1
|
Bagić AI, Bowyer SM, Burgess RC, Funke ME, Lowden A, Mohamed IS, Wilson T, Zhang W, Zillgitt AJ, Tenney JR. Role of optically pumped magnetometers in presurgical epilepsy evaluation: Commentary of the American Clinical Magnetoencephalography Society. Epilepsia 2023; 64:3155-3159. [PMID: 37728519 DOI: 10.1111/epi.17770] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/18/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023]
Abstract
One of the major challenges of modern epileptology is the underutilization of epilepsy surgery for treatment of patients with focal, medication resistant epilepsy (MRE). Aggravating this distressing failure to deliver optimum care to these patients is the underuse of proven localizing tools, such as magnetoencephalography (MEG), a clinically validated, non-invasive, neurophysiological method used to directly measure and localize brain activity. A sizable mass of published evidence indicates that MEG can improve identification of surgical candidates and guide pre-surgical planning, increasing the yield of SEEG and improving operative outcomes. However, despite at least 10 common, evidence supported, clinical scenarios in MRE patients where MEG can offer non-redundant information and improve the pre-surgical evaluation, it is regularly used by only a minority of USA epilepsy centers. The current state of the art in MEG sensors employs SQUIDs, which require cooling with liquid helium to achieve superconductivity. This sensor technology has undergone significant generational improvement since whole head MEG scanners were introduced around in 1990s, but still has limitations. Further advances in sensor technology which may make ME G more easily accessible and affordable have been eagerly awaited, and development of new techniques should be encouraged. Of late, optically pumped magnetometers (OPMs) have received considerable attention, even prompting some potential acquisitions of new MEG systems to be put on hold, based on a hope that OPMs will usher in a new generation of MEG equipment and procedures. The development of any new clinical test used to guide intracranial EEG monitoring and/or surgical planning must address several specific issues. The goal of this commentary is to recognize the current state of OPM technology and to suggest a framework for it to advance in the clinical realm where it can eventually be deemed clinically valuable to physicians and patients. The American Clinical MEG Society (ACMEGS) strongly supports more advanced and less expensive technology and looks forward to continuing work with researchers to develop new sensors and clinical devices which will improve the experience and outcome for patients, and perhaps extend the role of MEG. However, currently, there are no OPM devices ready for practical clinical use. Based on the engineering obstacles and the clinical tradeoffs to be resolved, the assessment of experts suggests that there will most likely be another decade relying solely on "frozen SQUIDs" in the clinical MEG field.
Collapse
Affiliation(s)
- Anto I Bagić
- University of Pittsburgh Comprehensive Epilepsy Center, Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Susan M Bowyer
- MEG Laboratory, Henry Ford Hospital, Wayne State University, Detroit, Michigan, USA
| | - Richard C Burgess
- Magnetoencephalography Laboratory, Cleveland Clinic Epilepsy Center, Cleveland, Ohio, USA
| | - Michael E Funke
- Department of Pediatrics, University of Texas Health Science Center, McGovern Medical School, Houston, Texas, USA
| | - Andrea Lowden
- Division of Pediatric Neurology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Ismail S Mohamed
- Department of Pediatrics, University of Alabama, Birmingham, Alabama, USA
| | - Tony Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, Nebraska, USA
| | - Wenbo Zhang
- Minnesota Epilepsy Group, Roseville, Minnesota, USA
| | - Andrew J Zillgitt
- Corewell Health William Beaumont University Hospital, Royal Oak, Minnesota, USA
| | - Jeffrey R Tenney
- MEG Center, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
2
|
Zheng L, Liao P, Wu X, Cao M, Cui W, Lu L, Xu H, Zhu L, Lyu B, Wang X, Teng P, Wang J, Vogrin S, Plummer C, Luan G, Gao JH. An artificial intelligence-based pipeline for automated detection and localisation of epileptic sources from magnetoencephalography. J Neural Eng 2023; 20:046036. [PMID: 37615416 DOI: 10.1088/1741-2552/acef92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/10/2023] [Indexed: 08/25/2023]
Abstract
