1
|
Chang V, Reeders PC, Blackwood ER, Palmi E, Lundstrom BN, Pati S, Salami P, Rao VR, Agashe S. A Scoping Review of Responsive Neurostimulation in Focal Cortical Dysplasia-Related Epilepsy. Epilepsy Behav 2025; 166:110362. [PMID: 40081147 DOI: 10.1016/j.yebeh.2025.110362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/27/2025] [Accepted: 02/27/2025] [Indexed: 03/15/2025]
Abstract
OBJECTIVE Responsive Neurostimulation (RNS) is a closed-loop neuromodulation therapy approved for treating drug resistant epilepsy (DRE) with 1 or 2 seizure foci, but its potential utility for treating complex seizure networks, such as in focal cortical dysplasia (FCD), remains uncertain. This review and commentary discuss the current practice of RNS use in focal cortical dysplasia-related drug-resistant epilepsy(FCD-DRE), and the potential of individualized approaches. METHODS Our scoping review followed a search to identify relevant studies on epilepsy and RNS across MEDLINE, Embase, and Web of Science, yielding 674, 1,255, and 579 results, respectively followed by abstract and full text review to include FCD-DRE. Data on history, imaging, intracranial EEG, RNS implantation and programming strategies were recorded. RESULTS 78 patients with FCD-DRE across 25 studies were included. The most common lead configuration was two depth electrodes in 53 % (19/36). The median seizure reduction was 85 % [IQR = 66, 96] with a median follow up of 17 months., including 6 patients (7.6 %) achieving seizure freedom for a median 15 months. In 17 patients with resections and RNS implantation, median seizure frequency reduction was 87 % (N = 15), not significantly different from the group with RNS only. 8 patients with cortical and thalamic leads had median seizure frequency reduction of 87 % [IQR = 51, 92]. RNS was effective when used in refractory status epilepticus associated with FCDs. SIGNIFICANCE RNS is a flexible therapy that effectively reduces seizures in FCD-DRE. Electrographic and imaging signatures can potentially be leveraged. Hybrid resection with RNS approaches and the role in refractory status epilepticus associated with FCD is highlighted. Future studies are necessary to optimize RNS therapy in FCD-DRE.
Collapse
Affiliation(s)
| | | | | | | | | | - Sandipan Pati
- Department of Neurology, University of Texas Health Science Center, Houston, TX, United States
| | - Pariya Salami
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Vikram R Rao
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | | |
Collapse
|
2
|
Friedrichs-Maeder C, Proix T, Tcheng TK, Skarpaas T, Rao VR, Baud MO. Seizure Cycles under Pharmacotherapy. Ann Neurol 2024; 95:743-753. [PMID: 38379195 DOI: 10.1002/ana.26878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 12/25/2023] [Accepted: 12/31/2023] [Indexed: 02/22/2024]
Abstract
OBJECTIVE This study was undertaken to determine the effects of antiseizure medications (ASMs) on multidien (multiday) cycles of interictal epileptiform activity (IEA) and seizures and evaluate their potential clinical significance. METHODS We retrospectively analyzed up to 10 years of data from 88 of the 256 total adults with pharmacoresistant focal epilepsy who participated in the clinical trials of the RNS System, an intracranial device that keeps records of IEA counts. Following adjunctive ASM trials, we evaluated changes over months in (1) rates of self-reported disabling seizures and (2) multidien IEA cycle strength (spectral power for periodicity between 4 and 40 days). We used a survival analysis and the receiver operating characteristics to assess changes in IEA as a predictor of seizure control. RESULTS Among 56 (33.3%) of the 168 adjunctive ASM trials suitable for analysis, ASM introduction was followed by an average 50 to 70% decrease in multidien IEA cycle strength and a concomitant 50 to 70% decrease in relative seizure rate for up to 12 months. Individuals with a ≥50% decrease in IEA cycle strength in the first 3 months of an ASM trial had a higher probability of remaining seizure responders (≥50% seizure rate reduction, p < 10-7) or super-responders (≥90%, p < 10-8) over the next 12 months. INTERPRETATION In this large cohort, a decrease in multidien IEA cycle strength following initiation of an adjunctive ASM correlated with seizure control for up to 12 months, suggesting that fluctuations in IEA mirror "disease activity" in pharmacoresistant focal epilepsy and may have clinical utility as a biomarker to predict treatment response. ANN NEUROL 2024;95:743-753.
