1
|
Li H, Seugnet L. Decoding the nexus: branched-chain amino acids and their connection with sleep, circadian rhythms, and cardiometabolic health. Neural Regen Res 2025; 20:1350-1363. [PMID: 39075896 PMCID: PMC11624887 DOI: 10.4103/nrr.nrr-d-23-02020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/18/2024] [Accepted: 05/12/2024] [Indexed: 07/31/2024] Open
Abstract
The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and, either directly or indirectly, overall body health, encompassing metabolic and cardiovascular well-being. Given the heightened metabolic activity of the brain, there exists a considerable demand for nutrients in comparison to other organs. Among these, the branched-chain amino acids, comprising leucine, isoleucine, and valine, display distinctive significance, from their contribution to protein structure to their involvement in overall metabolism, especially in cerebral processes. Among the first amino acids that are released into circulation post-food intake, branched-chain amino acids assume a pivotal role in the regulation of protein synthesis, modulating insulin secretion and the amino acid sensing pathway of target of rapamycin. Branched-chain amino acids are key players in influencing the brain's uptake of monoamine precursors, competing for a shared transporter. Beyond their involvement in protein synthesis, these amino acids contribute to the metabolic cycles of γ-aminobutyric acid and glutamate, as well as energy metabolism. Notably, they impact GABAergic neurons and the excitation/inhibition balance. The rhythmicity of branched-chain amino acids in plasma concentrations, observed over a 24-hour cycle and conserved in rodent models, is under circadian clock control. The mechanisms underlying those rhythms and the physiological consequences of their disruption are not fully understood. Disturbed sleep, obesity, diabetes, and cardiovascular diseases can elevate branched-chain amino acid concentrations or modify their oscillatory dynamics. The mechanisms driving these effects are currently the focal point of ongoing research efforts, since normalizing branched-chain amino acid levels has the ability to alleviate the severity of these pathologies. In this context, the Drosophila model, though underutilized, holds promise in shedding new light on these mechanisms. Initial findings indicate its potential to introduce novel concepts, particularly in elucidating the intricate connections between the circadian clock, sleep/wake, and metabolism. Consequently, the use and transport of branched-chain amino acids emerge as critical components and orchestrators in the web of interactions across multiple organs throughout the sleep/wake cycle. They could represent one of the so far elusive mechanisms connecting sleep patterns to metabolic and cardiovascular health, paving the way for potential therapeutic interventions.
Collapse
Affiliation(s)
- Hui Li
- Department of Neurology, Xijing Hospital, Xi’an, Shaanxi Province, China
| | - Laurent Seugnet
- Centre de Recherche en Neurosciences de Lyon, Integrated Physiology of the Brain Arousal Systems (WAKING), Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR 5292, Bron, France
| |
Collapse
|
2
|
Liu J, Guan A, Huo Z, Li X, Zhu Y, Liang H, Liu W, Zhou H, Lin Z, Yan B. Distinct neurotoxic mechanisms of thallium and lead: Calcium-mediated apoptosis and iron-induced ferroptosis in zebrafish at environmental concentrations. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138288. [PMID: 40239529 DOI: 10.1016/j.jhazmat.2025.138288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/29/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025]
Abstract
Environmental neurotoxicants, such as thallium (Tl) and lead (Pb), pose significant risks to human health, yet their toxicological mechanisms remain poorly understood. This study investigates the distinct mechanisms of Tl+- and Pb2+-induced neurotoxicity at environmentally relevant concentrations using zebrafish embryos as a model. Transcriptomic analyses revealed minimal overlap in gene expression changes between the two metals, underscoring their unique toxicological pathways. Further study demonstrated that Tl+ disrupted calcium homeostasis, activating the calcium signaling pathway and triggering apoptosis via MAPK signaling. In contrast, Pb2+ exposure triggered ferroptosis, characterized by iron overload and lipid peroxidation, with significant involvement of oxidative stress and disruption of iron metabolism. Cellular assays validated these findings, confirming the critical roles of calcium and iron dysregulation in neuronal damage. These results emphasize the complexity of metal-induced neurotoxicity and the importance of studying pollutants at realistic exposure levels. Understanding the divergent pathways of Tl+- and Pb2+-induced neurotoxicity provides critical insights for mitigating their environmental and public health impacts, highlighting the need for targeted regulatory strategies to address heavy metal pollution effectively.
