitive deficits are among the most disabling consequences of traumatic brain injury (TBI), leading to long-term outcomes and interfering with the individual’s recovery. One of the most effective ways to reduce the impact of cognitive disturbance in everyday life is cognitive rehabilitation, which is based on the principles of brain neuroplasticity and restoration. Although there are many studies in the literature focusing on the effectiveness of cognitive interventions in reducing cognitive deficits following TBI, only a few of them focus on neural modifications induced by cognitive treatment. The use of neuroimaging or neurophysiological measures to evaluate brain changes induced by cognitive rehabilitation may have relevant clinical implications, since they could add individualized elements to cognitive assessment. Nevertheless, there are no review studies in the literature investigating neuroplastic changes induced by cognitive training in TBI individuals. Objective. Due to lack of data, the goal of this article is to review what is currently known on the cerebral modifications following rehabilitation programs in chronic TBI. Methods. Studies investigating both the functional and structural neural modifications induced by cognitive training in TBI subjects were identified from the results of database searches. Forty-five published articles were initially selected. Of these, 34 were excluded because they did not meet the inclusion criteria. Results. Eleven studies were found that focused solely on the functional and neurophysiological changes induced by cognitive rehabilitation. Conclusions. Outcomes showed that cerebral activation may be significantly modified by cognitive rehabilitation, in spite of the severity of the injury.
Collapse
Affiliation(s)
- Valentina Galetto
- Imaging and Cerebral Plasticity Research Group, Department of Psychology, University of Turin, Turin, Italy
- Centro Puzzle, Turin, Italy
| | - Katiuscia Sacco
- Imaging and Cerebral Plasticity Research Group, Department of Psychology, University of Turin, Turin, Italy
- Neuroscience Institute of Turin, University of Turin, Turin, Italy
| |
Collapse
|
21
|
Diez I, Drijkoningen D, Stramaglia S, Bonifazi P, Marinazzo D, Gooijers J, Swinnen SP, Cortes JM. Enhanced prefrontal functional-structural networks to support postural control deficits after traumatic brain injury in a pediatric population. Netw Neurosci 2017; 1:116-142. [PMID: 29911675 PMCID: PMC5988395 DOI: 10.1162/netn_a_00007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/28/2017] [Indexed: 11/04/2022] Open
Abstract
Traumatic brain injury (TBI) affects structural connectivity, triggering the reorganization of structural-functional circuits in a manner that remains poorly understood. We focus here on brain network reorganization in relation to postural control deficits after TBI. We enrolled young participants who had suffered moderate to severe TBI, comparing them to young, typically developing control participants. TBI patients (but not controls) recruited prefrontal regions to interact with two separated networks: (1) a subcortical network, including parts of the motor network, basal ganglia, cerebellum, hippocampus, amygdala, posterior cingulate gyrus, and precuneus; and (2) a task-positive network, involving regions of the dorsal attention system, together with dorsolateral and ventrolateral prefrontal regions. We also found that the increased prefrontal connectivity in TBI patients was correlated with some postural control indices, such as the amount of body sway, whereby patients with worse balance increased their connectivity in frontal regions more strongly. The increased prefrontal connectivity found in TBI patients may provide the structural scaffolding for stronger cognitive control of certain behavioral functions, consistent with the observations that various motor tasks are performed less automatically following TBI and that more cognitive control is associated with such actions.
Collapse
Affiliation(s)
- Ibai Diez
- Biocruces Health Research Institute, Cruces University Hospital, Barakaldo, Spain
| | - David Drijkoningen
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuve, Belgium
| | - Sebastiano Stramaglia
- Dipartimento di Fisica, Universita degli Studi di Bari and INFN, Bari, Italy.,Basque Center for Applied Mathematics (BCAM), Bilbao, Spain
| | - Paolo Bonifazi
- Biocruces Health Research Institute, Cruces University Hospital, Barakaldo, Spain.,Ikerbasque: The Basque Foundation for Science, Bilbao, Spain
| | - Daniele Marinazzo
- Department of Data Analysis, Faculty of Psychological and Pedagogical Sciences, University of Ghent, Ghent, Belgium
| | - Jolien Gooijers
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuve, Belgium
| | - Stephan P Swinnen
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuve, Belgium.,KU Leuven, Leuven Research Institute for Neuroscience & Disease (LIND), Leuven, Belgium
| | - Jesus M Cortes
- Biocruces Health Research Institute, Cruces University Hospital, Barakaldo, Spain.,Ikerbasque: The Basque Foundation for Science, Bilbao, Spain.,Department of Cell Biology and Histology, University of the Basque Country, Leioa, Spain
| |
Collapse
|
22
|
Relationship between individual differences in functional connectivity and facial-emotion recognition abilities in adults with traumatic brain injury. NEUROIMAGE-CLINICAL 2016; 13:370-377. [PMID: 28123948 PMCID: PMC5222957 DOI: 10.1016/j.nicl.2016.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/14/2016] [Accepted: 12/10/2016] [Indexed: 12/15/2022]
Abstract
