1
|
Browne JD, Fraiser R, Cai Y, Leung D, Leung A, Vaninetti M. Unveiling the phantom: What neuroimaging has taught us about phantom limb pain. Brain Behav 2022; 12:e2509. [PMID: 35218308 PMCID: PMC8933774 DOI: 10.1002/brb3.2509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/05/2021] [Accepted: 01/11/2022] [Indexed: 11/08/2022] Open
Abstract
Phantom limb pain (PLP) is a complicated condition with diverse clinical challenges. It consists of pain perception of a previously amputated limb. The exact pain mechanism is disputed and includes mechanisms involving cerebral, peripheral, and spinal origins. Such controversy limits researchers' and clinicians' ability to develop consistent therapeutics or management. Neuroimaging is an essential tool that can address this problem. This review explores diffusion tensor imaging, functional magnetic resonance imaging, electroencephalography, and magnetoencephalography in the context of PLP. These imaging modalities have distinct mechanisms, implications, applications, and limitations. Diffusion tensor imaging can outline structural changes and has surgical applications. Functional magnetic resonance imaging captures functional changes with spatial resolution and has therapeutic applications. Electroencephalography and magnetoencephalography can identify functional changes with a strong temporal resolution. Each imaging technique provides a unique perspective and they can be used in concert to reveal the true nature of PLP. Furthermore, researchers can utilize the respective strengths of each neuroimaging technique to support the development of innovative therapies. PLP exemplifies how neuroimaging and clinical management are intricately connected. This review can assist clinicians and researchers seeking a foundation for applications and understanding the limitations of neuroimaging techniques in the context of PLP.
Collapse
Affiliation(s)
- Jonathan D Browne
- School of Medicine, California University of Science and Medicine, Colton, California, USA
| | - Ryan Fraiser
- Center for Pain Medicine, University of California San Diego, La Jolla, California, USA
| | - Yi Cai
- Center for Pain Medicine, University of California San Diego, La Jolla, California, USA
| | - Dillon Leung
- College of Letters and Science, University of California Berkeley, Berkeley, California, USA
| | - Albert Leung
- Center for Pain Medicine, University of California San Diego, La Jolla, California, USA
| | - Michael Vaninetti
- Center for Pain Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
2
|
Elias GJB, Loh A, Gwun D, Pancholi A, Boutet A, Neudorfer C, Germann J, Namasivayam A, Gramer R, Paff M, Lozano AM. Deep brain stimulation of the brainstem. Brain 2021; 144:712-723. [PMID: 33313788 DOI: 10.1093/brain/awaa374] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/31/2020] [Accepted: 08/17/2020] [Indexed: 01/02/2023] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus, pallidum, and thalamus is an established therapy for various movement disorders. Limbic targets have also been increasingly explored for their application to neuropsychiatric and cognitive disorders. The brainstem constitutes another DBS substrate, although the existing literature on the indications for and the effects of brainstem stimulation remains comparatively sparse. The objective of this review was to provide a comprehensive overview of the pertinent anatomy, indications, and reported stimulation-induced acute and long-term effects of existing white and grey matter brainstem DBS targets. We systematically searched the published literature, reviewing clinical trial articles pertaining to DBS brainstem targets. Overall, 164 studies describing brainstem DBS were identified. These studies encompassed 10 discrete structures: periaqueductal/periventricular grey (n = 63), pedunculopontine nucleus (n = 48), ventral tegmental area (n = 22), substantia nigra (n = 9), mesencephalic reticular formation (n = 7), medial forebrain bundle (n = 8), superior cerebellar peduncles (n = 3), red nucleus (n = 3), parabrachial complex (n = 2), and locus coeruleus (n = 1). Indications for brainstem DBS varied widely and included central neuropathic pain, axial symptoms of movement disorders, headache, depression, and vegetative state. The most promising results for brainstem DBS have come from targeting the pedunculopontine nucleus for relief of axial motor deficits, periaqueductal/periventricular grey for the management of central neuropathic pain, and ventral tegmental area for treatment of cluster headaches. Brainstem DBS has also acutely elicited numerous motor, limbic, and autonomic effects. Further work involving larger, controlled trials is necessary to better establish the therapeutic potential of DBS in this complex area.