Collapse
Affiliation(s)
- Jian Liu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, China; Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Ai Guan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Zihui Huo
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Xin Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Yiwen Zhu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Hongwei Liang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Weizhen Liu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, China.
| | - Hongyu Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong 510006, China.
| | - Zhang Lin
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, Hunan 410083, China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
3
|
Hansen CE, Hollaus D, Kamermans A, de Vries HE. Tension at the gate: sensing mechanical forces at the blood-brain barrier in health and disease. J Neuroinflammation 2024; 21:325. [PMID: 39696463 PMCID: PMC11657007 DOI: 10.1186/s12974-024-03321-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/07/2024] [Indexed: 12/20/2024] Open
Abstract
Microvascular brain endothelial cells tightly limit the entry of blood components and peripheral cells into the brain by forming the blood-brain barrier (BBB). The BBB is regulated by a cascade of mechanical and chemical signals including shear stress and elasticity of the adjacent endothelial basement membrane (BM). During physiological aging, but especially in neurological diseases including multiple sclerosis (MS), stroke, small vessel disease, and Alzheimer's disease (AD), the BBB is exposed to inflammation, rigidity changes of the BM, and disturbed cerebral blood flow (CBF). These altered forces lead to increased vascular permeability, reduced endothelial reactivity to vasoactive mediators, and promote leukocyte transmigration. Whereas the molecular players involved in leukocyte infiltration have been described in detail, the importance of mechanical signalling throughout this process has only recently been recognized. Here, we review relevant features of mechanical forces acting on the BBB under healthy and pathological conditions, as well as the endothelial mechanosensory elements detecting and responding to altered forces. We demonstrate the underlying complexity by focussing on the family of transient receptor potential (TRP) ion channels. A better understanding of these processes will provide insights into the pathogenesis of several neurological disorders and new potential leads for treatment.
Collapse
Affiliation(s)
- Cathrin E Hansen
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands
| | - David Hollaus
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Alwin Kamermans
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands.
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Yan J, Fang L, Ni A, Xi M, Li J, Zhou X, Qian Q, Wang ZJ, Wang X, Wang H. Long-Term Neurotoxic Effects and Alzheimer's Disease Risk of Early EHDPP Exposure in Zebrafish: Insights from Molecular Mechanisms to Adult Pathology. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19152-19164. [PMID: 39417326 DOI: 10.1021/acs.est.4c05793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
2-Ethylhexyl diphenyl phosphate (EHDPP), ubiquitously monitored in environmental media, is highly bioaccumulative and may pose long-term risks, even after short-term exposure. In this investigation, larval zebrafish were exposed to 0.05, 0.5, and 5.0 μg/L EHDPP from 4 to 120 h postfertilization (hpf) to examine the long-term neurotoxicity effects of early exposure. Exposure to 5.0 μg/L EHDPP yielded hyperactive locomotor behavior, which was characterized by increased swimming speed, larger turning angles, and heightened sensitivity to light-dark stimulation. The predicted targets of EHDPP (top 100 potential macromolecules) were primarily associated with brain diseases like Alzheimer's disease (AD). Comparisons of differentially expressed genes (DEGs) from AD patients (GSE48350) and RNA-seq data from EHDPP-exposed zebrafish confirmed consistently abnormal regulatory pathways. EHDPP's interaction with M1 and M5 muscarinic acetylcholine receptors likely disrupted calcium homeostasis, leading to mitochondrial dysfunction and neurotransmitter imbalance as well as abnormal locomotor behavior. Especially, 5.0 μg/L EHDPP exposure during early development (4-120 hpf) triggered early- and midstage AD-like symptoms in adulthood (180 dpf), characterized by cognitive confusion, aggression, blood-brain barrier disruption, and mitochondrial damage in brains. These findings provide deep insights into the long-term neurotoxicity effects and Alzheimer's disease risks of early EHDPP exposure at extremely low dosages.