Objective.Magnetoencephalography (MEG) is a powerful non-invasive diagnostic modality for presurgical epilepsy evaluation. However, the clinical utility of MEG mapping for localising epileptic foci is limited by its low efficiency, high labour requirements, and considerable interoperator variability. To address these obstacles, we proposed a novel artificial intelligence-based automated magnetic source imaging (AMSI) pipeline for automated detection and localisation of epileptic sources from MEG data.Approach.To expedite the analysis of clinical MEG data from patients with epilepsy and reduce human bias, we developed an autolabelling method, a deep-learning model based on convolutional neural networks and a hierarchical clustering method based on a perceptual hash algorithm, to enable the coregistration of MEG and magnetic resonance imaging, the detection and clustering of epileptic activity, and the localisation of epileptic sources in a highly automated manner. We tested the capability of the AMSI pipeline by assessing MEG data from 48 epilepsy patients.Main results.The AMSI pipeline was able to rapidly detect interictal epileptiform discharges with 93.31% ± 3.87% precision based on a 35-patient dataset (with sevenfold patientwise cross-validation) and robustly rendered accurate localisation of epileptic activity with a lobar concordance of 87.18% against interictal and ictal stereo-electroencephalography findings in a 13-patient dataset. We also showed that the AMSI pipeline accomplishes the necessary processes and delivers objective results within a much shorter time frame (∼12 min) than traditional manual processes (∼4 h).Significance.The AMSI pipeline promises to facilitate increased utilisation of MEG data in the clinical analysis of patients with epilepsy.
Collapse
Affiliation(s)
- Li Zheng
- Beijing City Key Laboratory of Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, People's Republic of China
- Changping Laboratory, Beijing, People's Republic of China
| | - Pan Liao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
| | - Xiuwen Wu
- Changping Laboratory, Beijing, People's Republic of China
- Center for Biomedical Engineering, University of Science and Technology of China, Anhui, People's Republic of China
| | - Miao Cao
- Beijing City Key Laboratory of Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, People's Republic of China
- Changping Laboratory, Beijing, People's Republic of China
| | - Wei Cui
- Center for Biomedical Engineering, University of Science and Technology of China, Anhui, People's Republic of China
| | - Lingxi Lu
- Center for the Cognitive Science of Language, Beijing Language and Culture University, Beijing, People's Republic of China
| | - Hui Xu
- Beijing City Key Laboratory of Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, People's Republic of China
| | - Linlin Zhu
- Beijing City Key Laboratory of Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, People's Republic of China
| | - Bingjiang Lyu
- Changping Laboratory, Beijing, People's Republic of China
| | - Xiongfei Wang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, People's Republic of China
- Beijing Key Laboratory of Epilepsy, Capital Medical University, Beijing, People's Republic of China
| | - Pengfei Teng
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jing Wang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Simon Vogrin
- Department of Neuroimaging, Swinburne University of Technology, Melbourne, Australia
| | - Chris Plummer
- Department of Neuroimaging, Swinburne University of Technology, Melbourne, Australia
| | - Guoming Luan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, People's Republic of China
- Beijing Key Laboratory of Epilepsy, Capital Medical University, Beijing, People's Republic of China
| | - Jia-Hong Gao
- Beijing City Key Laboratory of Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, People's Republic of China
- Changping Laboratory, Beijing, People's Republic of China
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
- McGovern Institute for Brain Research, Peking University, Beijing, People's Republic of China
- National Biomedical Imaging Center, Peking University, Beijing, People's Republic of China
| |
Collapse
|
3
|
Alkawadri R, Enatsu R, Hämäläinen M, Bagić A. Editorial: Magnetoencephalography: Methodological innovation paves the way for scientific discoveries and new clinical applications. Front Neurol 2022; 13:1056301. [PMID: 36504656 PMCID: PMC9731220 DOI: 10.3389/fneur.2022.1056301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Rafeed Alkawadri
- University of Pittsburgh Comprehensive Epilepsy Center (UPCEC), Department of Neurology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States,*Correspondence: Rafeed Alkawadri ; https://www.humanbrainmapping.net/contactus
| | - Rei Enatsu
- Department of Neurosurgery, Sapporo Medical University, Sapporo, Japan
| | - Matti Hämäläinen
- Department of Radiology, Harvard Medical School, Boston, MA, United States,Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, Espoo, Finland
| | - Anto Bagić
- University of Pittsburgh Comprehensive Epilepsy Center (UPCEC), Department of Neurology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States
| |
Collapse
|
4
|
Spooner RK, Madhavan D, Aizenberg MR, Wilson TW. Retrospective comparison of motor and somatosensory MEG mapping-Considerations for better clinical applications. Neuroimage Clin 2022; 35:103045. [PMID: 35597033 PMCID: PMC9123261 DOI: 10.1016/j.nicl.2022.103045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022]
Abstract
MEG is a clinically validated tool for presurgical functional mapping. The success rate for MEG somatosensory and motor mapping is not fully known. Comprehensive mapping protocols increase the accuracy of sensorimotor mapping. Major sources of mapping failures include low SNR, magnetic artifacts, and motion. Recommendations for improving mapping success rates in the future are discussed.
