1
|
Fenter H, Ben-Hamouda N, Novy J, Rossetti AO. Role of EEG spindle-like activity in post cardiac arrest prognostication. Resuscitation 2024; 204:110413. [PMID: 39427962 DOI: 10.1016/j.resuscitation.2024.110413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
AIM EEG is considered in guidelines for poor outcome prognostication in comatose patients after cardiac arrest (CA), but elements related to favorable prognosis have also been increasingly described. While spindle EEG activity is known to herald good outcome in critically ill patients, its occurrence in CA has received limited attention, essentially in pediatric cohorts. We postulated that this feature is related to favorable outcome in adults. METHODS Retrospective assessment of comatose adults following CA in a prospective institutional registry (09.2021-09.2023). Spindle-like activity, noted prospectively on early (12-36 h) and late (36-72 h) routine EEGs, was tested using 2x2 tables and comparisons of proportions for the likelihood of favorable outcome (CPC 1-2 at 3 months), including combinations with existing benign EEG descriptions (Westhall: no malignant or highly malignant features; modified: also allowing background discontinuity, low voltage, inverse development). Spindles were correlated with peak serum neuron-specific enolase (NSE) at 24-48 h as a marker of neuronal damage. RESULTS Among 276 patients, spindle-like activity was observed in 66 (23.9 %) of them, more often in early EEGs. While, in isolation, this feature detected within 72 h showed high specificity for CPC 1-2 (82.2 %) and low sensitivity (36.8 %), its addition significantly enhanced sensitivity of modified benign EEG (from 90.5 % to 95.8 %; p < 0.001; specificity at 54.4 %). Patients with spindle-like activity had significantly lower NSE (median 25.7µg/l, interquartile range 16.1-24.4, vs. 39.4 µg/l, interquartile range 21.1-95.1; p < 0.001). CONCLUSION Spindle-like EEG activity may orient on prognostication of favorable outcome in adult post CA patients, and correlates with lower neuronal damage.
Collapse
Affiliation(s)
- Hélène Fenter
- Department of Neurology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Nawfel Ben-Hamouda
- Department of Adult Intensive Care Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jan Novy
- Department of Neurology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Andrea O Rossetti
- Department of Neurology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
2
|
Frange C, Murray BJ, Coelho FMS. The Importance of Sleep for Successful Neurorehabilitation after Stroke. Sleep Sci 2023; 16:e335-e343. [PMID: 38196757 PMCID: PMC10773525 DOI: 10.1055/s-0043-1772805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/24/2022] [Indexed: 01/11/2024] Open
Abstract
Sleep has important clinical implications for neurorehabilitation after stroke. We aimed to systematically explore sleep (including naps) as an essential factor in the neurorehabilitation of patients after stroke. After titles and abstracts were screened, 49 full texts were reviewed, and 7 were included in this review. Data were extracted and assessed for quality and risk of bias. We looked at any neurorehabilitation setting, and compared sleep with no sleep and explored these factors in stroke patients versus healthy individuals. Rehabilitation is critical for many activities that may need to be learned or re-learned following stroke and for returning to everyday life. In this context, sleep is essential in neurorehabilitation and physical therapy practice as it supports neuroplasticity, memory, and learning. The available data suggest that sleep should be considered in the treatment plan for successfully targeted physiotherapy to optimize cognitive and motor learning. Physical therapists should advise about sleep hygiene and therapies to improve sleep, both quality and quantity.
Collapse
Affiliation(s)
- Cristina Frange
- Department of Neurology and Neurosurgery, Universidade Federal De São Paulo, São Paulo, São Paulo, Brazil
| | - Brian James Murray
- Department of Medicine, Division of Neurology, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Fernando Morgadinho Santos Coelho
- Department of Neurology and Neurosurgery, Universidade Federal De São Paulo, São Paulo, São Paulo, Brazil
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Marchi V, Rizzi R, Nevalainen P, Melani F, Lori S, Antonelli C, Vanhatalo S, Guzzetta A. Asymmetry in sleep spindles and motor outcome in infants with unilateral brain injury. Dev Med Child Neurol 2022; 64:1375-1382. [PMID: 35445398 PMCID: PMC9790667 DOI: 10.1111/dmcn.15244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 12/30/2022]
Abstract
AIM To determine whether interhemispheric difference in sleep spindles in infants with perinatal unilateral brain injury could link to a pathological network reorganization that underpins the development of unilateral cerebral palsy (CP). METHOD This was a multicentre retrospective study of 40 infants (19 females, 21 males) with unilateral brain injury. Sleep spindles were detected and quantified with an automated algorithm from electroencephalograph records performed at 2 months to 5 months of age. The clinical outcomes after 18 months were compared to spindle power asymmetry (SPA) between hemispheres in different brain regions. RESULTS We found a significantly increased SPA in infants who later developed unilateral CP (n=13, with the most robust interhemispheric difference seen in the central spindles. The best individual-level prediction of unilateral CP was seen in the centro-occipital spindles with an overall accuracy of 93%. An empiric cut-off level for SPA at 0.65 gave a positive predictive value of 100% and a negative predictive value of 93% for later development of unilateral CP. INTERPRETATION Our data suggest that automated analysis of interhemispheric SPA provides a potential biomarker of unilateral CP at a very early age. This holds promise for guiding the early diagnostic process in infants with a perinatally identified brain injury. WHAT THIS PAPER ADDS Unilateral perinatal brain injury may affect the development of electroencephalogram (EEG) sleep spindles. Interhemispheric asymmetry in sleep spindles can be quantified with automated EEG analysis. Spindle power asymmetry can be a potential biomarker of unilateral cerebral palsy.