Although several studies have demonstrated that facial-affect recognition impairment is common following moderate-severe traumatic brain injury (TBI), and that there are diffuse alterations in large-scale functional brain networks in TBI populations, little is known about the relationship between the two. Here, in a sample of 26 participants with TBI and 20 healthy comparison participants (HC) we measured facial-affect recognition abilities and resting-state functional connectivity (rs-FC) using fMRI. We then used network-based statistics to examine (A) the presence of rs-FC differences between individuals with TBI and HC within the facial-affect processing network, and (B) the association between inter-individual differences in emotion recognition skills and rs-FC within the facial-affect processing network. We found that participants with TBI showed significantly lower rs-FC in a component comprising homotopic and within-hemisphere, anterior-posterior connections within the facial-affect processing network. In addition, within the TBI group, participants with higher emotion-labeling skills showed stronger rs-FC within a network comprised of intra- and inter-hemispheric bilateral connections. Findings indicate that the ability to successfully recognize facial-affect after TBI is related to rs-FC within components of facial-affective networks, and provide new evidence that further our understanding of the mechanisms underlying emotion recognition impairment in TBI. Emotion recognition deficits are common following severe TBI. TBI patients show reduced rs-FC within affect processing network. Affect processing network rs-FC correlates with emotion recognition skills. Rs-FC disruption as possible mechanism of emotion recognition deficit
Collapse
|
23
|
Caeyenberghs K, Verhelst H, Clemente A, Wilson PH. Mapping the functional connectome in traumatic brain injury: What can graph metrics tell us? Neuroimage 2016; 160:113-123. [PMID: 27919750 DOI: 10.1016/j.neuroimage.2016.12.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/25/2016] [Accepted: 12/01/2016] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Traumatic brain injury (TBI) is associated with cognitive and motor deficits, and poses a significant personal, societal, and economic burden. One mechanism by which TBI is thought to affect cognition and behavior is through changes in functional connectivity. Graph theory is a powerful framework for quantifying topological features of neuroimaging-derived functional networks. The objective of this paper is to review studies examining functional connectivity in TBI with an emphasis on graph theoretical analysis that is proving to be valuable in uncovering network abnormalities in this condition. METHODS We review studies that have examined TBI-related alterations in different properties of the functional brain network, including global integration, segregation, centrality and resilience. We focus on functional data using task-related fMRI or resting-state fMRI in patients with TBI of different severity and recovery phase, and consider how graph metrics may inform rehabilitation and enhance efficacy. Moreover, we outline some methodological challenges associated with the examination of functional connectivity in patients with brain injury, including the sample size, parcellation scheme used, node definition and subgroup analyses. RESULTS The findings suggest that TBI is associated with hyperconnectivity and a suboptimal global integration, characterized by increased connectivity degree and strength and reduced efficiency of functional networks. This altered functional connectivity, also evident in other clinical populations, is attributable to diffuse white matter pathology and reductions in gray and white matter volume. These functional alterations are implicated in post-concussional symptoms, posttraumatic stress and neurocognitive dysfunction after TBI. Finally, the effects of focal lesions have been found to depend critically on topological position and their role in the network. CONCLUSION Graph theory is a unique and powerful tool for exploring functional connectivity in brain-injured patients. One limitation is that its results do not provide specific measures about the biophysical mechanism underlying TBI. Continued work in this field will hopefully see graph metrics used as biomarkers to provide more accurate diagnosis and help guide treatment at the individual patient level.
Collapse
Affiliation(s)
- Karen Caeyenberghs
- School of Psychology, Faculty of Health Sciences, Australian Catholic University, Victoria, Australia.
| | - Helena Verhelst
- Department of Experimental Psychology, Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Belgium
| | - Adam Clemente
- School of Psychology, Faculty of Health Sciences, Australian Catholic University, Victoria, Australia
| | - Peter H Wilson
- School of Psychology, Faculty of Health Sciences, Australian Catholic University, Victoria, Australia
| |
Collapse
|
24
|
Vieira RDCA, Paiva WS, de Oliveira DV, Teixeira MJ, de Andrade AF, de Sousa RMC. Diffuse Axonal Injury: Epidemiology, Outcome and Associated Risk Factors. Front Neurol 2016; 7:178. [PMID: 27812349 PMCID: PMC5071911 DOI: 10.3389/fneur.2016.00178] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/03/2016] [Indexed: 11/13/2022] Open
Abstract
Diffuse axonal injury (DAI), a type of traumatic injury, is known for its severe consequences. However, there are few studies describing the outcomes of DAI and the risk factors associated with it. This study aimed to describe the outcome for patients with a primary diagnosis of DAI 6 months after trauma and to identify sociodemographic and clinical factors associated with mortality and dependence at this time point. Seventy-eight patients with DAI were recruited from July 2013 to February 2014 in a prospective cohort study. Patient outcome was analyzed using the Extended Glasgow Outcome Scale (GOS-E) within 6 months of the traumatic injury. The mean Injury Severity Score was 35.0 (SD = 11.9), and the mean New Injury Severity Score (NISS) was 46.2 (SD = 15.9). Mild DAI was observed in 44.9% of the patients and severe DAI in 35.9%. Six months after trauma, 30.8% of the patients had died, and 45.1% had shown full recovery according to the GOS-E. In the logistic regression model, the severity variables - DAI with hypoxia, as measured by peripheral oxygen saturation, and hypotension with NISS value - had a statistically significant association with patient mortality; on the other hand, severity of DAI and length of hospital stay were the only significant predictors for dependence. Therefore, severity of DAI emerged as a risk factor for both mortality and dependence.