While magnetoencephalography (MEG) has proven to be a valuable and reliable tool for presurgical functional mapping of eloquent cortices for at least two decades, widespread use of this technique by clinicians has remained elusive. This modest application may be attributable, at least in part, to misunderstandings regarding the success rate of such mapping procedures, as well as the primary sources contributing to mapping failures. To address this, we conducted a retrospective comparison of sensorimotor functional mapping success rates in 141 patients with epilepsy and 75 tumor patients from the Center for MEG in Omaha, NE. Neurosurgical candidates either completed motor mapping (i.e., finger tapping paradigm), somatosensory mapping (i.e., peripheral stimulation paradigm), or both motor and somatosensory protocols during MEG. All MEG data underwent subsequent time-domain averaging and source localization of left and right primary motor (M1) and somatosensory (S1) cortices was conducted using a single equivalent dipole model. Successful mapping was determined based on dipole goodness of fit metrics ∼ 95%, as well as an accurate and conceivable spatial correspondence to precentral and postcentral gyri for M1 and S1, respectively. Our results suggest that mapping M1 in epilepsy and tumor patients was on average 94.5% successful, when patients only completed motor mapping protocols. In contrast, mapping S1 was successful 45–100% of the time in these patient groups when they only completed somatosensory mapping paradigms. Importantly, Z-tests for independent proportions revealed that the percentage of successful S1 mappings significantly increased to ∼ 94% in epilepsy patients who completed both motor/somatosensory mapping protocols during MEG. Together, these data suggest that ordering more comprehensive mapping procedures (e.g., both motor and somatosensory protocols for a collective sensorimotor network) may substantially increase the accuracy of presurgical functional mapping by providing more extensive data from which to base interpretations. Moreover, clinicians and magnetoencephalographers should be considerate of the major contributors to mapping failures (i.e., low SNR, excessive motion and magnetic artifacts) in order to further increase the percentage of cases achieving successful mapping of eloquent cortices.
Collapse
Affiliation(s)
- Rachel K Spooner
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine University, Düsseldorf, Germany.
| | - Deepak Madhavan
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | | | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| |
Collapse
|
5
|
Jousmäki V. Gratifying Gizmos for Research and Clinical MEG. Front Neurol 2022; 12:814573. [PMID: 35153989 PMCID: PMC8830907 DOI: 10.3389/fneur.2021.814573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
Experimental designs are of utmost importance in neuroimaging. Experimental repertoire needs to be designed with the understanding of physiology, clinical feasibility, and constraints posed by a particular neuroimaging method. Innovations in introducing natural, ecologically-relevant stimuli, with successful collaboration across disciplines, correct timing, and a bit of luck may cultivate novel experiments, new discoveries, and open pathways to new clinical practices. Here I introduce some gizmos that I have initiated in magnetoencephalography (MEG) and applied with my collaborators in my home laboratory and in several other laboratories. These gizmos have been applied to address neuronal correlates of audiotactile interactions, tactile sense, active and passive movements, speech processing, and intermittent photic stimulation (IPS) in humans. This review also includes additional notes on the ideas behind the gizmos, their evolution, and results obtained.
