1
|
Abstract
SUMMARY The NeuroPace responsive neurostimulation system (RNS) has revolutionized the care of patients suffering from focal epilepsy since its approval in 2014. One major advantage of this device is its innate ability to gather long-term electrocorticographic (ECoG) data that the device uses in its novel closed-loop treatment paradigm. Beyond the standard stimulation treatments, which have been demonstrated to be safe and well-tolerated, the data collected by the RNS provide valuable information, such as the long-term circadian and ultradian variations that affect seizure risk, obtained under naturalistic conditions. Additionally, these data inform future surgical procedures, supplementing clinically reported seizures by patients, assessing the response to newly added anti-seizure medications, helping to forecast the risk of future seizures, and understanding the mechanisms of certain long-term outcomes in patients with postsurgical epilepsy. By leveraging these data, the delivery of high-quality clinical care for patients with epilepsy can only be enhanced. Finally, these data open significant avenues of research, including machine learning and artificial intelligence algorithms, which may also translate to improved outcomes in patients who struggle with recurrent seizures.
Collapse
Affiliation(s)
- Christopher B Traner
- Department of Neurology, Division of Epilepsy, Yale School of Medicine, New Haven, Connecticut, U.S.A
| | | |
Collapse
|
2
|
Arcot Desai S, Afzal MF, Barry W, Kuo J, Benard S, Traner C, Tcheng T, Seale C, Morrell M. Expert and deep learning model identification of iEEG seizures and seizure onset times. Front Neurosci 2023; 17:1156838. [PMID: 37476840 PMCID: PMC10354337 DOI: 10.3389/fnins.2023.1156838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/13/2023] [Indexed: 07/22/2023] Open
Abstract
Hundreds of 90-s iEEG records are typically captured from each NeuroPace RNS System patient between clinic visits. While these records provide invaluable information about the patient's electrographic seizure and interictal activity patterns, manually classifying them into electrographic seizure/non-seizure activity, and manually identifying the seizure onset channels and times is an extremely time-consuming process. A convolutional neural network based Electrographic Seizure Classifier (ESC) model was developed in an earlier study. In this study, the classification model is tested against iEEG annotations provided by three expert reviewers board certified in epilepsy. The three experts individually annotated 3,874 iEEG channels from 36, 29, and 35 patients with leads in the mesiotemporal (MTL), neocortical (NEO), and MTL + NEO regions, respectively. The ESC model's seizure/non-seizure classification scores agreed with the three reviewers at 88.7%, 89.6%, and 84.3% which was similar to how reviewers agreed with each other (92.9%-86.4%). On iEEG channels with all 3 experts in agreement (83.2%), the ESC model had an agreement score of 93.2%. Additionally, the ESC model's certainty scores reflected combined reviewer certainty scores. When 0, 1, 2 and 3 (out of 3) reviewers annotated iEEG channels as electrographic seizures, the ESC model's seizure certainty scores were in the range: [0.12-0.19], [0.32-0.42], [0.61-0.70], and [0.92-0.95] respectively. The ESC model was used as a starting-point model for training a second Seizure Onset Detection (SOD) model. For this task, seizure onset times were manually annotated on a relatively small number of iEEG channels (4,859 from 50 patients). Experiments showed that fine-tuning the ESC models with augmented data (30,768 iEEG channels) resulted in a better validation performance (on 20% of the manually annotated data) compared to training with only the original data (3.1s vs 4.4s median absolute error). Similarly, using the ESC model weights as the starting point for fine-tuning instead of other model weight initialization methods provided significant advantage in SOD model validation performance (3.1s vs 4.7s and 3.5s median absolute error). Finally, on iEEG channels where three expert annotations of seizure onset times were within 1.5 s, the SOD model's seizure onset time prediction was within 1.7 s of expert annotation.