Collapse
Affiliation(s)
- Jin Yan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Lu Fang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Anyu Ni
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Miaocui Xi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jinyun Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xin Zhou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qiuhui Qian
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Ze-Jun Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Huili Wang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
5
|
Lin JL, Li SL, Peng YC, Chen LW, Lin YJ. Analysis of serum calcium change trajectories and prognostic factors in patients with acute type A aortic dissection. BMC Surg 2023; 23:362. [PMID: 38012635 PMCID: PMC10683301 DOI: 10.1186/s12893-023-02249-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/26/2023] [Indexed: 11/29/2023] Open
Abstract
OBJECTIVES This study aimed to analyze the correlation between serum calcium changes and short-term prognosis of patients with acute type A aortic dissection. METHODS Patients who underwent acute type A aortic dissection surgery at Fujian Heart Medical Center between June 2019 and June 2021 were retrospectively analyzed. RESULTS A total of 383 patients were enrolled. According to the changing track of serum calcium in patients after acute type A aortic dissection, three potential category tracks were determined: high-level (n = 85), medium-level (n = 259), and continuous low-level groups (n = 39). Using the medium-level group as the control, regression analysis showed that poor prognosis risk was increased in the group with continuous low serum calcium (odds ratio = 2.454, P < 0.05) and in the group with continuous low serum calcium > 48 h (odds ratio = 3.595, P < 0.05). Age (odds ratio = 1.063, P < 0.001), body mass index (odds ratio = 1.138, P < 0.05), hypertension (odds ratio = 3.697, P < 0.05), and the highest lactic acid within 72 h after surgery(odds ratio = 1.093, P < 0.05) were independent risk factors for poor prognosis after aortic dissection. CONCLUSION Continuous low serum calcium was an independent predictor of poor prognosis in patients with acute type A aortic dissection.
Collapse
Affiliation(s)
- Jian-Long Lin
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Sai-Lan Li
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Yan-Chun Peng
- Department of Nursing, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Liang-Wan Chen
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian, 350001, China.
| | - Yan-Juan Lin
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian, 350001, China.
- Department of Nursing, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian, 350001, China.
| |
Collapse
|
6
|
Chi OZ, Liu X, Magsino J, Weiss HR. Leucine Reduced Blood-Brain Barrier Disruption and Infarct Size in Early Cerebral Ischemia-Reperfusion. Brain Sci 2023; 13:1372. [PMID: 37891741 PMCID: PMC10605042 DOI: 10.3390/brainsci13101372] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
A disruption of the blood-brain barrier (BBB) is a crucial pathophysiological change that can impact the outcome of a stroke. Ribosomal protein S6 (S6) and protein kinase B (Akt) play significant roles in early cerebral ischemia-reperfusion injury. Studies have suggested that branched-chain amino acids (BCAAs) may have neuroprotective properties for spinal cord or brain injuries. Therefore, we conducted research to investigate if leucine, one of the BCAAs, could offer neuroprotection and alter BBB disruption, along with its effects on the phosphorylation of S6 and Akt during the early phase of cerebral ischemia-reperfusion, specifically within the thrombolytic therapy time window. In rats, ten min after left middle cerebral artery occlusion (MCAO), 5 µL of 20 mM L-leucine or normal saline was injected into the left lateral ventricle. After two hours of reperfusion following one hour of MCAO, we determined the transfer coefficient (Ki) of 14C-α-aminoisobutyric acid to assess the BBB disruption, infarct size, and phosphorylation of S6 and Akt. Ischemia-reperfusion increased the Ki (+143%, p < 0.001) and the intra-cerebroventricular injection of leucine lowered the Ki in the ischemic-reperfused cortex (-34%, p < 0.001). Leucine reduced the percentage of cortical infarct (-42%, p < 0.0001) out of the total cortical area. Ischemia-reperfusion alone significantly increased the phosphorylation of both S6 and Akt (p < 0.05). However, the administration of leucine had no further effect on the phosphorylation of S6 or Akt in the ischemic-reperfused cortex. This study suggests that an acute increase in leucine levels in the brain during early ischemia-reperfusion within a few hours of stroke may offer neuroprotection, possibly due to reduced BBB disruption being one of the major contributing factors. Leucine did not further increase the already elevated phosphorylation of S6 or Akt by ischemia-reperfusion under the current experimental conditions. Our data warrant further studies on the effects of leucine on neuronal survival and its mechanisms in the later stages of cerebral ischemia-reperfusion.