Collapse
Affiliation(s)
- Veikko Jousmäki
- Aalto NeuroImaging, Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
- Cognitive Neuroimaging Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- *Correspondence: Veikko Jousmäki
| |
Collapse
|
6
|
Watkins MW, Shah EG, Funke ME, Garcia-Tarodo S, Shah MN, Tandon N, Maestu F, Laohathai C, Sandberg DI, Lankford J, Thompson S, Mosher J, Von Allmen G. Indications for Inpatient Magnetoencephalography in Children - An Institution's Experience. Front Hum Neurosci 2021; 15:667777. [PMID: 34149382 PMCID: PMC8213217 DOI: 10.3389/fnhum.2021.667777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
Magnetoencephalography (MEG) is recognized as a valuable non-invasive clinical method for localization of the epileptogenic zone and critical functional areas, as part of a pre-surgical evaluation for patients with pharmaco-resistant epilepsy. MEG is also useful in localizing functional areas as part of pre-surgical planning for tumor resection. MEG is usually performed in an outpatient setting, as one part of an evaluation that can include a variety of other testing modalities including 3-Tesla MRI and inpatient video-electroencephalography monitoring. In some clinical circumstances, however, completion of the MEG as an inpatient can provide crucial ictal or interictal localization data during an ongoing inpatient evaluation, in order to expedite medical or surgical planning. Despite well-established clinical indications for performing MEG in general, there are no current reports that discuss indications or considerations for completion of MEG on an inpatient basis. We conducted a retrospective institutional review of all pediatric MEGs performed between January 2012 and December 2020, and identified 34 cases where MEG was completed as an inpatient. We then reviewed all relevant medical records to determine clinical history, all associated diagnostic procedures, and subsequent treatment plans including epilepsy surgery and post-surgical outcomes. In doing so, we were able to identify five indications for completing the MEG on an inpatient basis: (1) super-refractory status epilepticus (SRSE), (2) intractable epilepsy with frequent electroclinical seizures, and/or frequent or repeated episodes of status epilepticus, (3) intractable epilepsy with infrequent epileptiform discharges on EEG or outpatient MEG, or other special circumstances necessitating inpatient monitoring for successful and safe MEG data acquisition, (4) MEG mapping of eloquent cortex or interictal spike localization in the setting of tumor resection or other urgent neurosurgical intervention, and (5) international or long-distance patients, where outpatient MEG is not possible or practical. MEG contributed to surgical decision-making in the majority of our cases (32 of 34). Our clinical experience suggests that MEG should be considered on an inpatient basis in certain clinical circumstances, where MEG data can provide essential information regarding the localization of epileptogenic activity or eloquent cortex, and be used to develop a treatment plan for surgical management of children with complicated or intractable epilepsy.
