1
|
Foreman B, Kapinos G, Wainwright MS, Ngwenya LB, O'Phelan KH, LaRovere KL, Kirschen MP, Appavu B, Lazaridis C, Alkhachroum A, Maciel CB, Amorim E, Chang JJ, Gilmore EJ, Rosenthal ES, Park S. Practice Standards for the Use of Multimodality Neuromonitoring: A Delphi Consensus Process. Crit Care Med 2023; 51:1740-1753. [PMID: 37607072 PMCID: PMC11036878 DOI: 10.1097/ccm.0000000000006016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
OBJECTIVES To address areas in which there is no consensus for the technologies, effort, and training necessary to integrate and interpret information from multimodality neuromonitoring (MNM). DESIGN A three-round Delphi consensus process. SETTING Electronic surveys and virtual meeting. SUBJECTS Participants with broad MNM expertise from adult and pediatric intensive care backgrounds. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Two rounds of surveys were completed followed by a virtual meeting to resolve areas without consensus and a final survey to conclude the Delphi process. With 35 participants consensus was achieved on 49% statements concerning MNM. Neurologic impairment and the potential for MNM to guide management were important clinical considerations. Experts reached consensus for the use of MNM-both invasive and noninvasive-for patients in coma with traumatic brain injury, aneurysmal subarachnoid hemorrhage, and intracranial hemorrhage. There was consensus that effort to integrate and interpret MNM requires time independent of daily clinical duties, along with specific skills and expertise. Consensus was reached that training and educational platforms are necessary to develop this expertise and to provide clinical correlation. CONCLUSIONS We provide expert consensus in the clinical considerations, minimum necessary technologies, implementation, and training/education to provide practice standards for the use of MNM to individualize clinical care.
Collapse
Affiliation(s)
- Brandon Foreman
- Department of Neurology & Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH
| | - Gregory Kapinos
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mark S Wainwright
- Division of Pediatric Neurology, Seattle Children's Hospital, University of Washington, Seattle, WA
| | - Laura B Ngwenya
- Department of Neurology & Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH
| | | | - Kerri L LaRovere
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Matthew P Kirschen
- Departments of Anesthesiology and Critical Care Medicine, Pediatrics and Neurology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Brian Appavu
- Departments of Child Health and Neurology, Phoenix Children's, University of Arizona College of Medicine-Phoenix, Phoenix, AZ
| | - Christos Lazaridis
- Departments of Neurology and Neurosurgery, University of Chicago, Chicago, IL
| | | | - Carolina B Maciel
- Department of Neurology & Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY
- Division of Pediatric Neurology, Seattle Children's Hospital, University of Washington, Seattle, WA
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH
- Department of Neurology, University of Miami, Miami, FL
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Departments of Anesthesiology and Critical Care Medicine, Pediatrics and Neurology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Departments of Child Health and Neurology, Phoenix Children's, University of Arizona College of Medicine-Phoenix, Phoenix, AZ
- Departments of Neurology and Neurosurgery, University of Chicago, Chicago, IL
- Departments of Neurology and Neurosurgery, University of Florida, Tampa, FL
- Department of Neurology, University of Utah, Salt Lake City, UT
- Department of Neurology, Yale University, New Haven, CT
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
- Department of Critical Care and Georgetown University, Department of Neurology, MedStar Washington Hospital Center, Washington, DC
- Department of Neurology, Massachusetts General Hospital, Boston, MA
- Departments of Neurology and Biomedical Informatics, Columbia University, New York, NY
| | - Edilberto Amorim
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| | - Jason J Chang
- Department of Critical Care and Georgetown University, Department of Neurology, MedStar Washington Hospital Center, Washington, DC
| | | | - Eric S Rosenthal
- Department of Neurology, Massachusetts General Hospital, Boston, MA
| | - Soojin Park
- Departments of Neurology and Biomedical Informatics, Columbia University, New York, NY
| |
Collapse
|
2
|
Fan TH, Rosenthal ES. Physiological Monitoring in Patients with Acute Brain Injury: A Multimodal Approach. Crit Care Clin 2023; 39:221-233. [PMID: 36333033 DOI: 10.1016/j.ccc.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neurocritical care management of acute brain injury (ABI) is focused on identification, prevention, and management of secondary brain injury (SBI). Physiologic monitoring of the brain and other organ systems has a role to predict patient recovery or deterioration, guide individualized therapeutic interventions, and measure response to treatment, with the goal of improving patient outcomes. In this review, we detail how specific physiologic markers of brain injury and neuromonitoring tools are integrated and used in ABI patients to develop therapeutic approaches to prevent SBI.
