1
|
Wang L, Xiao Y, Luo M, Huang R. Unraveling sleep quality in menopausal women: objective assessments and self-reported experiences - a mini-review. Climacteric 2025; 28:104-114. [PMID: 40066925 DOI: 10.1080/13697137.2025.2470450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 01/25/2025] [Accepted: 02/12/2025] [Indexed: 03/28/2025]
Abstract
Sleep is a cornerstone of health, playing an integral role in both physiological and psychological functions. However, it is vulnerable to a variety of factors including menopause. According to available research, the onset of the menopause transition may not necessarily worsen sleep architecture and could even enhance it, leading to conflict between assessment of subjective and objective sleep complaints. This discrepancy highlights the complex relationship between subjective and objective sleep quality. Understanding this relationship remains challenging due to the limited number of longitudinal studies and small sample sizes. This review explores findings from both subjective and objective sleep assessments in menopausal women and examines the impact of menopausal hormone therapy on sleep quality.
Collapse
Affiliation(s)
- Lixia Wang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yi Xiao
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Min Luo
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Rong Huang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Suganya S, Ashok BS, Ajith TA. A Recent Update on the Role of Estrogen and Progesterone in Alzheimer's Disease. Cell Biochem Funct 2024; 42:e70025. [PMID: 39663597 DOI: 10.1002/cbf.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/23/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
Alzheimer's disease (AD), one of the most prevalent neurodegenerative disease responsible for 60%-80% dementia cases globally. The disease is more prevalent among elder females. Female reproductive hormones are found to be essential for cellular activities in brain. The physiological role of neurotrophins and sex hormones in hippocampal region during neurogenesis and neuron differentiation was studied as well. In addition to triggering cellular pathways, estrogen and progesterone carry out a number of biological processes that lead to neuroprotection. They might have an impact on learning and memory. One of estrogen's modest antioxidant properties is its direct scavenging of free radicals. The neurotrophic effect of estrogen and progesterone can be explained by their ability to rise the expression of the brain-derived neurotrophic factor (BDNF) mRNA. Additionally, they have the ability to degrade beta-amyloid and stop inflammation, apoptotic neuronal cell death, and tau protein phosphorylation. To enhance their neuroprotective action, various cross-talking pathways in cells that are mediated by estrogen, progesterone, and BDNF receptors. This include signaling by mitogen-activated protein kinase/extracellular regulated kinase, phosphatidylinositol 3-kinase/protein kinase B, and phospholipase/protein kinase C. Clinical research to establish the significance of these substances are fragmented, despite publications claiming a lower prevalence of AD when medication is started before menopause. This review article emphasizes an update on the role of estrogen, and progesterone in AD.
Collapse
Affiliation(s)
- S Suganya
- Department of Biochemistry, Sri Ramachandra Medical College and Research Institute, Chennai, Tamil Nadu, India
| | - Ben Sundra Ashok
- Department of Biochemistry, Sri Ramachandra Medical College and Research Institute, Chennai, Tamil Nadu, India
| | - Thekkuttuparambil Ananthanarayanan Ajith
- Department of Biochemistry, Amala Institute of Medical Sciences, Thrissur, Kerala, India
- Amala Integrated Medical Research Department, Amala Institute of Medical Sciences, Thrissur, Kerala, India
| |
Collapse
|
3
|
Phua TJ. Understanding human aging and the fundamental cell signaling link in age-related diseases: the middle-aging hypovascularity hypoxia hypothesis. FRONTIERS IN AGING 2023; 4:1196648. [PMID: 37384143 PMCID: PMC10293850 DOI: 10.3389/fragi.2023.1196648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023]
Abstract
Aging-related hypoxia, oxidative stress, and inflammation pathophysiology are closely associated with human age-related carcinogenesis and chronic diseases. However, the connection between hypoxia and hormonal cell signaling pathways is unclear, but such human age-related comorbid diseases do coincide with the middle-aging period of declining sex hormonal signaling. This scoping review evaluates the relevant interdisciplinary evidence to assess the systems biology of function, regulation, and homeostasis in order to discern and decipher the etiology of the connection between hypoxia and hormonal signaling in human age-related comorbid diseases. The hypothesis charts the accumulating evidence to support the development of a hypoxic milieu and oxidative stress-inflammation pathophysiology in middle-aged individuals, as well as the induction of amyloidosis, autophagy, and epithelial-to-mesenchymal transition in aging-related degeneration. Taken together, this new approach and strategy can provide the clarity of concepts and patterns to determine the causes of declining vascularity hemodynamics (blood flow) and physiological oxygenation perfusion (oxygen bioavailability) in relation to oxygen homeostasis and vascularity that cause hypoxia (hypovascularity hypoxia). The middle-aging hypovascularity hypoxia hypothesis could provide the mechanistic interface connecting the endocrine, nitric oxide, and oxygen homeostasis signaling that is closely linked to the progressive conditions of degenerative hypertrophy, atrophy, fibrosis, and neoplasm. An in-depth understanding of these intrinsic biological processes of the developing middle-aged hypoxia could provide potential new strategies for time-dependent therapies in maintaining healthspan for healthy lifestyle aging, medical cost savings, and health system sustainability.
