1
|
Kaufman MJ, Meloni EG. Xenon gas as a potential treatment for opioid use disorder, alcohol use disorder, and related disorders. Med Gas Res 2025; 15:234-253. [PMID: 39812023 PMCID: PMC11918480 DOI: 10.4103/mgr.medgasres-d-24-00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/23/2024] [Accepted: 09/26/2024] [Indexed: 01/16/2025] Open
Abstract
Xenon gas is considered to be a safe anesthetic and imaging agent. Research on its other potentially beneficial effects suggests that xenon may have broad efficacy for treating health disorders. A number of reviews on xenon applications have been published, but none have focused on substance use disorders. Accordingly, we review xenon effects and targets relevant to the treatment of substance use disorders, with a focus on opioid use disorder and alcohol use disorder. We report that xenon inhaled at subsedative concentrations inhibits conditioned memory reconsolidation and opioid withdrawal symptoms. We review work by others reporting on the antidepressant, anxiolytic, and analgesic properties of xenon, which could diminish negative affective states and pain. We discuss research supporting the possibility that xenon could prevent analgesic- or stress-induced opioid tolerance and, by so doing could reduce the risk of developing opioid use disorder. The rapid kinetics, favorable safety and side effect profiles, and multitargeting capability of xenon suggest that it could be used as an ambulatory on-demand treatment to rapidly attenuate maladaptive memory, physical and affective withdrawal symptoms, and pain drivers of substance use disorders when they occur. Xenon may also have human immunodeficiency virus and oncology applications because its effects relevant to substance use disorders could be exploited to target human immunodeficiency virus reservoirs, human immunodeficiency virus protein-induced abnormalities, and cancers. Although xenon is expensive, low concentrations exert beneficial effects, and gas separation, recovery, and recycling advancements will lower xenon costs, increasing the economic feasibility of its therapeutic use. More research is needed to better understand the remarkable repertoire of effects of xenon and its potential therapeutic applications.
Collapse
|
2
|
McGuigan S, Abrahams BF, Scott DA. A narrative review of gas separation and conservation technologies during xenon anesthesia. Med Gas Res 2025; 15:93-100. [PMID: 39436172 PMCID: PMC11515081 DOI: 10.4103/mgr.medgasres-d-24-00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/17/2024] [Accepted: 05/31/2024] [Indexed: 10/23/2024] Open
Abstract
Xenon gas has significant advantages over conventional general anesthetic agents but its use has been limited by the cost associated with its production. Xenon also has significant potential for medical use in the treatment of acquired brain injuries and for mental health disorders. As the demand for xenon gas from other industries increases, the costs associated with its medical use are only likely to increase. One solution to mitigate the significant cost of xenon use in research or medical care is the conservation of xenon gas. During delivery of xenon anesthesia, this can be achieved either by separating xenon from the other gases within the anesthetic circuit, conserving xenon and allowing other gases to be excluded from the circuit, or by selectively recapturing xenon utilized during the anesthetic episode at the conclusion of the case. Several technologies, including the pressurization and cooling of gas mixtures, the utilization of gas selective membranes and the utilization of gas selective adsorbents have been described in the literature for this purpose. These techniques are described in this narrative review along with important clinical context that informs how these technologies might be best applied. Whilst these technologies are discussed in the context of xenon general anesthesia, they could be applied in the delivery of xenon gas inhalation for other therapeutic purposes.