Collapse
Affiliation(s)
| | - Wellingson Silva Paiva
- Department of Neurology, School of Medicine, University of São Paulo (USP-SP) , São Paulo , Brazil
| | | | - Manoel Jacobsen Teixeira
- Department of Neurology, School of Medicine, University of São Paulo (USP-SP) , São Paulo , Brazil
| | | | | |
Collapse
|
25
|
Cui J, Ng LJ, Volman V. Callosal dysfunction explains injury sequelae in a computational network model of axonal injury. J Neurophysiol 2016; 116:2892-2908. [PMID: 27683891 DOI: 10.1152/jn.00603.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/22/2016] [Indexed: 12/28/2022] Open
Abstract
Mild traumatic brain injury (mTBI) often results in neurobehavioral aberrations such as impaired attention and increased reaction time. Diffusion imaging and postmortem analysis studies suggest that mTBI primarily affects myelinated axons in white matter tracts. In particular, corpus callosum, mediating interhemispheric information exchange, has been shown to be affected in mTBI. Yet little is known about the mechanisms linking the injury of myelinated callosal axons to the neurobehavioral sequelae of mTBI. To address this issue, we devised and studied a large, biologically plausible neuronal network model of cortical tissue. Importantly, the model architecture incorporated intra- and interhemispheric organization, including myelinated callosal axons and distance-dependent axonal conduction delays. In the resting state, the intact model network exhibited several salient features, including alpha-band (8-12 Hz) collective activity with low-frequency irregular spiking of individual neurons. The network model of callosal injury captured several clinical observations, including 1) "slowing down" of the network rhythms, manifested as an increased resting-state theta-to-alpha power ratio, 2) reduced response to attention-like network stimulation, manifested as a reduced spectral power of collective activity, and 3) increased population response time in response to stimulation. Importantly, these changes were positively correlated with injury severity, supporting proposals to use neurobehavioral indices as biomarkers for determining the severity of injury. Our modeling effort helps to understand the role played by the injury of callosal myelinated axons in defining the neurobehavioral sequelae of mTBI.
Collapse
Affiliation(s)
- Jianxia Cui
- L-3 Applied Technologies, Inc., San Diego, California
| | - Laurel J Ng
- L-3 Applied Technologies, Inc., San Diego, California
| | | |
Collapse
|
26
|
Greenwood R, Caine D, Hammerbeck U, Leff A, Playford D, Stevenson V, Ward N. Restorative Neurology, Rehabilitation and Brain Injury. Neurology 2016. [DOI: 10.1002/9781118486160.ch18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
| | - Diana Caine
- National Hospital for Neurology & Neurosurgery
| | | | | | | | | | | |
Collapse
|
27
|
Wolf JA, Koch PF. Disruption of Network Synchrony and Cognitive Dysfunction After Traumatic Brain Injury. Front Syst Neurosci 2016; 10:43. [PMID: 27242454 PMCID: PMC4868948 DOI: 10.3389/fnsys.2016.00043] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/26/2016] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) is a heterogeneous disorder with many factors contributing to a spectrum of severity, leading to cognitive dysfunction that may last for many years after injury. Injury to axons in the white matter, which are preferentially vulnerable to biomechanical forces, is prevalent in many TBIs. Unlike focal injury to a discrete brain region, axonal injury is fundamentally an injury to the substrate by which networks of the brain communicate with one another. The brain is envisioned as a series of dynamic, interconnected networks that communicate via long axonal conduits termed the "connectome". Ensembles of neurons communicate via these pathways and encode information within and between brain regions in ways that are timing dependent. Our central hypothesis is that traumatic injury to axons may disrupt the exquisite timing of neuronal communication within and between brain networks, and that this may underlie aspects of post-TBI cognitive dysfunction. With a better understanding of how highly interconnected networks of neurons communicate with one another in important cognitive regions such as the limbic system, and how disruption of this communication occurs during injury, we can identify new therapeutic targets to restore lost function. This requires the tools of systems neuroscience, including electrophysiological analysis of ensemble neuronal activity and circuitry changes in awake animals after TBI, as well as computational modeling of the effects of TBI on these networks. As more is revealed about how inter-regional neuronal interactions are disrupted, treatments directly targeting these dysfunctional pathways using neuromodulation can be developed.