Collapse
Affiliation(s)
- Tracey H Fan
- Department of Neurology, Division of Neurocritical Care, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02493, USA; Department of Neurology, Division of Neurocritical Care, Brigham and Women's Hospital, 55 Fruit Street, Boston, MA 02493, USA
| | - Eric S Rosenthal
- Department of Neurology, Division of Neurocritical Care, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02493, USA; Department of Neurology, Division of Clinical Neurophysiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02493, USA.
| |
Collapse
|
3
|
Zhang X, Liu Y, Zhang S, Wang C, Zou C, Li A. Neutrophil-to-Albumin Ratio as a Biomarker of Delayed Cerebral Ischemia After Aneurysmal Subarachnoid Hemorrhage. World Neurosurg 2020; 147:e453-e458. [PMID: 33373740 DOI: 10.1016/j.wneu.2020.12.084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/16/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE This study set out to investigate the relationships between the neutrophil-to-albumin ratio (NAR) in the early stages of aneurysmal subarachnoid hemorrhage (aSAH) and the occurrence of delayed cerebral ischemia (DCI). METHODS A total of 439 patients with aSAH were included in this retrospective study. NAR assessment was conducted on admission. The relationship between NAR and DCI was analyzed. RESULTS Eighty-four patients (23.7%) experienced DCI. NAR levels were significantly higher in patients with DCI after aSAH than without DCI (median [interquartile range] 0.350 [0.274-0.406] vs. 0.240 [0.186-0.300]; P < 0.001). NAR levels were correlated with World Federation of Neurological Surgeons (WFNS) grade and modified Fisher (mFisher) grade (r = 0.505 and 0.394, respectively). NAR and mFisher grade were the independent predictors of DCI. Under receiver operating characteristic curve, NAR levels exhibited a significant discriminatory capability (area under the curve [95% confidence interval] 0.812 [0.740-0.823]; P < 0.001). The predictive power of NAR levels was similar to mFisher grade (P > 0.05). CONCLUSIONS NAR, in positive correlation with the severity of hemorrhage, appears to be a novel predictive biomarker of DCI after aSAH.
Collapse
Affiliation(s)
- Xin Zhang
- Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| | - Yumeng Liu
- Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| | - Sheng Zhang
- Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Congkai Wang
- Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| | - Changsheng Zou
- Lianyungang Hospital Affiliated to Xuzhou Medical University, Lianyungang, China
| | - Aimin Li
- Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China.
| |
Collapse
|
4
|
Ding C, Kang D, Chen P, Wang Z, Lin Y, Wang D, Lin Z, Gu J. Early stage neuroglobin level as a predictor of delayed cerebral ischemia in patients with aneurysmal subarachnoid hemorrhage. Brain Behav 2020; 10:e01547. [PMID: 32026621 PMCID: PMC7066341 DOI: 10.1002/brb3.1547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/18/2019] [Accepted: 01/04/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The neuroglobin (Ngb) is well recognized as a potential biomarker for the hypoxic-ischemic brain injury. However, connection between Ngb and delayed cerebral ischemia (DCI) following aneurysmal subarachnoid hemorrhage (aSAH) is still unclear. OBJECTIVE To investigate the relationship between early stage Ngb level of aSAH patient and the occurrence of DCI. METHODS We evaluated 126 aSAH patients who were enrolled into a prospective observational cohort study. Serum Ngb level on days 1, 2, 3, 5, and 7 after aSAH were determined using a commercial enzyme-linked immunosorbent assay kit. The relationship between Ngb level and DCI was analyzed. RESULTS Forty-six (36.5%) aSAH patients experienced DCI. Patients with DCI had significantly higher Ngb levels than those without (p < .001). Multivariate model analysis revealed that day 3 Ngb level remained a significant factor after adjusting for World Federation of Neurosurgical Societies (WFNS) grade, modified Fisher grade, clipping and Ngb levels on days 1, 2, 5, and 7. Sensitivity, specificity, and Youden index of day 3 Ngb level for identifying DCI were derived as 73.9%, 72.5%, and 0.46, respectively, based on the best threshold of 8.4 ng/ml. Regardless in good-grade group or in poor-grade group, patients having day 3 Ngb level > 8.4 ng/ml has a significantly worse DCI survival rate than those having day 3 Ngb level <=8.4 ng/ml (p = .026 and .009, respectively). CONCLUSIONS Serum Ngb level was significantly elevated in DCI patients. Early stage aSAH Ngb level has the potential of being used as a novel DCI occurrence predictor, especially when Ngb level was combined with WFNS grade.