Collapse
Affiliation(s)
- Steven McGuigan
- Department of Anesthesia and Acute Pain Medicine, St. Vincent’s Hospital Melbourne, Melbourne, Australia
- Department of Critical Care, University of Melbourne, Melbourne, Australia
| | | | - David A. Scott
- Department of Anesthesia and Acute Pain Medicine, St. Vincent’s Hospital Melbourne, Melbourne, Australia
- Department of Critical Care, University of Melbourne, Melbourne, Australia
| |
Collapse
|
3
|
Hassamal S. Chronic stress, neuroinflammation, and depression: an overview of pathophysiological mechanisms and emerging anti-inflammatories. Front Psychiatry 2023; 14:1130989. [PMID: 37252156 PMCID: PMC10213648 DOI: 10.3389/fpsyt.2023.1130989] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
In a subset of patients, chronic exposure to stress is an etiological risk factor for neuroinflammation and depression. Neuroinflammation affects up to 27% of patients with MDD and is associated with a more severe, chronic, and treatment-resistant trajectory. Inflammation is not unique to depression and has transdiagnostic effects suggesting a shared etiological risk factor underlying psychopathologies and metabolic disorders. Research supports an association but not necessarily a causation with depression. Putative mechanisms link chronic stress to dysregulation of the HPA axis and immune cell glucocorticoid resistance resulting in hyperactivation of the peripheral immune system. The chronic extracellular release of DAMPs and immune cell DAMP-PRR signaling creates a feed forward loop that accelerates peripheral and central inflammation. Higher plasma levels of inflammatory cytokines, most consistently interleukin IL-1β, IL-6, and TNF-α, are correlated with greater depressive symptomatology. Cytokines sensitize the HPA axis, disrupt the negative feedback loop, and further propagate inflammatory reactions. Peripheral inflammation exacerbates central inflammation (neuroinflammation) through several mechanisms including disruption of the blood-brain barrier, immune cellular trafficking, and activation of glial cells. Activated glial cells release cytokines, chemokines, and reactive oxygen and nitrogen species into the extra-synaptic space dysregulating neurotransmitter systems, imbalancing the excitatory to inhibitory ratio, and disrupting neural circuitry plasticity and adaptation. In particular, microglial activation and toxicity plays a central role in the pathophysiology of neuroinflammation. Magnetic resonance imaging (MRI) studies most consistently show reduced hippocampal volumes. Neural circuitry dysfunction such as hypoactivation between the ventral striatum and the ventromedial prefrontal cortex underlies the melancholic phenotype of depression. Chronic administration of monoamine-based antidepressants counters the inflammatory response, but with a delayed therapeutic onset. Therapeutics targeting cell mediated immunity, generalized and specific inflammatory signaling pathways, and nitro-oxidative stress have enormous potential to advance the treatment landscape. Future clinical trials will need to include immune system perturbations as biomarker outcome measures to facilitate novel antidepressant development. In this overview, we explore the inflammatory correlates of depression and elucidate pathomechanisms to facilitate the development of novel biomarkers and therapeutics.
Collapse
Affiliation(s)
- Sameer Hassamal
- California University of Sciences and Medicine, Colton, CA, United States
- Clinicaltriallink, Los Angeles, CA, United States
- California Neuropsychiatric Institute, Ontario, CA, United States
| |
Collapse
|
4
|
Udut VV, Naumov SA, Evtushenko DN, Udut EV, Naumov SS, Zyuz'kov GN. A case of xenon inhalation therapy for respiratory failure and neuropsychiatric disorders associated with COVID-19. EXCLI JOURNAL 2021; 20:1517-1525. [PMID: 34924901 PMCID: PMC8678062 DOI: 10.17179/excli2021-4316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/25/2021] [Indexed: 11/28/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is the main danger to the life of patients with pneumonia caused by SARS-CoV-2. At the same time, respiratory failure (RF) after ARDS can persist for a long time despite intensive therapy. Therefore, it is important to develop new effective approaches for restoring the ventilation function of the lungs after COVID-19. Here, we present a case report of effective application of short-term inhalations of xenon-oxygen (Xe/O2) gas mixture for treatment of RF and neuropsychiatric disorders (NPD) associated with COVID-19. The patient inhaled a gas mixture of 70 % Xe and 30 % O2. We used multispiral computed tomography, evaluated psychometry, studied hematological and biochemical blood parameters, and applied some other methods of clinical studies to assess the therapeutic effectiveness of Xe inhalation. Also, we studied the mechanism of action of xenon with computer modeling. The clinical case showed the high