1
|
Xiao X, Luo Z, Peng M, Yan H, Yi D, Du Z, Liu J. Expression profile of circulating miRNAs in patients with atrial fibrillation-dominated cardioembolic stroke: A systematic review and bioinformatics analysis. Heliyon 2024; 10:e35201. [PMID: 39166047 PMCID: PMC11334639 DOI: 10.1016/j.heliyon.2024.e35201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024] Open
Abstract
Background Cardioembolic stroke is a type of ischemic stroke with high disability and mortality, a high recurrence rate and poor prognosis. miRNAs have been explored as potential noninvasive biomarkers in atrial fibrillation and ischemic stroke, but their expression profile in cardioembolic stroke still needs to be explored. This study will explore the differences in miRNA expression between cardioembolic stroke patients and healthy people through meta-analysis and attempt to analyze the target genes by bioinformatics analysis. Methods Literature databases and gene expression databases were searched from the inception date to June 2022. The study reported the circulating miRNA expression profiles in cardioembolic stroke patients and healthy controls. miRNAs with significantly differential expression and their target genes were analyzed. Results Three articles and one gene expression dataset were included in the analysis. The results showed that miR-21-5p (SMD: 2.16; 95 % CI: 1.57, 2.75; p < 0.001), miR-943, miR-145-3p, and miR-3148 were upregulated in cardioembolic stroke patients compared with controls. The downregulated miRNAs included miR-3136-5p, miR-2277-5p, and miR-2277-3p. The area under the receiver operating characteristic curve of miR-21-5p for cardioembolic stroke was 0.975 (0.933-0.989). For the enrichment results, the target genes of upregulated miRNAs were enriched in the MAPK signaling pathway, Ras signaling pathway, etc. The target genes of downregulated miRNAs were also enriched in the Ras signaling pathway. Conclusions This study suggested that circulating miR-21-5p is upregulated in cardioembolic stroke patients compared to healthy controls. The Ras signaling pathway plays an important role in pathogenesis according to enrichment analysis.
Collapse
Affiliation(s)
- Xiangbin Xiao
- Corresponding author. No. 196, Hospital Road, Jianyang City, Sichuan Province, 641400, China.
| | | | - Minjian Peng
- Cardiovascular Department, The People's Hospital of Jianyang City, Chengdu, Sichuan Province, China
| | - Hui Yan
- Cardiovascular Department, The People's Hospital of Jianyang City, Chengdu, Sichuan Province, China
| | - Dengliang Yi
- Cardiovascular Department, The People's Hospital of Jianyang City, Chengdu, Sichuan Province, China
| | - Zigang Du
- Cardiovascular Department, The People's Hospital of Jianyang City, Chengdu, Sichuan Province, China
| | - Ji Liu
- Cardiovascular Department, The People's Hospital of Jianyang City, Chengdu, Sichuan Province, China
| |
Collapse
|
2
|
Yang Y, Zhang M, Li Z, He S, Ren X, Wang L, Wang Z, Shu S. Identification and cross-validation of autophagy-related genes in cardioembolic stroke. Front Neurol 2023; 14:1097623. [PMID: 37305740 PMCID: PMC10248509 DOI: 10.3389/fneur.2023.1097623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Objective Cardioembolic stroke (CE stroke, also known as cardiogenic cerebral embolism, CCE) has the highest recurrence rate and fatality rate among all subtypes of ischemic stroke, the pathogenesis of which was unclear. Autophagy plays an essential role in the development of CE stroke. We aim to identify the potential autophagy-related molecular markers of CE stroke and uncover the potential therapeutic targets through bioinformatics analysis. Methods The mRNA expression profile dataset GSE58294 was obtained from the GEO database. The potential autophagy-related differentially expressed (DE) genes of CE stroke were screened by R software. Protein-protein interactions (PPIs), correlation analysis, and gene ontology (GO) enrichment analysis were applied to the autophagy-related DE genes. GSE66724, GSE41177, and GSE22255 were introduced for the verification of the autophagy-related DE genes in CE stroke, and the differences in values were re-calculated by Student's t-test. Results A total of 41 autophagy-related DE genes (37 upregulated genes and four downregulated genes) were identified between 23 cardioembolic stroke patients (≤3 h, prior to treatment) and 23 healthy controls. The KEGG and GO enrichment analysis of autophagy-related DE genes indicated several enriched terms related to autophagy, apoptosis, and ER stress. The PPI results demonstrated the interactions between these autophagy-related genes. Moreover, several hub genes, especially for CE stroke, were identified and re-calculated by Student's t-test. Conclusion We identified 41 potential autophagy-related genes associated with CE stroke through bioinformatics analysis. SERPINA1, WDFY3, ERN1, RHEB, and BCL2L1 were identified as the most significant DE genes that may affect the development of CE stroke by regulating autophagy. CXCR4 was identified as a hub gene of all types of strokes. ARNT, MAPK1, ATG12, ATG16L2, ATG2B, and BECN1 were identified as particular hub genes for CE stroke. These results may provide insight into the role of autophagy in CE stroke and contribute to the discovery of potential therapeutic targets for CE stroke treatment.