Collapse
Affiliation(s)
- Gavin J B Elias
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Aaron Loh
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Dave Gwun
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Aditya Pancholi
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada.,Joint Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Clemens Neudorfer
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Jürgen Germann
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Andrew Namasivayam
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Robert Gramer
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Michelle Paff
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| |
Collapse
|
3
|
Kringelbach ML, Deco G. Brain States and Transitions: Insights from Computational Neuroscience. Cell Rep 2021; 32:108128. [PMID: 32905760 DOI: 10.1016/j.celrep.2020.108128] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/22/2020] [Accepted: 08/19/2020] [Indexed: 11/25/2022] Open
Abstract
Within the field of computational neuroscience there are great expectations of finding new ways to rebalance the complex dynamic system of the human brain through controlled pharmacological or electromagnetic perturbation. Yet many obstacles remain between the ability to accurately predict how and where best to perturb to force a transition from one brain state to another. The foremost challenge is a commonly agreed definition of a given brain state. Recent progress in computational neuroscience has made it possible to robustly define brain states and force transitions between them. Here, we review the state of the art and propose a framework for determining the functional hierarchical organization describing any given brain state. We describe the latest advances in creating sophisticated whole-brain computational models with interacting neuronal and neurotransmitter systems that can be studied fully in silico to predict and design novel pharmacological and electromagnetic interventions to rebalance them in disease.
Collapse
Affiliation(s)
- Morten L Kringelbach
- Department of Psychiatry, University of Oxford, Oxford, UK; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK.
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona 08018, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona 08010, Spain; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany; School of Psychological Sciences, Monash University, Melbourne, Clayton, VIC 3800, Australia.
| |
Collapse
|
4
|
Jobst BM, Atasoy S, Ponce-Alvarez A, Sanjuán A, Roseman L, Kaelen M, Carhart-Harris R, Kringelbach ML, Deco G. Increased sensitivity to strong perturbations in a whole-brain model of LSD. Neuroimage 2021; 230:117809. [PMID: 33524579 PMCID: PMC8063176 DOI: 10.1016/j.neuroimage.2021.117809] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/02/2021] [Accepted: 01/25/2021] [Indexed: 02/09/2023] Open
Abstract
Novel offline perturbational method applied on functional magnetic resonance imaging (fMRI) data under the effect of lysergic acid diethylamide (LSD). Shift of brain's global working point to more complex dynamics after LSD intake. Consistently longer recovery time after model perturbation under LSD influence. Strongest effects in resting state networks relevant for psychedelic experience. Higher response diversity across brain regions under LSD influence after an external in silico perturbation.
Lysergic acid diethylamide (LSD) is a potent psychedelic drug, which has seen a revival in clinical and pharmacological research within recent years. Human neuroimaging studies have shown fundamental changes in brain-wide functional connectivity and an expansion of dynamical brain states, thus raising the question about a mechanistic explanation of the dynamics underlying these alterations. Here, we applied a novel perturbational approach based on a whole-brain computational model, which opens up the possibility to externally perturb different brain regions in silico and investigate differences in dynamical stability of different brain states, i.e. the dynamical response of a certain brain region to an external perturbation. After adjusting the whole-brain model parameters to reflect the dynamics of functional magnetic resonance imaging (fMRI) BOLD signals recorded under the influence of LSD or placebo, perturbations of different brain areas were simulated by either promoting or disrupting synchronization in the regarding brain region. After perturbation offset, we quantified the recovery characteristics of the brain area to its basal dynamical state with the Perturbational Integration Latency Index (PILI) and used this measure to distinguish between the two brain states. We found significant changes in dynamical complexity with consistently higher PILI values after LSD intake on a global level, which indicates a shift of the brain's global working point further away from a stable equilibrium as compared to normal conditions. On a local level, we found that the largest differences were measured within the limbic network, the visual network and the default mode network. Additionally, we found a higher variability of PILI values across different brain regions after LSD intake, indicating higher response diversity under LSD after an external perturbation. Our results provide important new insights into the brain-wide dynamical changes underlying the psychedelic state - here provoked by LSD intake - and underline possible future clinical applications of psychedelic drugs in particular psychiatric disorders.