Collapse
Affiliation(s)
- Cecilia Friedrichs-Maeder
- Sleep-Wake-Epilepsy Center, NeuroTec, Center for Experimental Neurology, Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Timothée Proix
- Fundamental Neurosciences, University of Geneva, Geneva, Switzerland
| | | | - Tara Skarpaas
- NeuroPace, Mountain View, California, USA; currently Jazz Pharmaceuticals, Palo Alto, California, USA
| | - Vikram R Rao
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Maxime O Baud
- Sleep-Wake-Epilepsy Center, NeuroTec, Center for Experimental Neurology, Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Sharma A, Parfyonov M, Tiefenbach J, Hogue O, Nero N, Jehi L, Serletis D, Bingaman W, Gupta A, Rammo R. Predictors of therapeutic response following thalamic neuromodulation for drug-resistant pediatric epilepsy: A systematic review and individual patient data meta-analysis. Epilepsia 2024; 65:542-555. [PMID: 38265348 DOI: 10.1111/epi.17883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/02/2023] [Accepted: 01/05/2024] [Indexed: 01/25/2024]
Abstract
We sought to perform a systematic review and individual participant data meta-analysis to identify predictors of treatment response following thalamic neuromodulation in pediatric patients with medically refractory epilepsy. Electronic databases (MEDLINE, Ovid, Embase, and Cochrane) were searched, with no language or data restriction, to identify studies reporting seizure outcomes in pediatric populations following deep brain stimulation (DBS) or responsive neurostimulation (RNS) implantation in thalamic nuclei. Studies featuring individual participant data of patients with primary or secondary generalized drug-resistant epilepsy were included. Response to therapy was defined as >50% reduction in seizure frequency from baseline. Of 417 citations, 21 articles reporting on 88 participants were eligible. Mean age at implantation was 13.07 ± 3.49 years. Fifty (57%) patients underwent DBS, and 38 (43%) RNS. Sixty (68%) patients were implanted in centromedian nucleus and 23 (26%) in anterior thalamic nucleus, and five (6%) had both targets implanted. Seventy-four (84%) patients were implanted bilaterally. The median time to last follow-up was 12 months (interquartile range = 6.75-26.25). Sixty-nine percent of patients achieved response to treatment. Age, target, modality, and laterality had no significant association with response in univariate logistic regression. Until thalamic neuromodulation gains widespread approval for use in pediatric patients, data on efficacy will continue to be limited to small retrospective cohorts and case series. The inherent bias of these studies can be overcome by using individual participant data. Thalamic neuromodulation appears to be a safe and effective treatment for epilepsy. Larger, prolonged prospective, multicenter studies are warranted to further evaluate the efficacy of DBS over RNS in this patient population where resection for curative intent is not a safe option.
Collapse
Affiliation(s)
- Akshay Sharma
- Department of Neurological Surgery, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Maksim Parfyonov
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Jakov Tiefenbach
- Center for Neurologic Restoration, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Olivia Hogue
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Neil Nero
- Education Institute, Floyd D. Loop Alumni Library, Cleveland Clinic, Cleveland, Ohio, USA
| | - Lara Jehi
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Demitre Serletis
- Department of Neurological Surgery, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - William Bingaman
- Department of Neurological Surgery, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Ajay Gupta
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Richard Rammo
- Department of Neurological Surgery, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Center for Neurologic Restoration, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
4
|
Levy AS, Bystrom LL, Brown EC, Fajardo M, Wang S. Responsive neurostimulation for treatment of pediatric refractory epilepsy: A pooled analysis of the literature. Clin Neurol Neurosurg 2023; 234:108012. [PMID: 37839147 DOI: 10.1016/j.clineuro.2023.108012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/23/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Drug-resistant epilepsy (DRE) is a complex medical condition often requiring resective surgery and/or some form of neurostimulation. In recent years responsive neurostimulation (RNS) has shown promising results in adult DRE, however there is a paucity of information regarding outcomes of RNS among pediatric patients treated with DRE. In this individual patient data meta-analysis (IPDMA) we seek to elucidate the effects RNS has on the pediatric population. METHODS Literature regarding management of pediatric DRE via RNS was reviewed in accordance with individual patient data meta-analysis guidelines. Four databases were searched with keywords ((Responsive neurostimulation) AND (epilepsy)) through December of 2022. From 1624 retrieved full text studies, 15 were ultimately included affording a pool of 98 individual participants. RESULTS The median age at implantation was 14 years (n = 95) with 42% of patients having undergone prior resective epilepsy surgery, 18% with prior vagus nerve stimulation (VNS), and 1% with prior RNS. At a median follow up time 12 months, median percent seizure reduction was 75% with 57% of patients achieving Engel Class < 2 outcome, 9.7% of which achieved seizure freedom. We report a postoperative complication rate of 8.4%, half of which were device-related infections. Magnetic resonance imaging (MRI)-negative cases were negatively associated with magnitude of seizure reduction, and direct targeting techniques were associated with stronger treatment response when compared to other methods. CONCLUSIONS This review suggests RNS to be an effective treatment modality for pediatric patients with a postoperative complication rate comparable to that of RNS in adults. Investigation of prognostic clinical variables should be undertaken to augment patient selection. Last, multi-institutional prospective study of long-term effects of RNS on pediatric patients would stand to benefit clinicians in the management of pediatric DRE.