Collapse
Affiliation(s)
- John A Wolf
- Center for Brain Injury and Repair, Department of Neurosurgery, University of PennsylvaniaPhiladelphia, PA, USA; Corporal Michael J. Crescenz VA Medical CenterPhiladelphia, PA, USA
| | - Paul F Koch
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
28
|
Thompson WH, Thelin EP, Lilja A, Bellander BM, Fransson P. Functional resting-state fMRI connectivity correlates with serum levels of the S100B protein in the acute phase of traumatic brain injury. Neuroimage Clin 2016; 12:1004-1012. [PMID: 27995066 PMCID: PMC5153599 DOI: 10.1016/j.nicl.2016.05.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 04/21/2016] [Accepted: 05/05/2016] [Indexed: 12/20/2022]
Abstract
The S100B protein is an intra-cellular calcium-binding protein that mainly resides in astrocytes in the central nervous system. The serum level of S100B is used as biomarker for the severity of brain damage in traumatic brain injury (TBI) patients. In this study we investigated the relationship between intrinsic resting-state brain connectivity, measured 1-22 days (mean 8 days) after trauma, and serum levels of S100B in a patient cohort with mild-to-severe TBI in need of neuro-intensive care in the acute phase. In line with previous investigations, our results show that the peak level of S100B acquired during the acute phase of TBI was negatively correlated with behavioral measures (Glasgow Outcome Score, GOS) of functional outcome assessed 6 to 12 months post injury. Using a multi-variate pattern analysis-informed seed-based correlation analysis, we show that the strength of resting-state brain connectivity in multiple resting-state networks was negatively correlated with the peak of serum levels of S100B. A negative correspondence between S100B peak levels recorded 12-36 h after trauma and intrinsic connectivity was found for brain regions located in the default mode, fronto-parietal, visual and motor resting-state networks. Our results suggest that resting-state brain connectivity measures acquired during the acute phase of TBI is concordant with results obtained from molecular biomarkers and that it may hold a capacity to predict long-term cognitive outcome in TBI patients.
Collapse
Affiliation(s)
| | - Eric Peter Thelin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Anders Lilja
- Section of Neuroradiology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Bo-Michael Bellander
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Fransson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
29
|
|
30
|
Fink AZ, Mogil LB, Lipton ML. Advanced neuroimaging in the clinic: critical appraisal of the evidence base. Br J Radiol 2016; 89:20150753. [PMID: 27074623 DOI: 10.1259/bjr.20150753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The shortage of high-quality systematic reviews in the field of radiology limits evidence-based integration of imaging methods into clinical practice and may perpetuate misconceptions regarding the efficacy and appropriateness of imaging techniques for specific applications. Diffusion tensor imaging for patients with mild traumatic brain injury (DTI-mTBI) and dynamic susceptibility contrast MRI for patients with glioma (DSC-glioma) are applications of quantitative neuroimaging, which similarly detect manifestations of disease where conventional neuroimaging techniques cannot. We performed a critical appraisal of reviews, based on the current evidence-based medicine methodology, addressing the ability of DTI-mTBI and DSC-glioma to (a) detect brain abnormalities and/or (b) predict clinical outcomes. 23 reviews of DTI-mTBI and 26 reviews of DSC-glioma met criteria for inclusion. All reviews addressed detection of brain abnormalities, whereas 12 DTI-mTBI reviews and 22 DSC-glioma reviews addressed prediction of a clinical outcome. All reviews were assessed using a critical appraisal worksheet consisting of 19 yes/no questions. Reviews were graded according to the total number of positive responses and the 2011 Oxford Centre for evidence-based medicine levels of evidence criteria. Reviews addressing DTI-mTBI detection had moderate quality, while those addressing DSC-glioma were of low quality. Reviews addressing prediction of outcomes for both applications were of low quality. Five DTI-mTBI reviews, but only one review of DSC-glioma met criteria for classification as a meta-analysis/systematic/quantitative review.
Collapse
Affiliation(s)
- Adam Z Fink
- 1 The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Lisa B Mogil
- 1 The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.,2 SUNY Buffalo School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Michael L Lipton
- 1 The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.,3 Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA.,4 The Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.,5 Department of Radiology, Montefiore Medical Center, Bronx, NY, USA.,6 Departments of Radiology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
31
|
Rigon A, Duff MC, McAuley E, Kramer AF, Voss MW. Is Traumatic Brain Injury Associated with Reduced Inter-Hemispheric Functional Connectivity? A Study of Large-Scale Resting State Networks following Traumatic Brain Injury. J Neurotrauma 2016; 33:977-89. [PMID: 25719433 DOI: 10.1089/neu.2014.3847] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Traumatic brain injury (TBI) often has long-term debilitating sequelae in cognitive and behavioral domains. Understanding how TBI impacts functional integrity of brain networks that underlie these domains is key to guiding future approaches to TBI rehabilitation. In the current study, we investigated the differences in inter-hemispheric functional connectivity (FC) of resting state networks (RSNs) between chronic mild-to-severe TBI patients and normal comparisons (NC), focusing on two externally oriented networks (i.e., the fronto-parietal network [FPN] and the executive control network [ECN]), one internally oriented network (i.e., the default mode network [DMN]), and one somato-motor network (SMN). Seed voxel correlation analysis revealed that TBI patients displayed significantly less FC between lateralized seeds and both homologous and non-homologous regions in the opposite hemisphere for externally oriented networks but not for DMN or SMN; conversely, TBI patients showed increased FC within regions of the DMN, especially precuneus and parahippocampal gyrus. Region of interest correlation analyses confirmed the presence of significantly higher inter-hemispheric FC in NC for the FPN (p < 0.01), and ECN (p < 0.05), but not for the DMN (p > 0.05) or SMN (p > 0.05). Further analysis revealed that performance on a neuropsychological test measuring organizational skills and visuo-spatial abilities administered to the TBI group, the Rey-Osterrieth Complex Figure Test, positively correlated with FC between the right FPN and homologous regions. Our findings suggest that distinct RSNs display specific patterns of aberrant FC following TBI; this represents a step forward in the search for biomarkers useful for early diagnosis and treatment of TBI-related cognitive impairment.