Collapse
Affiliation(s)
- Beatrice M Jobst
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Calle Ramón Trias Fargas 25-27, 08005 Barcelona, Spain.
| | - Selen Atasoy
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom; Center of Music in the Brain (MIB), Clinical Medicine, Aarhus University, Denmark
| | - Adrián Ponce-Alvarez
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Calle Ramón Trias Fargas 25-27, 08005 Barcelona, Spain
| | - Ana Sanjuán
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Calle Ramón Trias Fargas 25-27, 08005 Barcelona, Spain
| | - Leor Roseman
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, United Kingdom
| | - Mendel Kaelen
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, United Kingdom
| | - Robin Carhart-Harris
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, United Kingdom
| | - Morten L Kringelbach
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom; Center of Music in the Brain (MIB), Clinical Medicine, Aarhus University, Denmark
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Calle Ramón Trias Fargas 25-27, 08005 Barcelona, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; School of Psychological Sciences, Monash University, Clayton, Melbourne, Australia
| |
Collapse
|
5
|
Morrison M, Kutz JN. Nonlinear control of networked dynamical systems. IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 2021; 8:174-189. [PMID: 33997094 PMCID: PMC8117950 DOI: 10.1109/tnse.2020.3032117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We develop a principled mathematical framework for controlling nonlinear, networked dynamical systems. Our method integrates dimensionality reduction, bifurcation theory, and emerging model discovery tools to find low-dimensional subspaces where feed-forward control can be used to manipulate a system to a desired outcome. The method leverages the fact that many high-dimensional networked systems have many fixed points, allowing for the computation of control signals that will move the system between any pair of fixed points. The sparse identification of nonlinear dynamics (SINDy) algorithm is used to fit a nonlinear dynamical system to the evolution on the dominant, low-rank subspace. This then allows us to use bifurcation theory to find collections of constant control signals that will produce the desired objective path for a prescribed outcome. Specifically, we can destabilize a given fixed point while making the target fixed point an attractor. The discovered control signals can be easily projected back to the original high-dimensional state and control space. We illustrate our nonlinear control procedure on established bistable, low-dimensional biological systems, showing how control signals are found that generate switches between the fixed points. We then demonstrate our control procedure for high-dimensional systems on random high-dimensional networks and Hopfield memory networks.
Collapse
Affiliation(s)
- Megan Morrison
- Department of Applied Mathematics, University of Washington, Seattle, WA, 98195 USA
| | - J Nathan Kutz
- Department of Applied Mathematics, University of Washington, Seattle, WA, 98195 USA
| |
Collapse
|
6
|
Deco G, Kringelbach ML. Turbulent-like Dynamics in the Human Brain. Cell Rep 2020; 33:108471. [PMID: 33296654 PMCID: PMC7725672 DOI: 10.1016/j.celrep.2020.108471] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/07/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
Turbulence facilitates fast energy/information transfer across scales in physical systems. These qualities are important for brain function, but it is currently unknown if the dynamic intrinsic backbone of the brain also exhibits turbulence. Using large-scale neuroimaging empirical data from 1,003 healthy participants, we demonstrate turbulent-like human brain dynamics. Furthermore, we build a whole-brain model with coupled oscillators to demonstrate that the best fit to the data corresponds to a region of maximally developed turbulent-like dynamics, which also corresponds to maximal sensitivity to the processing of external stimulations (information capability). The model shows the economy of anatomy by following the exponential distance rule of anatomical connections as a cost-of-wiring principle. This establishes a firm link between turbulent-like brain activity and optimal brain function. Overall, our results reveal a way of analyzing and modeling whole-brain dynamics that suggests a turbulent-like dynamic intrinsic backbone facilitating large-scale network communication.