Collapse
Affiliation(s)
- Adam S Levy
- Department of Neurological Surgery, University of Miami, Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, 33136, USA.
| | - Lauren L Bystrom
- Department of Neurological Surgery, University of Miami, Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, 33136, USA
| | - Erik C Brown
- Department of Neurological Surgery, University of Miami, Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, 33136, USA
| | - Marytery Fajardo
- Division of Neurology, Brain Institute, Nicklaus Children's Hospital, 3200 SW 60th Ct Ste 302, Miami, FL, 33155, USA
| | - Shelly Wang
- Department of Neurological Surgery, University of Miami, Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, 33136, USA; Division of Neurosurgery, Brain Institute, Nicklaus Children's Hospital, 3200 SW 60th Ct Ste 302, Miami, FL, 33155, USA
| |
Collapse
|
5
|
Singh RK, Eschbach K, Samanta D, Perry MS, Liu G, Alexander AL, Wong-Kisiel L, Ostendorf A, Tatachar P, Reddy SB, McCormack MJ, Manuel CM, Gonzalez-Giraldo E, Numis AL, Wolf S, Karia S, Karakas C, Olaya J, Shrey D, Auguste KI, Depositario-Cabacar D. Responsive Neurostimulation in Drug-Resistant Pediatric Epilepsy: Findings From the Epilepsy Surgery Subgroup of the Pediatric Epilepsy Research Consortium. Pediatr Neurol 2023; 143:106-112. [PMID: 37084698 DOI: 10.1016/j.pediatrneurol.2023.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/22/2023] [Accepted: 03/02/2023] [Indexed: 04/23/2023]
Abstract
BACKGROUND Responsive neurostimulation (RNS), a closed-loop intracranial electrical stimulation system, is a palliative surgical option for patients with drug-resistant epilepsy (DRE). RNS is approved by the US Food and Drug Administration for patients aged ≥18 years with pharmacoresistant partial seizures. The published experience of RNS in children is limited. METHODS This is a combined prospective and retrospective study of patients aged ≤18 years undergoing RNS placement. Patients were identified from the multicenter Pediatric Epilepsy Research Consortium Surgery Registry from January 2018 to December 2021, and additional data relevant to this study were retrospectively collected and analyzed. RESULTS Fifty-six patients received RNS during the study period. The mean age at implantation was 14.9 years; the mean duration of epilepsy, 8.1 years; and the mean number of previously trialed antiseizure medications, 4.2. Five patients (9%) previously trialed dietary therapy, and 19 patients (34%) underwent prior surgery. Most patients (70%) underwent invasive electroencephalography evaluation before RNS implantation. Complications occurred in three patients (5.3%) including malpositioned leads or transient weakness. Follow-up (mean 11.7 months) was available for 55 patients (one lost), and four were seizure-free with RNS off. Outcome analysis of stimulation efficacy was available for 51 patients: 33 patients (65%) were responders (≥50% reduction in seizure frequency), including five patients (10%) who were seizure free at follow-up. CONCLUSIONS For young patients with focal DRE who are not candidates for surgical resection, neuromodulation should be considered. Although RNS is off-label for patients aged <18 years, this multicenter study suggests that it is a safe and effective palliative option for children with focal DRE.
Collapse
Affiliation(s)
- Rani K Singh
- Department of Pediatrics, Atrium Health-Levine Children's Hospital, Charlotte, North Carolina; Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, North Carolina.
| | - Krista Eschbach
- Section of Neurology, Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, Colorado
| | - Debopam Samanta
- Child Neurology Section, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Alaska
| | - M Scott Perry
- Jane and John Justin Institute for Mind Health, Neurosciences Center, Cook Children's Medical Center, Ft Worth, Texas
| | - Gang Liu
- Department of Pediatrics, Atrium Health-Levine Children's Hospital, Charlotte, North Carolina
| | - Allyson L Alexander
- Department of Neurosurgery, School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, Colorado; Division of Pediatric Neurosurgery, Children's Hospital Colorado, Aurora, Colorado
| | | | - Adam Ostendorf
- Division of Neurology, Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University, Columbus, Ohio
| | | | - Shilpa B Reddy
- Department of Pediatrics, Monroe Carell Jr. Children's Hospital at Vanderbilt, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Michael J McCormack
- Department of Pediatrics, Monroe Carell Jr. Children's Hospital at Vanderbilt, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Chad M Manuel
- Department of Pediatrics, Monroe Carell Jr. Children's Hospital at Vanderbilt, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Adam L Numis
- Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Steven Wolf
- Department of Pediatrics, Boston Children's Health Physicians, New York, New York
| | - Samir Karia
- Division of Child Neurology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Cemal Karakas
- Division of Child Neurology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Joffre Olaya
- Department of Neurosurgery, Children's Hospital Orange County, Orange, California
| | - Daniel Shrey
- Department of Neurosciences, Children's Hospital Orange County, Orange, California
| | - Kurtis I Auguste
- Department of Neurosurgery, University of California, San Francisco, San Francisco, California
| | | |
Collapse
|