Collapse
Affiliation(s)
- Yufang Yang
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Zhang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziqing Li
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shen He
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueqi Ren
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linmei Wang
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhifei Wang
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shi Shu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Seong D, Yi S, Han S, Lee J, Park S, Hwang YH, Kim J, Kim HK, Jeon M. Target ischemic stroke model creation method using photoacoustic microscopy with simultaneous vessel monitoring and dynamic photothrombosis induction. PHOTOACOUSTICS 2022; 27:100376. [PMID: 35734368 PMCID: PMC9207728 DOI: 10.1016/j.pacs.2022.100376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/02/2022] [Indexed: 06/02/2023]
Abstract
The ischemic stroke animal model evaluates the efficacy of reperfusion and neuroprotective strategies for ischemic injuries. Various conventional methods have been reported to induce the ischemic models; however, controlling specific neurological deficits, mortality rates, and the extent of the infarction is difficult as the size of the affected region is not precisely controlled. In this paper, we report a single laser-based localized target ischemic stroke model development method by simultaneous vessel monitoring and photothrombosis induction using photoacoustic microscopy (PAM), which has minimized the infarct size at precise location with high reproducibility. The proposed method has significantly reduced the infarcted region by illuminating the precise localization. The reproducibility and validity of suggested method have been demonstrated through repeated experiments and histological analyses. These results demonstrate that our method can provide the ischemic stroke model closest to the clinical pathology for brain ischemia research from inducement, occurrence mechanisms to the recovery process.
Collapse
Affiliation(s)
- Daewoon Seong
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, the Republic of Korea
| | - Soojin Yi
- Bio-Medical Institute, Kyungpook National University Hospital, Daegu 41404, the Republic of Korea
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea
- Department of Biomedical Science, The Graduate School, Kyungpook National University, Daegu 41944, the Republic of Korea
| | - Sangyeob Han
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, the Republic of Korea
- Institute of Biomedical Engineering, School of Medicine, Kyungpook National University, Daegu 41566, the Republic of Korea
| | - Jaeyul Lee
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, the Republic of Korea
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Sungjo Park
- Pohang Innotown Center, Pohang University of Science and Technology, Pohang 37673, the Republic of Korea
| | - Yang-Ha Hwang
- Department of Neurology, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea
| | - Jeehyun Kim
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, the Republic of Korea
| | - Hong Kyun Kim
- Bio-Medical Institute, Kyungpook National University Hospital, Daegu 41404, the Republic of Korea
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea
- Department of Biomedical Science, The Graduate School, Kyungpook National University, Daegu 41944, the Republic of Korea
| | - Mansik Jeon
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, the Republic of Korea
| |
Collapse
|
4
|
Shen Z, Xiang M, Chen C, Ding F, Wang Y, Shang C, Xin L, Zhang Y, Cui X. Glutamate excitotoxicity: Potential therapeutic target for ischemic stroke. Biomed Pharmacother 2022; 151:113125. [PMID: 35609367 DOI: 10.1016/j.biopha.2022.113125] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/01/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022] Open
Abstract
Glutamate-mediated excitotoxicity is an important mechanism leading to post ischemic stroke damage. After acute stroke, the sudden reduction in cerebral blood flow is most initially followed by ion transport protein dysfunction and disruption of ion homeostasis, which in turn leads to impaired glutamate release, reuptake, and excessive N-methyl-D-aspartate receptor (NMDAR) activation, promoting neuronal death. Despite extensive evidence from preclinical studies suggesting that excessive NMDAR stimulation during ischemic stroke is a central step in post-stroke damage, NMDAR blockers have failed to translate into clinical stroke treatment. Current treatment options for stroke are very limited, and there is therefore a great need to develop new targets for neuroprotective therapeutic agents in ischemic stroke to extend the therapeutic time window. In this review, we highlight recent findings on glutamate release, reuptake mechanisms, NMDAR and its downstream cellular signaling pathways in post-ischemic stroke damage, and review the pathological changes in each link to help develop viable new therapeutic targets. We then also summarize potential neuroprotective drugs and therapeutic approaches for these new targets in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Zihuan Shen