Collapse
Affiliation(s)
- Viviana Marchi
- Department of Developmental NeuroscienceIRCCS Stella Maris FoundationPisaItaly
| | - Riccardo Rizzi
- Department of Developmental NeuroscienceIRCCS Stella Maris FoundationPisaItaly
- Department of Neuroscience, PsychologyDrug Research and Child Health NEUROFARBA, University of FlorenceFlorenceItaly
| | - Päivi Nevalainen
- Department of Clinical NeurophysiologyChildren's Hospital, HUS Diagnostic Center, Clinical Neurosciences, Helsinki University Hospital and University of HelsinkiHelsinkiFinland
| | - Federico Melani
- Neuroscience Department, Children's Hospital MeyerUniversity of FlorenceFlorence
| | - Silvia Lori
- Neurophysiology Unit, Neuro‐Musculo‐Skeletal DepartmentUniversity Hospital CareggiFlorenceItaly
| | - Camilla Antonelli
- Department of Developmental NeuroscienceIRCCS Stella Maris FoundationPisaItaly
- Department of Neuroscience, PsychologyDrug Research and Child Health NEUROFARBA, University of FlorenceFlorenceItaly
| | - Sampsa Vanhatalo
- Department of Clinical Neurophysiology, BABA CenterChildren's Hospital, Neuroscience Center, HiLIFE, Helsinki University Hospital and University of HelsinkiHelsinkiFinland
| | - Andrea Guzzetta
- Department of Developmental NeuroscienceIRCCS Stella Maris FoundationPisaItaly
- Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| |
Collapse
|
4
|
Mylonas D, Sjøgård M, Shi Z, Baxter B, Hämäläinen M, Manoach DS, Khan S. A Novel Approach to Estimating the Cortical Sources of Sleep Spindles Using Simultaneous EEG/MEG. Front Neurol 2022; 13:871166. [PMID: 35785365 PMCID: PMC9243385 DOI: 10.3389/fneur.2022.871166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/18/2022] [Indexed: 11/15/2022] Open
Abstract
Sleep spindles, defining oscillations of stage II non-rapid eye movement sleep (N2), mediate sleep-dependent memory consolidation. Spindles are disrupted in several neurodevelopmental, neuropsychiatric, and neurodegenerative disorders characterized by cognitive impairment. Increasing spindles can improve memory suggesting spindles as a promising physiological target for the development of cognitive enhancing therapies. This effort would benefit from more comprehensive and spatially precise methods to characterize spindles. Spindles, as detected with electroencephalography (EEG), are often widespread across electrodes. Available evidence, however, suggests that they act locally to enhance cortical plasticity in the service of memory consolidation. Here, we present a novel method to enhance the spatial specificity of cortical source estimates of spindles using combined EEG and magnetoencephalography (MEG) data constrained to the cortex based on structural MRI. To illustrate this method, we used simultaneous EEG and MEG recordings from 25 healthy adults during a daytime nap. We first validated source space spindle detection using only EEG data by demonstrating strong temporal correspondence with sensor space EEG spindle detection (gold standard). We then demonstrated that spindle source estimates using EEG alone, MEG alone and combined EEG/MEG are stable across nap sessions. EEG detected more source space spindles than MEG and each modality detected non-overlapping spindles that had distinct cortical source distributions. Source space EEG was more sensitive to spindles in medial frontal and lateral prefrontal cortex, while MEG was more sensitive to spindles in somatosensory and motor cortices. By combining EEG and MEG data this method leverages the differential spatial sensitivities of the two modalities to obtain a more comprehensive and spatially specific source estimation of spindles than possible with either modality alone.