Collapse
Affiliation(s)
- Arianna Rigon
- 1 Neuroscience Graduate Program, University of Iowa , Iowa City, Iowa
| | - Melissa C Duff
- 1 Neuroscience Graduate Program, University of Iowa , Iowa City, Iowa.,2 Department of Communication Sciences and Disorders, University of Iowa , Iowa City, Iowa.,3 Department of Neurology, University of Iowa , Iowa City, Iowa
| | - Edward McAuley
- 5 The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Illinois.,6 Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign , Illinois
| | - Arthur F Kramer
- 5 The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Illinois
| | - Michelle W Voss
- 1 Neuroscience Graduate Program, University of Iowa , Iowa City, Iowa.,4 Department of Psychological and Brain Sciences, University of Iowa , Iowa City, Iowa
| |
Collapse
|
32
|
Abstract
It is time to stop using the term concussion as it has no clear definition and no pathological meaning. This confusion is increasingly problematic as the management of ‘concussed’ individuals is a pressing concern. Historically, it has been used to describe patients briefly disabled following a head injury, with the assumption that this was due to a transient disorder of brain function without long-term sequelae. However, the symptoms of concussion are highly variable in duration, and can persist for many years with no reliable early predictors of outcome. Using vague terminology for post-traumatic problems leads to misconceptions and biases in the diagnostic process, producing uninterpretable science, poor clinical guidelines and confused policy. We propose that the term concussion should be avoided. Instead neurologists and other healthcare professionals should classify the severity of traumatic brain injury and then attempt to precisely diagnose the underlying cause of post-traumatic symptoms.
Collapse
Affiliation(s)
- David J Sharp
- Computational, Cognitive, and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Peter O Jenkins
- Computational, Cognitive, and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| |
Collapse
|
33
|
Schwartz Y, Averbuch S, Katz N, Sagiv A. Validity of the Functional Loewenstein Occupational Therapy Cognitive Assessment (FLOTCA). Am J Occup Ther 2015; 70:7001290010p1-7. [DOI: 10.5014/ajot.2016.016451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Abstract
The Functional Loewenstein Occupational Therapy Cognitive Assessment (FLOTCA) was developed to assess integrative higher cognitive abilities in people with traumatic brain injury (TBI). The FLOTCA measures performance on three tasks: navigating on a map, organizing a toolbox, and planning a daily schedule. This study assessed the psychometric properties of the FLOTCA with a sample of 25 participants with TBI ages 18–49 and 25 matched healthy participants. The FLOTCA showed high interrater reliability (intraclass correlation = .996) and internal consistency reliability for the total score (α = .82). Construct validity was supported for the total score, t (48) = −5.48, d = 1.52, and the separate tasks. Moderate ecological validity was obtained with the combined FIM™ and Functional Assessment Measure, r (19) = .44, p < .05. The results indicate that the FLOTCA can be used to assess higher cognitive abilities in functioning and can serve as the basis for intervention planning.
Collapse
Affiliation(s)
- Yifat Schwartz
- Yifat Schwartz, MSc, OT, is Director Occupational Therapy Department, Lowenstein Rehabilitation Hospital, Raanana, Israel
| | - Sara Averbuch
- Sara Averbuch, MSc, OT, is Director Emeritus, Occupational Therapy Department, Lowenstein Rehabilitation Hospital, Raanana, Israel
| | - Noomi Katz
- Aliza Sagiv, MSc, OT, is Deputy Director, Occupational Therapy Department, Lowenstein Rehabilitation Hospital, Raanana, Israel
| | - Aliza Sagiv
- Noomi Katz, PhD, OTR, is Director, Research Institute for Health and Medical Professions, Ono Academic College, Kiryat Ono, Israel;
| |
Collapse
|
34
|
Björkdahl A, Esbjörnsson E, Ljungqvist J, Skoglund T, Sunnerhagen KS. Decline in cognitive function due to diffuse axonal injury does not necessarily imply a corresponding decline in ability to perform activities. Disabil Rehabil 2015; 38:1006-15. [DOI: 10.3109/09638288.2015.1076073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
35
|
|
36
|
Hampshire A, Sharp DJ. Contrasting network and modular perspectives on inhibitory control. Trends Cogn Sci 2015; 19:445-52. [PMID: 26160027 DOI: 10.1016/j.tics.2015.06.006] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/14/2015] [Accepted: 06/16/2015] [Indexed: 11/29/2022]
Abstract
A prominent theory proposes that the right inferior frontal cortex of the human brain houses a dedicated region for motor response inhibition. However, there is growing evidence to support the view that this inhibitory control hypothesis is incorrect. Here, we discuss evidence in favour of our alternative hypothesis, which states that response inhibition is one example of a broader class of control processes that are supported by the same set of frontoparietal networks. These domain-general networks exert control by modulating local lateral inhibition processes, which occur ubiquitously throughout the cortex. We propose that to fully understand the neural basis of behavioural control requires a more holistic approach that considers how common network mechanisms support diverse cognitive processes.