Collapse
Affiliation(s)
- Oak Z. Chi
- Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson Medical School, 125 Paterson Street, Suite 3100, New Brunswick, NJ 08901-1977, USA;
| | - Xia Liu
- Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson Medical School, 125 Paterson Street, Suite 3100, New Brunswick, NJ 08901-1977, USA;
| | - Jedrick Magsino
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854-8021, USA;
| | - Harvey R. Weiss
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854-8021, USA;
| |
Collapse
|
7
|
Microarray profiling predicts early neurological and immune phenotypic traits in advance of CNS disease during disease progression in Trypanosoma. b. brucei infected CD1 mouse brains. PLoS Negl Trop Dis 2021; 15:e0009892. [PMID: 34762691 PMCID: PMC8584711 DOI: 10.1371/journal.pntd.0009892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/10/2021] [Indexed: 01/09/2023] Open
Abstract
Human African trypanosomiasis (HAT), also known as sleeping sickness, is a major cause of mortality and morbidity in sub-Saharan Africa. We hypothesised that recent findings of neurological features and parasite brain infiltration occurring at much earlier stages in HAT than previously thought could be explained by early activation of host genetic programmes controlling CNS disease. Accordingly, a transcriptomal analysis was performed on brain tissue at 0, 7, 14, 21 and 28dpi from the HAT CD1/GVR35 mouse model. Up to 21dpi, most parasites are restricted to the blood and lymphatic system. Thereafter the trypanosomes enter the brain initiating the encephalitic stage. Analysis of ten different time point Comparison pairings, revealed a dynamic transcriptome comprising four message populations. All 7dpi Comparisons had by far more differentially expressed genes compared to all others. Prior to invasion of the parenchyma, by 7dpi, ~2,000 genes were up-regulated, denoted [7dpi↑] in contrast to a down regulated population [7dpi↓] also numbering ~2,000. However, by 14dpi both patterns had returned to around the pre-infected levels. The third, [28dpi↑] featured over three hundred transcripts which had increased modestly up to14dpi, thereafter were significantly up-regulated and peaked at 28dpi. The fourth, a minor population, [7dpi↑-28dpi↑], had similar elevated levels at 7dpi and 28dpi. KEGG and GO enrichment analysis predicted a diverse phenotype by 7dpi with changes to innate and adaptive immunity, a Type I interferon response, neurotransmission, synaptic plasticity, pleiotropic signalling, circadian activity and vascular permeability without disruption of the blood brain barrier. This key observation is consistent with recent rodent model neuroinvasion studies and clinical reports of Stage 1 HAT patients exhibiting CNS symptoms. Together, these findings challenge the strict Stage1/Stage2 phenotypic demarcation in HAT and show that that significant neurological, and immune changes can be detected prior to the onset of CNS disease.