Collapse
Affiliation(s)
- Teow J. Phua
- Molecular Medicine, NSW Health Pathology, John Hunter Hospital, Newcastle, NSW, Australia
| |
Collapse
|
4
|
Valencia-Olvera AC, Maldonado Weng J, Christensen A, LaDu MJ, Pike CJ. Role of estrogen in women's Alzheimer's disease risk as modified by APOE. J Neuroendocrinol 2023; 35:e13209. [PMID: 36420620 PMCID: PMC10049970 DOI: 10.1111/jne.13209] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is characterized by numerous sexual dimorphisms that impact the development, progression, and probably the strategies to prevent and treat the most common form of dementia. In this review, we consider this topic from a female perspective with a specific focus on how women's vulnerability to the disease is affected by the individual and interactive effects of estrogens and apolipoprotein E (APOE) genotype. Importantly, APOE appears to modulate systemic and neural outcomes of both menopause and estrogen-based hormone therapy. In the brain, dementia risk is greater in APOE4 carriers, and the impacts of hormone therapy on cognitive decline and dementia risk vary according to both outcome measure and APOE genotype. Beyond the CNS, estrogen and APOE genotype affect vulnerability to menopause-associated bone loss, dyslipidemia and cardiovascular disease risk. An emerging concept that may link these relationships is the possibility that the effects of APOE in women interact with estrogen status by mechanisms that may include modulation of estrogen responsiveness. This review highlights the need to consider the key AD risk factors of advancing age in a sex-specific manner to optimize development of therapeutic approaches for AD, a view aligned with the principle of personalized medicine.
Collapse
Affiliation(s)
- AC Valencia-Olvera
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - J Maldonado Weng
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - A Christensen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089 USA
| | - MJ LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - CJ Pike
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089 USA
| |
Collapse
|
5
|
Gao F, Wei S, Dang L, Gao Y, Gao L, Shang S, Chen C, Huo K, Wang J, Wang J, Qu Q. Sleep disturbance is associated with mild cognitive impairment: a community population-based cross-sectional study. BMC Public Health 2022; 22:2000. [PMID: 36320021 PMCID: PMC9624002 DOI: 10.1186/s12889-022-14391-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/02/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Sleep is conducive to the elimination of brain metabolites and the recovery of brain function. However, the relationship between sleep disturbance and Mild Cognitive Impairment is not fully been determined. METHODS This was a community population-based cross-sectional study. A total of 1,443 participants from a village in the suburbs of Xi'an, China were enrolled in 2017. Sleep quality was evaluated using the Pittsburgh sleep quality index (PSQI), and sleep disturbance was defined as a PSQI score > 5. Mini-Mental State Examination (MMSE) was used to assess cognitive function and Mild Cognitive Impairment(MCI) was defined as the MMSE score less than cutoff values and meets the diagnostic criteria. Univariate and multivariate analyses were used to analyze the relationships between sleep disturbance and MCI. RESULTS Among 1,443 subjects, 69(4.78%) had MCI, and 830 (57.52%) had sleep disturbance. In bivariate analysis, MCI was associated with sleep disturbance (ρ = 0.094, P<0.001). In the binary logistic regression, MCI was positively associated with the sleep disturbance (OR = 2.027, 95%CI = 1.112-3.698, P = 0.021). In the internal constitution of PSQI, MCI was negatively associated with the habitual sleep efficiency (OR = 0.447, 95%CI = 0.299-0.669, P < 0.001). Compared with waking up before or at 7 am, waking up after 7 am (OR = 0.555, 95%CI = 0.309-0.995, P = 0.048), or 8 am (OR = 0.296, 95%CI = 0.097-0.902, P = 0.032) was probably more likely to have normal cognition. However, people who slept more than 8 h a day might be more likely to suffer from MCI (OR = 5.560, 95%CI = 1.419-21.789, P = 0.014). CONCLUSION Sleep disturbance is associated with Mild Cognitive Impairment. However, the causal relationship between them is not clear. It needs to be further studied.