efficacy of Xe/O2 mixture for treating severe RF and NPD after SARS-CoV-2 infection. Xenon inhalations dramatically increased oxygen saturation and the degree of pneumatization of the lungs. We found out that in coronavirus pneumonia, saturated phospholipids of surfactant are transferred to the solid-ordered phase, which disrupts the surface tension of the alveoli and alveolar gas exchange. Using molecular modeling methods, we demonstrated that the xenon atom increases the distance between the acyl chains of phospholipids due to the van der Waals dispersion interaction. These changes allow for the phase transition of phospholipids from the solid-ordered phase to the liquid phase and restore the functional activity of the surfactant. The findings suggest the feasibility of conducting studies on the effectiveness of Xe/O2 inhalations for treating ARDS in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Vladimir Vasil'evich Udut
- Tomsk National Research Medical Center, Russian Academy of Sciences, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk, Russia
| | - Sergei Alexandrovich Naumov
- Tomsk National Research Medical Center, Russian Academy of Sciences, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk, Russia
| | | | - Elena Vladimirovna Udut
- Tomsk National Research Medical Center, Russian Academy of Sciences, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk, Russia,Siberian State Medical University, Tomsk, Russia
| | | | - Gleb Nikolaevich Zyuz'kov
- Tomsk National Research Medical Center, Russian Academy of Sciences, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk, Russia,*To whom correspondence should be addressed: Gleb Nikolaevich Zyuz'kov, Tomsk National Research Medical Center, Russian Academy of Sciences, Goldberg Research Institute of Pharmacology and Regenerative Medicine, 634028, Lenin avenue, 3, Tomsk, Russia; Telephone: +73822418372, E-mail:
| |
Collapse
|
5
|
Vargas MV, Meyer R, Avanes AA, Rus M, Olson DE. Psychedelics and Other Psychoplastogens for Treating Mental Illness. Front Psychiatry 2021; 12:727117. [PMID: 34671279 PMCID: PMC8520991 DOI: 10.3389/fpsyt.2021.727117] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/06/2021] [Indexed: 12/28/2022] Open
Abstract
Psychedelics have inspired new hope for treating brain disorders, as they seem to be unlike any treatments currently available. Not only do they produce sustained therapeutic effects following a single administration, they also appear to have broad therapeutic potential, demonstrating efficacy for treating depression, post-traumatic stress disorder (PTSD), anxiety disorders, substance abuse disorder, and alcohol use disorder, among others. Psychedelics belong to a more general class of compounds known as psychoplastogens, which robustly promote structural and functional neural plasticity in key circuits relevant to brain health. Here we discuss the importance of structural plasticity in the treatment of neuropsychiatric diseases, as well as the evidence demonstrating that psychedelics are among the most effective chemical modulators of neural plasticity studied to date. Furthermore, we provide a theoretical framework with the potential to explain why psychedelic compounds produce long-lasting therapeutic effects across a wide range of brain disorders. Despite their promise as broadly efficacious neurotherapeutics, there are several issues associated with psychedelic-based medicines that drastically limit their clinical scalability. We discuss these challenges and how they might be overcome through the development of non-hallucinogenic psychoplastogens. The clinical use of psychedelics and other psychoplastogenic compounds marks a paradigm shift in neuropsychiatry toward therapeutic approaches relying on the selective modulation of neural circuits with small molecule drugs. Psychoplastogen research brings us one step closer to actually curing mental illness by rectifying the underlying pathophysiology of disorders like depression, moving beyond simply treating disease symptoms. However, determining how to most effectively deploy psychoplastogenic medicines at scale will be an important consideration as the field moves forward.
Collapse
Affiliation(s)
- Maxemiliano V. Vargas
- Neuroscience Graduate Program, University of California, Davis, Davis, CA, United States
| | - Retsina Meyer
- Delix Therapeutics, Inc., Concord, MA, United States
| | - Arabo A. Avanes
- Biochemistry, Molecular, Cellular, and Developmental Biology Graduate Program, University of California, Davis, Davis, CA, United States
| | - Mark Rus
- Delix Therapeutics, Inc., Concord, MA, United States
| | - David E. Olson
- Delix Therapeutics, Inc., Concord, MA, United States
- Department of Chemistry, University of California, Davis, Davis, CA, United States
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Sacramento, Sacramento, CA, United States
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
| |
Collapse
|