Collapse
Affiliation(s)
- Chenyu Ding
- Department of NeurosurgeryThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Dezhi Kang
- Department of NeurosurgeryThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Pengqiang Chen
- Department of NeurosurgeryThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Ziliang Wang
- Department of NeurosurgeryZhengzhou University People's HospitalHenan Provincial People's HospitalZhengzhouChina
| | - Yuanxiang Lin
- Department of NeurosurgeryThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Dengliang Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Zhangya Lin
- Department of NeurosurgeryThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Jianjun Gu
- Department of NeurosurgeryZhengzhou University People's HospitalHenan Provincial People's HospitalZhengzhouChina
| |
Collapse
|
5
|
Ding CY, Cai HP, Ge HL, Yu LH, Lin YX, Kang DZ. Assessment of lipoprotein-associated phospholipase A2 level and its changes in the early stages as predictors of delayed cerebral ischemia in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg 2020; 132:62-68. [PMID: 30660116 DOI: 10.3171/2018.8.jns181839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/24/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The relationship between lipoprotein-associated phospholipase A2 (Lp-PLA2) and various cardiovascular and cerebrovascular diseases is inconsistent. However, the connection between Lp-PLA2 level and delayed cerebral ischemia (DCI) following aneurysmal subarachnoid hemorrhage (aSAH) remains unclear. The objective of this study was to investigate the relationships between the Lp-PLA2 levels in the early stages of aSAH and the occurrence of DCI. METHODS The authors evaluated 114 patients with aSAH who were enrolled into a prospective observational cohort study. Serum Lp-PLA2 level at admission (D0), on the first morning (D1), and on the second morning of hospitalization (D2) were determined using commercial enzyme-linked immunosorbent assay kits. The relationship between Lp-PLA2 levels and DCI was analyzed. RESULTS Forty-three patients with aSAH (37.72%) experienced DCI. Mean serum Lp-PLA2 level decreased from 183.06 ± 61.36 μg/L at D0 (D0 vs D1, p = 0.303), to 175.32 ± 51.49 μg/L at D1 and 167.24 ± 54.10 μg/L at D2 (D0 vs D2, p = 0.040). The Lp-PLA2 level changes (D0-D1 and D0-D2) were comparable between patients with and without DCI. Multivariate model analysis revealed Lp-PLA2 level (D0) > 200 μg/L was a more significant factor of DCI compared with Lp-PLA2 (D1) and Lp-PLA2 (D2), and was a strong predictor of DCI (odds ratio [OR] 6.24, 95% confidence interval [CI] 2.05-18.94, p = 0.001) after controlling for World Federation of Neurosurgical Societies (WFNS) grade (OR 3.35, 95% CI 1.18-9.51, p = 0.023) and modified Fisher grade (OR 6.07, 95% CI 2.03-18.14, p = 0.001). WFNS grade (area under the curve [AUC] = 0.792), modified Fisher grade (AUC = 0.731), and Lp-PLA2 level (D0; AUC = 0.710) were all strong predictors of DCI. The predictive powers of WFNS grade, modified Fisher grade, and Lp-PLA2 (D0) were comparable (WFNS grade vs Lp-PLA2: p = 0.233; modified Fisher grade vs Lp-PLA2: p = 0.771). The poor-grade patients with Lp-PLA2 (D0) > 200 μg/L had significantly worse DCI survival rate than poor-grade patients with Lp-PLA2 (D0) ≤ 200 μg/L (p < 0.001). CONCLUSIONS The serum level of Lp-PLA2 was significantly elevated in patients with DCI, and decreased within the first 2 days after admission. Lp-PLA2 in the early stages of aSAH might be a novel predictive biomarker for the occurrence of DCI.