Collapse
Affiliation(s)
- Fan Gao
- grid.452438.c0000 0004 1760 8119Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, 277 West Yanta Rd, 710061 Xi’an, China
| | - Shan Wei
- grid.452438.c0000 0004 1760 8119Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, 277 West Yanta Rd, 710061 Xi’an, China
| | - Liangjun Dang
- grid.452438.c0000 0004 1760 8119Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, 277 West Yanta Rd, 710061 Xi’an, China
| | - Yao Gao
- grid.452438.c0000 0004 1760 8119Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, 277 West Yanta Rd, 710061 Xi’an, China
| | - Ling Gao
- grid.452438.c0000 0004 1760 8119Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, 277 West Yanta Rd, 710061 Xi’an, China
| | - Suhang Shang
- grid.452438.c0000 0004 1760 8119Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, 277 West Yanta Rd, 710061 Xi’an, China
| | - Chen Chen
- grid.452438.c0000 0004 1760 8119Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, 277 West Yanta Rd, 710061 Xi’an, China
| | - Kang Huo
- grid.452438.c0000 0004 1760 8119Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, 277 West Yanta Rd, 710061 Xi’an, China
| | - Jingyi Wang
- Huyi Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Jin Wang
- grid.452438.c0000 0004 1760 8119Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, 277 West Yanta Rd, 710061 Xi’an, China
| | - Qiumin Qu
- grid.452438.c0000 0004 1760 8119Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, 277 West Yanta Rd, 710061 Xi’an, China
| |
Collapse
|
6
|
Harrington YA, Parisi JM, Duan D, Rojo-Wissar DM, Holingue C, Spira AP. Sex Hormones, Sleep, and Memory: Interrelationships Across the Adult Female Lifespan. Front Aging Neurosci 2022; 14:800278. [PMID: 35912083 PMCID: PMC9331168 DOI: 10.3389/fnagi.2022.800278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 06/09/2022] [Indexed: 01/26/2023] Open
Abstract
As the population of older adults grows, so will the prevalence of aging-related conditions, including memory impairments and sleep disturbances, both of which are more common among women. Compared to older men, older women are up to twice as likely to experience sleep disturbances and are at a higher risk of cognitive decline and Alzheimer's disease and related dementias (ADRD). These sex differences may be attributed in part to fluctuations in levels of female sex hormones (i.e., estrogen and progesterone) that occur across the adult female lifespan. Though women tend to experience the most significant sleep and memory problems during the peri-menopausal period, changes in memory and sleep have also been observed across the menstrual cycle and during pregnancy. Here, we review current knowledge on the interrelationships among female sex hormones, sleep, and memory across the female lifespan, propose possible mediating and moderating mechanisms linking these variables and describe implications for ADRD risk in later life.
Collapse
Affiliation(s)
- Yasmin A. Harrington
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Jeanine M. Parisi
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Daisy Duan
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Darlynn M. Rojo-Wissar
- The Initiative on Stress, Trauma, and Resilience (STAR), Department of Psychiatry and Human Behavior, Center for Behavioral and Preventive Medicine, The Miriam Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Calliope Holingue
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Center for Autism and Related Disorders, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Adam P. Spira
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Johns Hopkins Center on Aging and Health, Baltimore, MD, United States
| |
Collapse
|