Collapse
|
8
|
Luo H, Saubamea B, Chasseigneaux S, Cochois V, Smirnova M, Glacial F, Perrière N, Chaves C, Cisternino S, Declèves X. Molecular and Functional Study of Transient Receptor Potential Vanilloid 1-4 at the Rat and Human Blood-Brain Barrier Reveals Interspecies Differences. Front Cell Dev Biol 2020; 8:578514. [PMID: 33262985 PMCID: PMC7686441 DOI: 10.3389/fcell.2020.578514] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/21/2020] [Indexed: 12/30/2022] Open
Abstract
Transient receptor potential vanilloid 1-4 (TRPV1-4) expression and functionality were investigated in brain microvessel endothelial cells (BMEC) forming the blood-brain barrier (BBB) from rat and human origins. In rat, Trpv1-4 were detected by qRT-PCR in the brain cortex, brain microvessels, and in primary cultures of brain microvessel endothelial cells [rat brain microvessel endothelial cells (rPBMEC)]. A similar Trpv1-4 expression profile in isolated brain microvessels and rPBMEC was found with the following order: Trpv4 > Trpv2 > Trpv3 > Trpv1. In human, TRPV1-4 were detected in the BBB cell line human cerebral microvessel endothelial cells D3 cells (hCMEC/D3) and in primary cultures of BMEC isolated from human adult and children brain resections [human brain microvascular endothelial cells (hPBMEC)], showing a similar TRPV1-4 expression profile in both hCMEC/D3 cells and hPBMECs as follow: TRPV2 > > TRPV4 > TRPV1 > TRPV3. Western blotting and immunofluorescence experiments confirmed that TRPV2 and TRPV4 are the most expressed TRPV isoforms in hCMEC/D3 cells with a clear staining at the plasma membrane. A fluorescent dye Fluo-4 AM ester was applied to record intracellular Ca2+ levels. TRPV4 functional activity was demonstrated in mediating Ca2+ influx under stimulation with the specific agonist GSK1016790A (ranging from 3 to 1000 nM, EC50 of 16.2 ± 4.5 nM), which was inhibited by the specific TRPV4 antagonist, RN1734 (30 μM). In contrast, TRPV1 was slightly activated in hCMEC/D3 cells as shown by the weak Ca2+ influx induced by capsaicin at a high concentration (3 μM), a highly potent and specific TRPV1 agonist. Heat-induced Ca2+ influx was not altered by co-treatment with a selective potent TRPV1 antagonist capsazepine (20 μM), in agreement with the low expression of TRPV1 as assessed by qRT-PCR. Our present study reveals an interspecies difference between Rat and Human. Functional contributions of TRPV1-4 subtype expression were not identical in rat and human tissues reflective of BBB integrity. TRPV2 was predominant in the human whereas TRPV4 had a larger role in the rat. This interspecies difference from a gene expression point of view should be taken into consideration when modulators of TRPV2 or TRPV4 are investigated in rat models of brain disorders.
Collapse
Affiliation(s)
- Huilong Luo
- Faculté de Pharmacie, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris, Paris, France
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Bruno Saubamea
- Faculté de Pharmacie, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris, Paris, France
| | - Stéphanie Chasseigneaux
- Faculté de Pharmacie, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris, Paris, France
| | - Véronique Cochois
- Faculté de Pharmacie, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris, Paris, France
| | - Maria Smirnova
- Faculté de Pharmacie, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris, Paris, France
| | | | | | - Catarina Chaves
- Faculté de Pharmacie, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris, Paris, France
| | - Salvatore Cisternino
- Faculté de Pharmacie, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris, Paris, France
- Service Pharmacie, Assistance Publique Hôpitaux de Paris (AP-HP), Hôpital Universitaire Necker – Enfants Malades, Paris, France
| | - Xavier Declèves
- Faculté de Pharmacie, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris, Paris, France
- Biologie du médicament et toxicologie, Assistance Publique Hôpitaux de Paris (AP-HP), Hôpital Universitaire Cochin, Paris, France
| |
Collapse
|