Collapse
Affiliation(s)
- Dimitrios Mylonas
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States
| | - Martin Sjøgård
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States
| | - Zhaoyue Shi
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States
- Carle Illinois Advanced Imaging Center, Carle Foundation Hospital, Urbana, IL, United States
| | - Bryan Baxter
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States
| | - Matti Hämäläinen
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Dara S. Manoach
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States
| | - Sheraz Khan
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
5
|
Individual spindle detection and analysis in high-density recordings across the night and in thalamic stroke. Sci Rep 2018; 8:17885. [PMID: 30552388 PMCID: PMC6294746 DOI: 10.1038/s41598-018-36327-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/09/2018] [Indexed: 01/07/2023] Open
Abstract
Sleep spindles are thalamocortical oscillations associated with several behavioural and clinical phenomena. In clinical populations, spindle activity has been shown to be reduced in schizophrenia, as well as after thalamic stroke. Automatic spindle detection algorithms present the only feasible way to systematically examine individual spindle characteristics. We took an established algorithm for spindle detection, and adapted it to high-density EEG sleep recordings. To illustrate the detection and analysis procedure, we examined how spindle characteristics changed across the night and introduced a linear mixed model approach applied to individual spindles in adults (n = 9). Next we examined spindle characteristics between a group of paramedian thalamic stroke patients (n = 9) and matched controls. We found a high spindle incidence rate and that, from early to late in the night, individual spindle power increased with the duration and globality of spindles; despite decreases in spindle incidence and peak-to-peak amplitude. In stroke patients, we found that only left-sided damage reduced individual spindle power. Furthermore, reduction was specific to posterior/fast spindles. Altogether, we demonstrate how state-of-the-art spindle detection techniques, applied to high-density recordings, and analysed using advanced statistical approaches can yield novel insights into how both normal and pathological circumstances affect sleep.
Collapse
|
6
|
Paggiaro A, Birbaumer N, Cavinato M, Turco C, Formaggio E, Del Felice A, Masiero S, Piccione F. Magnetoencephalography in Stroke Recovery and Rehabilitation. Front Neurol 2016; 7:35. [PMID: 27065338 PMCID: PMC4815903 DOI: 10.3389/fneur.2016.00035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/04/2016] [Indexed: 01/01/2023] Open
Abstract
Magnetoencephalography (MEG) is a non-invasive neurophysiological technique used to study the cerebral cortex. Currently, MEG is mainly used clinically to localize epileptic foci and eloquent brain areas in order to avoid damage during neurosurgery. MEG might, however, also be of help in monitoring stroke recovery and rehabilitation. This review focuses on experimental use of MEG in neurorehabilitation. MEG has been employed to detect early modifications in neuroplasticity and connectivity, but there is insufficient evidence as to whether these methods are sensitive enough to be used as a clinical diagnostic test. MEG has also been exploited to derive the relationship between brain activity and movement kinematics for a motor-based brain–computer interface. In the current body of experimental research, MEG appears to be a powerful tool in neurorehabilitation, but it is necessary to produce new data to confirm its clinical utility.