Collapse
Affiliation(s)
- Adam Hampshire
- The Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK.
| | - David J Sharp
- The Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK.
| |
Collapse
|
37
|
Venkatesan UM, Dennis NA, Hillary FG. Chronology and chronicity of altered resting-state functional connectivity after traumatic brain injury. J Neurotrauma 2015; 32:252-64. [PMID: 24955788 PMCID: PMC4347859 DOI: 10.1089/neu.2013.3318] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Whereas traumatic brain injury (TBI) results in widespread disruption of neural networks, changes in regional resting-state functional connectivity patterns after insult remain unclear. Specifically, little is known about the chronology of emergent connectivity alterations and whether they persist after a critical recovery window. We used resting-state functional magnetic resonance imaging and seed-voxel correlational analyses in both cross-sectional and longitudinal designs to probe intrinsic connectivity patterns involving the posterior cingulate cortex (PCC) and hippocampi, regions shown to be important in the default mode network (DMN) and vulnerable to neuropathology. A total of 22 participants in the chronic stage of moderate-to-severe TBI and 18 healthy controls were included for cross-sectional study. Longitudinal analyses included 13 individuals in the TBI group for whom data approximately 3 months after injury (subacute) were available. Overall, results indicated dissociable connectivity trajectories of the PCC and hippocampi during recovery from TBI, with PCC alterations characterized by early hypersynchrony with the anterior DMN that is gradually reduced, and hippocampal changes marked by increasing synchrony with proximal cortex and subcortex. The PCC also showed increasing antiphase synchrony with posterior attentional regions, and the hippocampi showed decreasing antiphase synchrony with frontal attentional regions. Antiphase synchrony of the hippocampus and dorsolateral prefrontal cortex at the subacute stage of TBI was positively associated with attentional performance on neuropsychological tests at both the subacute and chronic stages. Our findings highlight the heterogeneity of regional whole-brain connectivity changes after TBI, and suggest that residual connectivity alterations exist in the clinically stable phase of TBI. Parallels between the chronicity of the observed effects and findings in neurodegenerative disease are discussed in the context of potential long-term outcomes of TBI.
Collapse
Affiliation(s)
- Umesh M. Venkatesan
- Department of Psychology, The Pennsylvania State University, University Park, Pennsylvania
| | - Nancy A. Dennis
- Department of Psychology, The Pennsylvania State University, University Park, Pennsylvania
| | - Frank G. Hillary
- Department of Psychology, The Pennsylvania State University, University Park, Pennsylvania
- Department of Neurology, Penn State Hershey Medical Center, Hershey, Pennsylvania
| |
Collapse
|
38
|
Johnen VM, Neubert FX, Buch ER, Verhagen L, O'Reilly JX, Mars RB, Rushworth MFS. Causal manipulation of functional connectivity in a specific neural pathway during behaviour and at rest. eLife 2015; 4:e04585. [PMID: 25664941 PMCID: PMC4353194 DOI: 10.7554/elife.04585] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 02/08/2015] [Indexed: 11/13/2022] Open
Abstract
Correlations in brain activity between two areas (functional connectivity) have been shown to relate to their underlying structural connections. We examine the possibility that functional connectivity also reflects short-term changes in synaptic efficacy. We demonstrate that paired transcranial magnetic stimulation (TMS) near ventral premotor cortex (PMv) and primary motor cortex (M1) with a short 8-ms inter-pulse interval evoking synchronous pre- and post-synaptic activity and which strengthens interregional connectivity between the two areas in a pattern consistent with Hebbian plasticity, leads to increased functional connectivity between PMv and M1 as measured with functional magnetic resonance imaging (fMRI). Moreover, we show that strengthening connectivity between these nodes has effects on a wider network of areas, such as decreasing coupling in a parallel motor programming stream. A control experiment revealed that identical TMS pulses at identical frequencies caused no change in fMRI-measured functional connectivity when the inter-pulse-interval was too long for Hebbian-like plasticity.
