1
|
Shi XJ, Du Y, Lei-Chen, Li XS, Yao CQ, Cheng Y. Effects of brain-derived neurotrophic factor (BDNF) on the Schizophrenia model of animals. J Psychiatr Res 2022; 156:538-546. [PMID: 36368243 DOI: 10.1016/j.jpsychires.2022.10.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/25/2022] [Accepted: 10/05/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Schizophrenia(SCZ)is a common clinically chronic psychiatric disease, and there have no effective specific therapeutic drugs in clinical practice currently. Studies have shown that the expression level of brain-derived neurotrophic factor (BDNF) in schizophrenics has decreased, so the expression level of BDNF has always been one of the evaluation indicators of SCZ. The neurotrophic factor hypothesis believes that increase or decrease of the expression level of BDNF may be one of the pathophysiological basis of SCZ. METHODS In this study, schizophrenic mice model with MK-801-induced glutamate dysfunction was established, and two doses of BDNF were administered to schizophrenic mice by intranasal administration. The four groups of mice: Control group, Model group, BDNF-20, BDNF-100 performed a series of behavioral tests to explore the effects of BDNF on sensory motor gating, anxiety, depression, social interaction, spontaneous activity, and memory in schizophrenic mice. Transcriptome sequencing of the BDNF high group and Model group in prefrontal cortex and hippocampus, using Metascape for gene function annotation and enrichment pathway analysis, to obtain BDNF transcription regulation information, understand the molecular mechanism of BDNF in SCZ further. Subsequently,immunofluorescence detected the effects of BDNF on neurons and glial cells in the prefrontal cortex and hippocampus. CONCLUSION The results show that BDNF can improve the behavior of SCZ by regulating the construction of the nervous system, affecting the growth and distribution of neurons and glial cells, and changing inflammation and apoptosis in the brain.
Collapse
Affiliation(s)
- Xiao-Jie Shi
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Yang Du
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Lei-Chen
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Xue-Song Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, China
| | - Ci-Qin Yao
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yong Cheng
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, China; Institute of National Security, Minzu University of China, Beijing, China.
| |
Collapse
|
3
|
Park D, Mabunga DFN, Adil KJ, Ryu O, Valencia S, Kim R, Kim HJ, Cheong JH, Kwon KJ, Kim HY, Han SH, Jeon SJ, Shin CY. Synergistic efficacy and diminished adverse effect profile of composite treatment of several ADHD medications. Neuropharmacology 2021; 187:108494. [PMID: 33587920 DOI: 10.1016/j.neuropharm.2021.108494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 01/05/2021] [Accepted: 02/07/2021] [Indexed: 11/26/2022]
Abstract
Although attention-deficit/hyperactivity disorder (ADHD) is widely studied, problems regarding the adverse effect risks and non-responder problems still need to be addressed. Combination pharmacotherapy using standard dose regimens of existing medication is currently being practiced mainly to augment the therapeutic efficacy of each drug. The idea of combining different pharmacotherapies with different molecular targets to alleviate the symptoms of ADHD and its comorbidities requires scientific evidence, necessitating the investigation of their therapeutic efficacy and the mechanisms underlying the professed synergistic effects. Here, we injected male ICR mice with MK-801 to induce ADHD behavioral condition. We then modeled a "combined drug" using sub-optimal doses of methylphenidate, atomoxetine, and fluoxetine and investigated the combined treatment effects in MK-801-treated mice. No sub-optimal dose monotherapy alleviated ADHD behavioral condition in MK-801-treated mice. However, treatment with the combined drug attenuated the impaired behavior of MK-801-treated animals. Growth impediment, sleep disturbances, or risk of substance abuse were not observed in mice treated subchronically with the combined drugs. Finally, we observed that the combined ADHD drug rescued alterations in p-AKT and p-ERK1/2 levels in the prefrontal cortex and hippocampus, respectively, of MK-801-treated mice. Our results provide experimental evidence of a possible new pharmacotherapy option in ameliorating the ADHD behavioral condition without the expected adverse effects. The detailed mechanism of action underlying the synergistic therapeutic efficacy and reduced adverse reaction by combinatorial drug treatment should be investigated further in future studies.
Collapse
Affiliation(s)
- Donghyun Park
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea
| | - Darine Froy N Mabunga
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea
| | - Keremkleroo Jym Adil
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea
| | - Onjeon Ryu
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea
| | - Schley Valencia
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ryeongeun Kim
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Jae Hoon Cheong
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Kyung Ja Kwon
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hahn Young Kim
- Department of Neurology, Konkuk University Medical Center, Center for Geriatric Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, Seoul, 05029, Republic of Korea
| | - Seol-Heui Han
- Department of Neurology, Konkuk University Medical Center, Center for Geriatric Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, Seoul, 05029, Republic of Korea
| | - Se Jin Jeon
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea; TriNeuro Inc., 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| | - Chan Young Shin
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea; TriNeuro Inc., 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|