Collapse
|
6
|
Al-Mufti F, Lander M, Smith B, Morris NA, Nuoman R, Gupta R, Lissauer ME, Gupta G, Lee K. Multimodality Monitoring in Neurocritical Care: Decision-Making Utilizing Direct And Indirect Surrogate Markers. J Intensive Care Med 2018; 34:449-463. [PMID: 30205730 DOI: 10.1177/0885066618788022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Substantial progress has been made to create innovative technology that can monitor the different physiological characteristics that precede the onset of secondary brain injury, with the ultimate goal of intervening prior to the onset of irreversible neurological damage. One of the goals of neurocritical care is to recognize and preemptively manage secondary neurological injury by analyzing physiologic markers of ischemia and brain injury prior to the development of irreversible damage. This is helpful in a multitude of neurological conditions, whereby secondary neurological injury could present including but not limited to traumatic intracranial hemorrhage and, specifically, subarachnoid hemorrhage, which has the potential of progressing to delayed cerebral ischemia and monitoring postneurosurgical interventions. In this study, we examine the utilization of direct and indirect surrogate physiologic markers of ongoing neurologic injury, including intracranial pressure, cerebral blood flow, and brain metabolism.
Collapse
Affiliation(s)
- Fawaz Al-Mufti
- 1 Division of Neuroendovascular Surgery and Neurocritical Care, Department of Neurology, Rutgers University, Robert Wood Johnson Medical School, New Brunswick, NJ, USA.,2 Department of Neurosurgery, Rutgers University, New Jersey Medical School, Newark, NJ, USA
| | - Megan Lander
- 3 Division of Surgical Critical Care, Department of Surgery, Rutgers University, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Brendan Smith
- 4 Rutgers University, New Jersey Medical School, Newark, NJ, USA
| | - Nicholas A Morris
- 5 Department of Neurology, University of Maryland Medical Center, Baltimore, MD, USA
| | - Rolla Nuoman
- 6 Department of Neurology, Rutgers University, New Jersey Medical School, Newark, NJ, USA
| | - Rajan Gupta
- 3 Division of Surgical Critical Care, Department of Surgery, Rutgers University, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Matthew E Lissauer
- 3 Division of Surgical Critical Care, Department of Surgery, Rutgers University, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Gaurav Gupta
- 7 Division of Neurosurgery, Department of Surgery, Rutgers University, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Kiwon Lee
- 1 Division of Neuroendovascular Surgery and Neurocritical Care, Department of Neurology, Rutgers University, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
7
|
Cai J, Fang W, Chen F, Lin Z, Lin Y, Yu L, Yao P, Kang D. Cerebral perfusion pressure threshold to prevent delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. J Clin Neurosci 2018; 54:29-32. [DOI: 10.1016/j.jocn.2018.04.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 01/26/2018] [Accepted: 04/30/2018] [Indexed: 11/28/2022]
|
8
|
Brain Multimodality Monitoring: A New Tool in Neurocritical Care of Comatose Patients. Crit Care Res Pract 2017; 2017:6097265. [PMID: 28555164 PMCID: PMC5438832 DOI: 10.1155/2017/6097265] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 03/11/2017] [Accepted: 03/29/2017] [Indexed: 12/04/2022] Open
Abstract
Neurocritical care patients are at risk of developing secondary brain injury from inflammation, ischemia, and edema that follows the primary insult. Recognizing clinical deterioration due to secondary injury is frequently challenging in comatose patients. Multimodality monitoring (MMM) encompasses various tools to monitor cerebral metabolism, perfusion, and oxygenation aimed at detecting these changes to help modify therapies before irreversible injury sets in. These tools include intracranial pressure (ICP) monitors, transcranial Doppler (TCD), Hemedex™ (thermal diffusion probe used to measure regional cerebral blood flow), microdialysis catheter (used to measure cerebral metabolism), Licox™ (probe used to measure regional brain tissue oxygen tension), and continuous electroencephalography. Although further research is needed to demonstrate their impact on improving clinical outcomes, their contribution to illuminate the black box of the brain in comatose patients is indisputable. In this review, we further elaborate on commonly used MMM parameters, tools used to measure them, and the indications for monitoring per current consensus guidelines.
Collapse
|
9
|
Not a Simple Plumbing Problem: Updating Our Understanding of Delayed Cerebral Ischemia in Aneurysmal Subarachnoid Hemorrhage. J Clin Neurophysiol 2017; 33:171-3. [PMID: 27258439 DOI: 10.1097/wnp.0000000000000269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|