Collapse
Affiliation(s)
| | | | - Wade Barry
- NeuroPace, Inc., Mountain View, CA, United States
| | - Jonathan Kuo
- Department of Neurology, University of Southern California, Los Angeles, CA, United States
| | - Shawna Benard
- Department of Neurology, University of Southern California, Los Angeles, CA, United States
| | | | | | - Cairn Seale
- NeuroPace, Inc., Mountain View, CA, United States
| | - Martha Morrell
- NeuroPace, Inc., Mountain View, CA, United States
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, United States
| |
Collapse
|
3
|
Boddeti U, McAfee D, Khan A, Bachani M, Ksendzovsky A. Responsive Neurostimulation for Seizure Control: Current Status and Future Directions. Biomedicines 2022; 10:2677. [PMID: 36359197 PMCID: PMC9687706 DOI: 10.3390/biomedicines10112677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 10/29/2023] Open
Abstract
Electrocorticography (ECoG) data are commonly obtained during drug-resistant epilepsy (DRE) workup, in which subdural grids and stereotaxic depth electrodes are placed on the cortex for weeks at a time, with the goal of elucidating seizure origination. ECoG data can also be recorded from neuromodulatory devices, such as responsive neurostimulation (RNS), which involves the placement of electrodes deep in the brain. Of the neuromodulatory devices, RNS is the first to use recorded ECoG data to direct the delivery of electrical stimulation in order to control seizures. In this review, we first introduced the clinical management for epilepsy, and discussed the steps from seizure onset to surgical intervention. We then reviewed studies discussing the emergence and therapeutic mechanism behind RNS, and discussed why RNS may be underperforming despite an improved seizure detection mechanism. We discussed the potential utility of incorporating machine learning techniques to improve seizure detection in RNS, and the necessity to change RNS targets for stimulation, in order to account for the network theory of epilepsy. We concluded by commenting on the current and future status of neuromodulation in managing epilepsy, and the role of predictive algorithms to improve outcomes.
Collapse
Affiliation(s)
- Ujwal Boddeti
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Darrian McAfee
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Anas Khan
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Muzna Bachani
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Alexander Ksendzovsky
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
4
|
Haneef Z, Yang K, Sheth SA, Aloor FZ, Aazhang B, Krishnan V, Karakas C. Sub-scalp electroencephalography: A next-generation technique to study human neurophysiology. Clin Neurophysiol 2022; 141:77-87. [PMID: 35907381 DOI: 10.1016/j.clinph.2022.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/20/2022] [Accepted: 07/03/2022] [Indexed: 11/29/2022]
Abstract
Sub-scalp electroencephalography (ssEEG) is emerging as a promising technology in ultra-long-term electroencephalography (EEG) recordings. Given the diversity of devices available in this nascent field, uncertainty persists about its utility in epilepsy evaluation. This review critically dissects the many proposed utilities of ssEEG devices including (1) seizure quantification, (2) seizure characterization, (3) seizure lateralization, (4) seizure localization, (5) seizure alarms, (6) seizure forecasting, (7) biomarker discovery, (8) sleep medicine, and (9) responsive stimulation. The different ssEEG devices in development have individual design philosophies with unique strengths and limitations. There are devices offering primarily unilateral recordings (24/7 EEGTM SubQ, NeuroviewTM, Soenia® UltimateEEG™), bilateral recordings (Minder™, Epios™), and even those with responsive stimulation capability (EASEE®). We synthesize the current knowledge of these ssEEG systems. We review the (1) ssEEG devices, (2) use case scenarios, (3) challenges and (4) suggest a roadmap for ideal ssEEG designs.
Collapse
Affiliation(s)
- Zulfi Haneef
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Kaiyuan Yang
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA.
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fuad Z Aloor
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Behnaam Aazhang
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
| | - Vaishnav Krishnan
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
| | - Cemal Karakas
- Division of Pediatric Neurology, Department of Neurology, University of Louisville, Louisville, KY 40202, USA; Norton Children's Neuroscience Institute, Louisville, KY 40241, USA
| |
Collapse
|
5
|
Rao VR. Chronic electroencephalography in epilepsy with a responsive neurostimulation device: current status and future prospects. Expert Rev Med Devices 2021; 18:1093-1105. [PMID: 34696676 DOI: 10.1080/17434440.2021.1994388] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Implanted neurostimulation devices are gaining traction as therapeutic options for people with certain forms of drug-resistant focal epilepsy. Some of these devices enable chronic electroencephalography (cEEG), which offers views of the dynamics of brain activity in epilepsy over unprecedented time horizons. AREAS COVERED This review focuses on clinical insights and basic neuroscience discoveries enabled by analyses of cEEG from an exemplar device, the NeuroPace RNS® System. Applications of RNS cEEG covered here include counting and lateralizing seizures, quantifying medication response, characterizing spells, forecasting seizures, and exploring mechanisms of cognition. Limitations of the RNS System are discussed in the context of next-generation devices in development. EXPERT OPINION The wide temporal lens of cEEG helps capture the dynamism of epilepsy, revealing phenomena that cannot be appreciated with short duration recordings. The RNS System is a vanguard device whose diagnostic utility rivals its therapeutic benefits, but emerging minimally invasive devices, including those with subscalp recording electrodes, promise to be more applicable within a broad population of people with epilepsy. Epileptology is on the precipice of a paradigm shift in which cEEG is a standard part of diagnostic evaluations and clinical management is predicated on quantitative observations integrated over long timescales.
Collapse
Affiliation(s)
- Vikram R Rao
- Associate Professor of Clinical Neurology, Chief, Epilepsy Division, Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| |
Collapse
|