Collapse
Affiliation(s)
- Michael W Watkins
- Division of Child Neurology, Department of Pediatrics, McGovern Medical School, Houston, TX, United States
| | - Ekta G Shah
- Division of Child Neurology, Department of Pediatrics, McGovern Medical School, Houston, TX, United States
| | - Michael E Funke
- Division of Child Neurology, Department of Pediatrics, McGovern Medical School, Houston, TX, United States.,Department of Neurology, McGovern Medical School, Houston, TX, United States
| | - Stephanie Garcia-Tarodo
- Division of Child Neurology, Department of Pediatrics, McGovern Medical School, Houston, TX, United States.,Pediatric Neurology Unit, Children's Hospital, Geneva University Hospitals, Geneva, Switzerland
| | - Manish N Shah
- Department of Neurosurgery, McGovern Medical School, Houston, TX, United States.,Division of Pediatric Neurosurgery, Department of Pediatric Surgery, McGovern Medical School, Houston, TX, United States
| | - Nitin Tandon
- Department of Neurosurgery, McGovern Medical School, Houston, TX, United States
| | - Fernando Maestu
- Division of Child Neurology, Department of Pediatrics, McGovern Medical School, Houston, TX, United States.,Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Universidad Complutense and Universidad Politecnica de Madrid, Madrid, Spain.,Department of Experimental Psychology, Universidad Complutense de Madrid, Madrid, Spain
| | - Christopher Laohathai
- Division of Child Neurology, Department of Pediatrics, McGovern Medical School, Houston, TX, United States
| | - David I Sandberg
- Department of Neurosurgery, McGovern Medical School, Houston, TX, United States.,Division of Pediatric Neurosurgery, Department of Pediatric Surgery, McGovern Medical School, Houston, TX, United States
| | - Jeremy Lankford
- Division of Child Neurology, Department of Pediatrics, McGovern Medical School, Houston, TX, United States
| | - Stephen Thompson
- Department of Neurology, McGovern Medical School, Houston, TX, United States
| | - John Mosher
- Department of Neurology, McGovern Medical School, Houston, TX, United States
| | - Gretchen Von Allmen
- Division of Child Neurology, Department of Pediatrics, McGovern Medical School, Houston, TX, United States.,Department of Neurology, McGovern Medical School, Houston, TX, United States
| |
Collapse
|
7
|
Otsubo H, Ogawa H, Pang E, Wong SM, Ibrahim GM, Widjaja E. A review of magnetoencephalography use in pediatric epilepsy: an update on best practice. Expert Rev Neurother 2021; 21:1225-1240. [PMID: 33780318 DOI: 10.1080/14737175.2021.1910024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Magnetoencephalography (MEG) is a noninvasive technique that is used for presurgical evaluation of children with drug-resistant epilepsy (DRE).Areas covered: The contributions of MEG for localizing the epileptogenic zone are discussed, in particular in extra-temporal lobe epilepsy and focal cortical dysplasia, which are common in children, as well as in difficult to localize epilepsy such as operculo-insular epilepsy. Further, the authors review current evidence on MEG for mapping eloquent cortex, its performance, application in clinical practice, and potential challenges.Expert opinion: MEG could change the clinical management of children with DRE by directing placement of intracranial electrodes thereby enhancing their yield. With improved identification of a circumscribed epileptogenic zone, MEG could render more patients as suitable candidates for epilepsy surgery and increase utilization of surgery.
Collapse
Affiliation(s)
- Hiroshi Otsubo
- Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada
| | - Hiroshi Ogawa
- Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada
| | - Elizabeth Pang
- Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada.,Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Canada
| | - Simeon M Wong
- Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Canada
| | - George M Ibrahim
- Division of Neurosurgery, Hospital for Sick Children, Toronto, Canada.,Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada
| | - Elysa Widjaja
- Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada.,Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Canada.,Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
8
|
Clinical Magnetoencephalography Practice in the United States Ten Years Later: A Survey-Based Reappraisal. J Clin Neurophysiol 2021; 38:160. [PMID: 33661788 DOI: 10.1097/wnp.0000000000000815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
9
|
Bagić AI, Funke ME, Kirsch HE, Tenney JR, Zillgitt AJ, Burgess RC. The 10 Common Evidence-Supported Indications for MEG in Epilepsy Surgery: An Illustrated Compendium. J Clin Neurophysiol 2021; 37:483-497. [PMID: 33165222 DOI: 10.1097/wnp.0000000000000726] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Unfamiliarity with the indications for and benefits of magnetoencephalography (MEG) persists, even in the epilepsy community, and hinders its acceptance to clinical practice, despite the evidence. The wide treatment gap for patients with drug-resistant epilepsy and immense underutilization of epilepsy surgery had similar effects. Thus, educating referring physicians (epileptologists, neurologists, and neurosurgeons) both about the value of epilepsy surgery and about the potential benefits of MEG can achieve synergy and greatly improve the process of selecting surgical candidates. As a practical step toward a comprehensive educational process to benefit potential MEG users, current MEG referrers, and newcomers to MEG, the authors have elected to provide an illustrated guide to 10 everyday situations where MEG can help in the evaluation of people with drug-resistant epilepsy. They are as follows: (1) lacking or imprecise hypothesis regarding a seizure onset; (2) negative MRI with a mesial temporal onset suspected; (3) multiple lesions on MRI; (4) large lesion on MRI; (5) diagnostic or therapeutic reoperation; (6) ambiguous EEG findings suggestive of "bilateral" or "generalized" pattern; (7) intrasylvian onset suspected; (8) interhemispheric onset suspected; (9) insular onset suspected; and (10) negative (i.e., spikeless) EEG. Only their practical implementation and furtherance of personal and collective education will lead to the potentially impactful synergy of the two-MEG and epilepsy surgery. Thus, while fulfilling our mission as physicians, we must not forget that ignoring the wealth of evidence about the vast underutilization of epilepsy surgery - and about the usefulness and value of MEG in selecting surgical candidates - is far from benign neglect.