Collapse
Affiliation(s)
- Andrea Paggiaro
- Laboratory of Neurophysiology and Magnetoencephalography, Department of Neurophysiology, Institute of Care and Research, S.Camillo Hospital Foundation , Venice , Italy
| | - Niels Birbaumer
- Laboratory of Neurophysiology and Magnetoencephalography, Department of Neurophysiology, Institute of Care and Research, S.Camillo Hospital Foundation, Venice, Italy; Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Marianna Cavinato
- Laboratory of Neurophysiology and Magnetoencephalography, Department of Neurophysiology, Institute of Care and Research, S.Camillo Hospital Foundation , Venice , Italy
| | - Cristina Turco
- Laboratory of Neurophysiology and Magnetoencephalography, Department of Neurophysiology, Institute of Care and Research, S.Camillo Hospital Foundation , Venice , Italy
| | - Emanuela Formaggio
- Laboratory of Neurophysiology and Magnetoencephalography, Department of Neurophysiology, Institute of Care and Research, S.Camillo Hospital Foundation , Venice , Italy
| | - Alessandra Del Felice
- Section of Rehabilitation, Department of Neuroscience, University of Padova , Padova , Italy
| | - Stefano Masiero
- Section of Rehabilitation, Department of Neuroscience, University of Padova , Padova , Italy
| | - Francesco Piccione
- Laboratory of Neurophysiology and Magnetoencephalography, Department of Neurophysiology, Institute of Care and Research, S.Camillo Hospital Foundation , Venice , Italy
| |
Collapse
|
7
|
Al-Dughmi M, Al-Sharman A, Stevens S, Siengsukon CF. Sleep characteristics of individuals with chronic stroke: a pilot study. Nat Sci Sleep 2015; 7:139-45. [PMID: 26543384 PMCID: PMC4622454 DOI: 10.2147/nss.s83882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Changes in sleep characteristics in individuals with chronic stroke are not well described, particularly compared with healthy individuals. Therefore, the aim of this pilot study was to explore the sleep characteristics in individuals with chronic stroke compared to age- and sex-matched controls. Sixteen individuals with chronic stroke and ten age- and sex-matched controls underwent two nights of polysomnographic recording. The sleep characteristics of interest included total sleep time, sleep efficiency, and percent time, as well as time in minutes spent in stages N1, N2, and N3 and stage R sleep. The individuals with chronic stroke spent less percent time in stage N3 compared with controls (P=0.048). No significant differences in the other sleep characteristics were found between the stroke and control groups. Individuals with chronic stroke present with altered stage N3 sleep compared with healthy controls. These alterations in stage N3 sleep might be a sign of neuronal dysfunction and may impact recovery following stroke. A larger scale study is needed to confirm these findings.
Collapse
Affiliation(s)
- Mayis Al-Dughmi
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Alham Al-Sharman
- Department of Rehabilitation Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Suzanne Stevens
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Catherine F Siengsukon
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
8
|
Ktonas PY, Ventouras EC. Automated detection of sleep spindles in the scalp EEG and estimation of their intracranial current sources: comments on techniques and on related experimental and clinical studies. Front Hum Neurosci 2014; 8:998. [PMID: 25540616 PMCID: PMC4261733 DOI: 10.3389/fnhum.2014.00998] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/24/2014] [Indexed: 11/24/2022] Open
Affiliation(s)
- Periklis Y. Ktonas
- Sleep Study Unit, 1st Psychiatric Clinic, Eginition Hospital, University of Athens Medical SchoolAthens, Greece
| | - Errikos-Chaim Ventouras
- Department of Biomedical Engineering, Technological Educational Institution of AthensAthens, Greece
| |
Collapse
|
9
|
Loss of sleep spindle frequency deceleration in Obstructive Sleep Apnea. Clin Neurophysiol 2014; 125:306-12. [DOI: 10.1016/j.clinph.2013.07.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 06/30/2013] [Accepted: 07/05/2013] [Indexed: 11/24/2022]
|
10
|
Palamarchuk I, Kimpinski K, Lippert C, Hachinski V. Nocturnal deterioration after ischemic stroke and autonomic dysfunction: hypothesis and implications. Cerebrovasc Dis 2013; 36:454-61. [PMID: 24296873 DOI: 10.1159/000356093] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 09/27/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND A significant number of patients admitted to hospital after acute ischemic stroke deteriorate clinically. Deterioration is generally noted within the first 48 h after stroke onset. The mechanisms leading to this deterioration are not fully understood. SUMMARY One potential cause of this deterioration may be altered or impaired autonomic function. We expect the hemodynamic changes regulated by the autonomic nervous system that are dysregulated after stroke to be exaggerated during sleep, resulting in arrhythmia and blood pressure fluctuations in these patients. Such physiological changes could result in worsening the overall outcome of the ischemic stroke patient or in sudden death. Therefore, it is necessary to summarize yet unrelated observations and hypothesize on their individual effects and interactions as they relate to poststroke deterioration. KEY MESSAGES If the hypothesis is correct that dysautonomia occurs to the degree that it affects clinical outcomes negatively, this would have important implications for the prevention of neurological deterioration and sudden death after ischemic stroke.
Collapse
Affiliation(s)
- Iryna Palamarchuk
- Department of Clinical Neurological Sciences, University Hospital, London Health Sciences Centre, London, Ont., Canada
| | | | | | | |
Collapse
|
11
|
Tsai YT, Chan HL, Lee ST, Tu PH, Chang BL, Wu T. Significant thalamocortical coherence of sleep spindle, theta, delta, and slow oscillations in NREM sleep: Recordings from the human thalamus. Neurosci Lett 2010; 485:173-7. [DOI: 10.1016/j.neulet.2010.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 08/25/2010] [Accepted: 09/01/2010] [Indexed: 10/19/2022]
|