1
|
Ortega-Campos SM, García-Heredia JM. The Multitasker Protein: A Look at the Multiple Capabilities of NUMB. Cells 2023; 12:333. [PMID: 36672267 PMCID: PMC9856935 DOI: 10.3390/cells12020333] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/08/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
NUMB, a plasma membrane-associated protein originally described in Drosophila, is involved in determining cell function and fate during early stages of development. It is secreted asymmetrically in dividing cells, with one daughter cell inheriting NUMB and the other inheriting its antagonist, NOTCH. NUMB has been proposed as a polarizing agent and has multiple functions, including endocytosis and serving as an adaptor in various cellular pathways such as NOTCH, Hedgehog, and the P53-MDM2 axis. Due to its role in maintaining cellular homeostasis, it has been suggested that NUMB may be involved in various human pathologies such as cancer and Alzheimer's disease. Further research on NUMB could aid in understanding disease mechanisms and advancing the field of personalized medicine and the development of new therapies.
Collapse
Affiliation(s)
- Sara M. Ortega-Campos
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41013 Sevilla, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José Manuel García-Heredia
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41013 Sevilla, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
2
|
Group I Metabotropic Glutamate Receptors and Interacting Partners: An Update. Int J Mol Sci 2022; 23:ijms23020840. [PMID: 35055030 PMCID: PMC8778124 DOI: 10.3390/ijms23020840] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 12/21/2022] Open
Abstract
Group I metabotropic glutamate (mGlu) receptors (mGlu1/5 subtypes) are G protein-coupled receptors and are broadly expressed in the mammalian brain. These receptors play key roles in the modulation of normal glutamatergic transmission and synaptic plasticity, and abnormal mGlu1/5 signaling is linked to the pathogenesis and symptomatology of various mental and neurological disorders. Group I mGlu receptors are noticeably regulated via a mechanism involving dynamic protein-protein interactions. Several synaptic protein kinases were recently found to directly bind to the intracellular domains of mGlu1/5 receptors and phosphorylate the receptors at distinct amino acid residues. A variety of scaffolding and adaptor proteins also interact with mGlu1/5. Constitutive or activity-dependent interactions between mGlu1/5 and their interacting partners modulate trafficking, anchoring, and expression of the receptors. The mGlu1/5-associated proteins also finetune the efficacy of mGlu1/5 postreceptor signaling and mGlu1/5-mediated synaptic plasticity. This review analyzes the data from recent studies and provides an update on the biochemical and physiological properties of a set of proteins or molecules that interact with and thus regulate mGlu1/5 receptors.
Collapse
|
3
|
Wang N, Wang DD, Hou X, Li X, Shen Y. Different roles of Numb-p72 and Numb-p65 on the trafficking of metabotropic glutamate receptor 5. Mol Biol Rep 2021; 48:595-600. [PMID: 33394235 DOI: 10.1007/s11033-020-06103-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
We previously reported that Numb, a protein localized to clathrin-coated vesicles, regulates the membrane expression of metabotropic glutamate receptor 5 (mGluR5) and is critical to social behaviors. However, the distinct actions of Numb isoforms on mGluR5 have not been investigated. Here, we showed that the expression patterns of Numb-p72 and Numb-p65, two important isoforms of Numb, were distinct in HEK293T cells. Numb-p72, but not Numb-p65, bound to mGluR5α, and enhanced mGluR5 membrane expression by inhibiting its internalization. Our results suggest that a complete structure is required for Numb to bind to mGluR5 and to modulate mGluR5 trafficking.
Collapse
Affiliation(s)
- Na Wang
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, People's Republic of China.