Collapse
Affiliation(s)
- Vanessa M Johnen
- Department of Experimental Psychology, Oxford University, Oxford, United Kingdom
| | - Franz-Xaver Neubert
- Department of Experimental Psychology, Oxford University, Oxford, United Kingdom
| | - Ethan R Buch
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of Health Sciences, Bethesda, United States
| | - Lennart Verhagen
- Department of Experimental Psychology, Oxford University, Oxford, United Kingdom
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Jill X O'Reilly
- Centre for Functional Magnetic Resonance Imaging of the Brain, John Radcliffe Hospital, Oxford University, Oxford, United Kingdom
| | - Rogier B Mars
- Department of Experimental Psychology, Oxford University, Oxford, United Kingdom
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
- Centre for Functional Magnetic Resonance Imaging of the Brain, John Radcliffe Hospital, Oxford University, Oxford, United Kingdom
| | - Matthew F S Rushworth
- Department of Experimental Psychology, Oxford University, Oxford, United Kingdom
- Centre for Functional Magnetic Resonance Imaging of the Brain, John Radcliffe Hospital, Oxford University, Oxford, United Kingdom
| |
Collapse
|
39
|
Rapp PE, Keyser DO, Albano A, Hernandez R, Gibson DB, Zambon RA, Hairston WD, Hughes JD, Krystal A, Nichols AS. Traumatic brain injury detection using electrophysiological methods. Front Hum Neurosci 2015; 9:11. [PMID: 25698950 PMCID: PMC4316720 DOI: 10.3389/fnhum.2015.00011] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/07/2015] [Indexed: 11/20/2022] Open
Abstract
Measuring neuronal activity with electrophysiological methods may be useful in detecting neurological dysfunctions, such as mild traumatic brain injury (mTBI). This approach may be particularly valuable for rapid detection in at-risk populations including military service members and athletes. Electrophysiological methods, such as quantitative electroencephalography (qEEG) and recording event-related potentials (ERPs) may be promising; however, the field is nascent and significant controversy exists on the efficacy and accuracy of the approaches as diagnostic tools. For example, the specific measures derived from an electroencephalogram (EEG) that are most suitable as markers of dysfunction have not been clearly established. A study was conducted to summarize and evaluate the statistical rigor of evidence on the overall utility of qEEG as an mTBI detection tool. The analysis evaluated qEEG measures/parameters that may be most suitable as fieldable diagnostic tools, identified other types of EEG measures and analysis methods of promise, recommended specific measures and analysis methods for further development as mTBI detection tools, identified research gaps in the field, and recommended future research and development thrust areas. The qEEG study group formed the following conclusions: (1) Individual qEEG measures provide limited diagnostic utility for mTBI. However, many measures can be important features of qEEG discriminant functions, which do show significant promise as mTBI detection tools. (2) ERPs offer utility in mTBI detection. In fact, evidence indicates that ERPs can identify abnormalities in cases where EEGs alone are non-disclosing. (3) The standard mathematical procedures used in the characterization of mTBI EEGs should be expanded to incorporate newer methods of analysis including non-linear dynamical analysis, complexity measures, analysis of causal interactions, graph theory, and information dynamics. (4) Reports of high specificity in qEEG evaluations of TBI must be interpreted with care. High specificities have been reported in carefully constructed clinical studies in which healthy controls were compared against a carefully selected TBI population. The published literature indicates, however, that similar abnormalities in qEEG measures are observed in other neuropsychiatric disorders. While it may be possible to distinguish a clinical patient from a healthy control participant with this technology, these measures are unlikely to discriminate between, for example, major depressive disorder, bipolar disorder, or TBI. The specificities observed in these clinical studies may well be lost in real world clinical practice. (5) The absence of specificity does not preclude clinical utility. The possibility of use as a longitudinal measure of treatment response remains. However, efficacy as a longitudinal clinical measure does require acceptable test-retest reliability. To date, very few test-retest reliability studies have been published with qEEG data obtained from TBI patients or from healthy controls. This is a particular concern because high variability is a known characteristic of the injured central nervous system.
Collapse
Affiliation(s)
- Paul E. Rapp
- Uniformed Services University of the Health Sciences School of Medicine, Bethesda, MD, USA
| | - David O. Keyser
- Uniformed Services University of the Health Sciences School of Medicine, Bethesda, MD, USA
| | | | - Rene Hernandez
- US Navy Bureau of Medicine and Surgery, Frederick, MD, USA
| | | | | | - W. David Hairston
- U. S. Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, MD, USA
| | | | | | | |
Collapse
|
40
|
de Cassia Almeida Vieira R, de Oliveira DV, Teixeira MJ, Paiva WDS. Scales for assessment of patients with traumatic brain injury. Patient Prefer Adherence 2015; 9:1631-3. [PMID: 26622170 PMCID: PMC4654534 DOI: 10.2147/ppa.s97032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Rita de Cassia Almeida Vieira
- Nursing School, University of Sao Paulo, Sao Paulo, Brazil
- Correspondence: Rita de Cassia Almeida Vieira, 478 Itapiru Street Apartment 93, Sao Paulo 04143010, Brazil, Tel +55 11 2691 1842, Fax +55 11 2548 6906, Email
| | | | | | | |
Collapse
|
41
|
A functional network perspective on response inhibition and attentional control. Nat Commun 2014; 5:4073. [PMID: 24905116 PMCID: PMC4059922 DOI: 10.1038/ncomms5073] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 05/08/2014] [Indexed: 02/07/2023] Open
Abstract
Inferior frontal cortex (IFC) modules that inhibit dominant behaviours are a popular feature in theories of cognitive dysfunction. However, the paradigms on which these theories are based fail to distinguish between inhibitory and non-inhibitory cognitive demands. Here we use four novel fMRI variants of the classic stop-signal task to test whether the IFC houses unique inhibitory modules. Our results demonstrate that IFC sub-regions are not functionally unique in their sensitivities to inhibitory cognitive demands, but instead form components of spatially distributed networks. These networks are most strongly activated when infrequent stimuli are being processed, regardless of behavioural inhibitory demands, and when novel tasks are being acquired, as opposed to when routine responses must be suppressed. We propose that there are no inhibitory modules within the frontal lobes and that behavioural inhibition is an emergent property of spatially distributed functional networks, each of which supports a broader class of cognitive demands. The right inferior frontal cortex has long been thought to house a neural module that inhibits dominant behaviours. Using brain imaging, Erika-Florence et al. demonstrate that this inhibition is in fact an emergent property of multiple neural networks that support broader classes of cognitive processes.