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Mi Xiang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Chen Chen
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Fan Ding
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Yuling Wang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Chang Shang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Laiyun Xin
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yang Zhang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Xiangning Cui
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
5
|
miR-155-5p in Extracellular Vesicles Derived from Choroid Plexus Epithelial Cells Promotes Autophagy and Inflammation to Aggravate Ischemic Brain Injury in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8603427. [PMID: 35222806 PMCID: PMC8865969 DOI: 10.1155/2022/8603427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/08/2022] [Indexed: 12/12/2022]
Abstract
Ischemic stroke is a common disease of the central nervous system, and ischemic brain injury (IBI) is its main manifestation. Recently, extracellular vesicles (EVs) have been strongly related to the diagnosis and treatment of IBI. However, the underlying mechanism of their effects remains enigmatic. In the present study, we aimed to study how miR-155-5p plays a role in choroid plexus epithelial (CPE) cell-derived EVs in IBI pathology. We found that miR-155-5p expression was enriched in CPE cell-derived EVs, which were subsequently internalized by neurons, enabling the delivery of miR-155-5p into neurons. An inducible oxygen and glucose deprivation and reoxygenation (OGD/R) cell model was developed to mimic ischemic neuronal injury in vitro. miR-155-5p overexpression led to reduced neuron viability, promoted apoptosis, elevated autophagic proteins' expression, and activated NLR family pyrin domain-containing 3- (NLRP3-) related inflammasomes, thereby aggravating OGD-induced neuronal injury. A dual-luciferase reporter assay exhibited that miR-155-5p could inhibit the Ras homolog enriched in brain (Rheb) expression, a mechanism critical for miR-155-5p-mediated neuronal injury. Furthermore, a mouse IBI model was developed using the transient middle cerebral artery occlusion (tMCAO) method. Animal experiments verified that miR-155p delivery via CPE cell-derived EVs aggravated IBI by suppressing Rheb expression. In conclusion, miR-155-5p in CPE-derived EVs can aggravate IBI pathology by suppressing Rheb expression and promoting NLRP3-mediated inflammasomes, suggesting its role as a potential therapeutic target in IBI.
Collapse
|
6
|
Nam Y, Moon GJ, Kim SR. Therapeutic Potential of AAV1-Rheb(S16H) Transduction against Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms22063064. [PMID: 33802760 PMCID: PMC8002454 DOI: 10.3390/ijms22063064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/08/2021] [Accepted: 03/16/2021] [Indexed: 01/19/2023] Open
Abstract
Neurotrophic factors (NTFs) are essential for cell growth, survival, synaptic plasticity, and maintenance of specific neuronal population in the central nervous system. Multiple studies have demonstrated that alterations in the levels and activities of NTFs are related to the pathology and symptoms of neurodegenerative disorders, such as Parkinson’s disease (PD), Alzheimer’s disease (AD), and Huntington’s disease. Hence, the key molecule that can regulate the expression of NTFs is an important target for gene therapy coupling adeno-associated virus vector (AAV) gene. We have previously reported that the Ras homolog protein enriched in brain (Rheb)–mammalian target of rapamycin complex 1 (mTORC1) axis plays a vital role in preventing neuronal death in the brain of AD and PD patients. AAV transduction using a constitutively active form of Rheb exerts a neuroprotective effect through the upregulation of NTFs, thereby promoting the neurotrophic interaction between astrocytes and neurons in AD conditions. These findings suggest the role of Rheb as an important regulator of the regulatory system of NTFs to treat neurodegenerative diseases. In this review, we present an overview of the role of Rheb in neurodegenerative diseases and summarize the therapeutic potential of AAV serotype 1 (AAV1)-Rheb(S16H) transduction in the treatment of neurodegenerative disorders, focusing on diseases, such as AD and PD.
Collapse
Affiliation(s)
- Youngpyo Nam
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Korea;
| | - Gyeong Joon Moon
- Center for Cell Therapy, Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Korea;
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Sang Ryong Kim
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Korea;
- School of Life Sciences, Kyungpook National University, Daegu 41566, Korea
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
- Correspondence: ; Tel.: +82-53-950-7362; Fax: +82-53-943-2762
| |
Collapse
|