Collapse
Affiliation(s)
- Anto I Bagić
- University of Pittsburgh Comprehensive Epilepsy Center (UPCEC), Department of Neurology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, U.S.A
| | - Michael E Funke
- MEG Center, McGovern Medical School, UT Houston, Houston, Texas, U.S.A
| | - Heidi E Kirsch
- UCSF Biomagnetic Imaging Laboratory, UCSF, San Francisco, California, U.S.A
| | - Jeffrey R Tenney
- MEG Center, Cincinnati Children's Hospital Medical Center , Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, U.S.A
| | - Andrew J Zillgitt
- Department of Neurology, Beaumont Health Adult Comprehensive Epilepsy Center, Neurosicence Center, Royal Oak, Michigan, U.S.A.; and
| | - Richard C Burgess
- Magnetoencephalography Laboratory, Cleveland Clinic Epilepsy Center, Cleveland, Ohio, U.S.A
| |
Collapse
|
10
|
|
11
|
Abstract
Concise history of fascinating magnetoencephalography (MEG) technology and catalog of very selected milestone preclinical and clinical MEG studies are provided as the background. The focus is the societal context defining a journey of MEG to and through clinical practice and formation of the American Clinical MEG Society (ACMEGS). We aspired to provide an objective historic perspective and document contributions of many professionals while focusing on the role of ACMEGS in the growth and maturation of clinical MEG field. The ACMEGS was born (2006) out of inevitability to address two vital issues-fair reimbursement and proper clinical acceptance. A beacon of accountable MEG practice and utilization is now an expanding professional organization with the highest level of competence in practice of clinical MEG and clinical credibility. The ACMEGS facilitated a favorable disposition of insurances toward MEG in the United States by combining the national replication of the grassroots efforts and teaming up with the strategic partners-particularly the American Academy of Neurology (AAN), published two Position Statements (2009 and 2017), the world's only set of MEG Clinical Practice Guidelines (CPGs; 2011) and surveys of clinical MEG practice (2011 and 2020) and use (2020). In addition to the annual ACMEGS Course (2012), we directly engaged MEG practitioners through an Invitational Summit (2019). The Society remains focused on the improvements and expansion of clinical practice, education, clinical training, and constructive engagement of vendors in these issues and pivotal studies toward additional MEG indications. The ACMEGS not only had the critical role in the progress of Clinical MEG in the United States and beyond since 2006 but positioned itself as the field leader in the future.
Collapse
|
12
|
Utilization of MEG Among the US Epilepsy Centers: A Survey-Based Appraisal. J Clin Neurophysiol 2020; 37:599-605. [DOI: 10.1097/wnp.0000000000000716] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
13
|
Bagić AI, Rampp S. It is time to harmonize clinical MEG practice internationally. Clin Neurophysiol 2020; 131:1769-1771. [PMID: 32504938 DOI: 10.1016/j.clinph.2020.04.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Anto I Bagić
- University of Pittsburgh Comprehensive Epilepsy Center (UPCEC), Department of Neurology, Suite 811, Kaufmann Medical Building, 3471 Fifth Ave, Pittsburgh, PA 15213, USA.
| | - Stefan Rampp
- Department of Neurosurgery, University Hospital, Erlangen, Germany.
| |
Collapse
|