Collapse
|
42
|
Bonita JD, Ambolode LCC, Rosenberg BM, Cellucci CJ, Watanabe TAA, Rapp PE, Albano AM. Time domain measures of inter-channel EEG correlations: a comparison of linear, nonparametric and nonlinear measures. Cogn Neurodyn 2014; 8:1-15. [PMID: 24465281 PMCID: PMC3890093 DOI: 10.1007/s11571-013-9267-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 08/14/2013] [Indexed: 11/21/2022] Open
Abstract
Correlations between ten-channel EEGs obtained from thirteen healthy adult participants were investigated. Signals were obtained in two behavioral states: eyes open no task and eyes closed no task. Four time domain measures were compared: Pearson product moment correlation, Spearman rank order correlation, Kendall rank order correlation and mutual information. The psychophysiological utility of each measure was assessed by determining its ability to discriminate between conditions. The sensitivity to epoch length was assessed by repeating calculations with 1, 2, 3, …, 8 s epochs. The robustness to noise was assessed by performing calculations with noise corrupted versions of the original signals (SNRs of 0, 5 and 10 dB). Three results were obtained in these calculations. First, mutual information effectively discriminated between states with less data. Pearson, Spearman and Kendall failed to discriminate between states with a 1 s epoch, while a statistically significant separation was obtained with mutual information. Second, at all epoch durations tested, the measure of between-state discrimination was greater for mutual information. Third, discrimination based on mutual information was more robust to noise. The limitations of this study are discussed. Further comparisons should be made with frequency domain measures, with measures constructed with embedded data and with the maximal information coefficient.
Collapse
Affiliation(s)
- J. D. Bonita
- Department of Physics, Mindanao State University-Iligan Institute of Technology, 9200 Iligan City, Philippines
| | - L. C. C. Ambolode
- Department of Physics, Mindanao State University-Iligan Institute of Technology, 9200 Iligan City, Philippines
| | - B. M. Rosenberg
- Thomas Jefferson University College of Medicine, Philadelphia, PA USA
| | | | | | - P. E. Rapp
- Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA
| | - A. M. Albano
- Physics Department, Bryn Mawr College, Bryn Mawr, PA 19010 USA
| |
Collapse
|
43
|
Ham TE, Bonnelle V, Hellyer P, Jilka S, Robertson IH, Leech R, Sharp DJ. The neural basis of impaired self-awareness after traumatic brain injury. ACTA ACUST UNITED AC 2013; 137:586-97. [PMID: 24371217 DOI: 10.1093/brain/awt350] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Self-awareness is commonly impaired after traumatic brain injury. This is an important clinical issue as awareness affects long-term outcome and limits attempts at rehabilitation. It can be investigated by studying how patients respond to their errors and monitor their performance on tasks. As awareness is thought to be an emergent property of network activity, we tested the hypothesis that impaired self-awareness is associated with abnormal brain network function. We investigated a group of subjects with traumatic brain injury (n = 63) split into low and high performance-monitoring groups based on their ability to recognize and correct their own errors. Brain network function was assessed using resting-state and event-related functional magnetic resonance imaging. This allowed us to investigate baseline network function, as well as the evoked response of networks to specific events including errors. The low performance-monitoring group underestimated their disability and showed broad attentional deficits. Neural activity within what has been termed the fronto-parietal control network was abnormal in patients with impaired self-awareness. The dorsal anterior cingulate cortex is a key part of this network that is involved in performance-monitoring. This region showed reduced functional connectivity to the rest of the fronto-parietal control network at 'rest'. In addition, the anterior insulae, which are normally tightly linked to the dorsal anterior cingulate cortex, showed increased activity following errors in the impaired group. Interestingly, the traumatic brain injury patient group with normal performance-monitoring showed abnormally high activation of the right middle frontal gyrus, putamen and caudate in response to errors. The impairment of self-awareness was not explained either by the location of focal brain injury, or the amount of traumatic axonal injury as demonstrated by diffusion tensor imaging. The results suggest that impairments of self-awareness after traumatic brain injury result from breakdown of functional interactions between nodes within the fronto-parietal control network.
Collapse
Affiliation(s)
- Timothy E Ham
- 1 C3NL, Centre for Restorative Neuroscience, Division of Brain Sciences, Department of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | | | | | | | | | | | | |
Collapse
|