| | - Dan-Dan Wang
- General Hospital of NingXia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Xiaolin Hou
- General Hospital of NingXia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Xiumao Li
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Ying Shen
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
4
|
Wei R, Liu X, Voss C, Qin W, Dagnino L, Li L, Vigny M, Li SSC. NUMB regulates the endocytosis and activity of the anaplastic lymphoma kinase in an isoform-specific manner. J Mol Cell Biol 2019; 11:994-1005. [PMID: 30726988 PMCID: PMC6927325 DOI: 10.1093/jmcb/mjz003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/07/2018] [Accepted: 02/04/2019] [Indexed: 12/11/2022] Open
Abstract
NUMB is an evolutionarily conserved protein that plays an important role in cell adhesion, migration, polarity, and cell fate determination. It has also been shown to play a role in the pathogenesis of certain cancers, although it remains controversial whether NUMB functions as an oncoprotein or tumor suppressor. Here, we show that NUMB binds to anaplastic lymphoma kinase (ALK), a receptor tyrosine kinase aberrantly activated in several forms of cancer, and this interaction regulates the endocytosis and activity of ALK. Intriguingly, the function of the NUMB-ALK interaction is isoform-dependent. While both p66-NUMB and p72-NUMB isoforms are capable of mediating the endocytosis of ALK, the former directs ALK to the lysosomal degradation pathway, thus decreasing the overall ALK level and the downstream MAP kinase signal. In contrast, the p72-NUMB isoform promotes ALK recycling back to the plasma membrane, thereby maintaining the kinase in its active state. Our work sheds light on the controversial role of different isoforms of NUMB in tumorigenesis and provides mechanistic insight into ALK regulation.
Collapse
Affiliation(s)
- Ran Wei
- Departments of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Dentistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Xuguang Liu
- Departments of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Courtney Voss
- Departments of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Wentao Qin
- Departments of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Lina Dagnino
- Physiology and Pharmacology and Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Lei Li
- School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, China
| | - Marc Vigny
- Université Pierre et Marie Curie, UPMC, INSERM UMRS-839, Paris, France
| | - Shawn Shun-Cheng Li
- Departments of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Oncology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
5
|
Wang N, Wang DD, Shen Y. Numb deficiency causes impaired trafficking of mGlu5 in neurons and autistic-like behaviors. Neurosci Lett 2019; 707:134291. [DOI: 10.1016/j.neulet.2019.134291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/07/2019] [Accepted: 05/22/2019] [Indexed: 11/29/2022]
|
6
|
Farah CA, Dunn TW, Hastings MH, Ferguson L, Gao C, Gong K, Sossin WS. A role for Numb in Protein kinase M (PKM)-mediated increase in surface AMPA receptors during facilitation in Aplysia. J Neurochem 2019; 150:366-384. [PMID: 31254393 DOI: 10.1111/jnc.14807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022]
Abstract
There is considerable evidence from both vertebrates and invertebrates that persistently active protein kinases maintain changes in synaptic strength that underlie memory. In the hermaphrodite marine mollusk, Aplysia californica, truncated forms of protein kinase C (PKC) termed protein kinase Ms have been implicated in both intermediate- and long-term facilitation, an increase in synaptic strength between sensory neurons and motor neurons thought to underlie behavioural sensitization in the animal. However, few substrates have been identified as candidates that could mediate this increase in synaptic strength. PKMs have been proposed to maintain synaptic strength through preventing endocytosis of AMPA receptors. Numb is a conserved regulator of endocytosis that is modulated by phosphorylation. We have identified and cloned Aplysia Numb (ApNumb). ApNumb contains three conserved PKC phosphorylation sites and PKMs generated from classical and atypical Aplysia PKCs can phosphorylate ApNumb in vitro and in cells. Over-expression of ApNumb that lacks the conserved PKC phosphorylation sites blocks increases in surface levels of a pHluorin-tagged Aplysia glutamate receptor measured using live imaging after intermediate- or long-term facilitation. Over-expression of this form of ApNumb did not block increases in synaptic strength seen during intermediate-term facilitation, but did block increases in synaptic strength seen during long-term facilitation. There was no effect of over-expression of this form of ApNumb on other putative Numb targets as measured using increases in calcium downstream of neurotrophins or agonists of metabotropic glutamate receptors. These results suggest that in Aplysia neurons, Numb specifically regulates AMPA receptor trafficking and is an attractive candidate for a target of PKMs in long-term maintenance of synaptic strength. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/. Open Science: This manuscript was awarded with the Open Materials Badge For more information see: https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Carole A Farah
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Tyler W Dunn
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Margaret H Hastings
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Larissa Ferguson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Cherry Gao
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Katrina Gong
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Wayne S Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|