Collapse
Affiliation(s)
- Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, 08018, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Spain; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany; School of Psychological Sciences, Monash University, Melbourne, Clayton, VIC 3800, Australia
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK; Department of Psychiatry, University of Oxford, Oxford, UK; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
7
|
Yousif N, Bain PG, Nandi D, Borisyuk R. A Population Model of Deep Brain Stimulation in Movement Disorders From Circuits to Cells. Front Hum Neurosci 2020; 14:55. [PMID: 32210779 PMCID: PMC7066497 DOI: 10.3389/fnhum.2020.00055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/05/2020] [Indexed: 01/04/2023] Open
Abstract
For more than 30 years, deep brain stimulation (DBS) has been used to target the symptoms of a number of neurological disorders and in particular movement disorders such as Parkinson’s disease (PD) and essential tremor (ET). It is known that the loss of dopaminergic neurons in the substantia nigra leads to PD, while the exact impact of this on the brain dynamics is not fully understood, the presence of beta-band oscillatory activity is thought to be pathological. The cause of ET, however, remains uncertain, however pathological oscillations in the thalamocortical-cerebellar network have been linked to tremor. Both of these movement disorders are treated with DBS, which entails the surgical implantation of electrodes into a patient’s brain. While DBS leads to an improvement in symptoms for many patients, the mechanisms underlying this improvement is not clearly understood, and computational modeling has been used extensively to improve this. Many of the models used to study DBS and its effect on the human brain have mainly utilized single neuron and single axon biophysical models. We have previously shown in separate models however, that the use of population models can shed much light on the mechanisms of the underlying pathological neural activity in PD and ET in turn, and on the mechanisms underlying DBS. Together, this work suggested that the dynamics of the cerebellar-basal ganglia thalamocortical network support oscillations at frequency range relevant to movement disorders. Here, we propose a new combined model of this network and present new results that demonstrate that both Parkinsonian oscillations in the beta band and oscillations in the tremor frequency range arise from the dynamics of such a network. We find regions in the parameter space demonstrating the different dynamics and go on to examine the transition from one oscillatory regime to another as well as the impact of DBS on these different types of pathological activity. This work will allow us to better understand the changes in brain activity induced by DBS, and allow us to optimize this clinical therapy, particularly in terms of target selection and parameter setting.
Collapse
Affiliation(s)
- Nada Yousif
- School of Engineering and Computer Science, University of Hertfordshire, Hatfield, United Kingdom
| | - Peter G Bain
- Division of Brain Sciences, Imperial College Healthcare NHS Trust, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Dipankar Nandi
- Division of Brain Sciences, Imperial College Healthcare NHS Trust, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Roman Borisyuk
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom.,Institute of Mathematical Problems of Biology, The Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
8
|
Dorsal anterior cingulate cortex (ACC) deep brain stimulation (DBS): a promising surgical option for the treatment of refractory thalamic pain syndrome (TPS). Acta Neurochir (Wien) 2019; 161:1579-1588. [PMID: 31209628 DOI: 10.1007/s00701-019-03975-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/05/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Neuroimaging evidences and previous successful case series of cingulotomy for cancer pain have disclosed the key-role of the dorsal anterior cingulate cortex (ACC) in the generation of the empathic and affective dimension of pain. The aim of this study is to assess the effectiveness and safety of ACC neuromodulation for the treatment of the thalamic pain syndrome (TPS), a chronic neuropathic disease often complicated by severe affective and emotional distress in the long term. METHOD From January 2015 to April 2017, 5 patients with pure drug-refractory TPS underwent ACC deep brain stimulation (DBS) at our institution. Quantitative assessment of pain and health-related quality of life were performed 1 day before surgery and postoperatively at 6 and 18 months by using the numeric rating scale (NRS), the 36-item short-form health survey (SF-36), and the McGill pain and the EuroQol5-domain questionnaires. RESULTS Mean age at surgery was 56.2 years (range, 47-66). NRS score improved by 37.9% at 6 months (range, - 22.2 to - 80%) and by 35% at 18 months (range, - 11.1 to - 80%). At the last follow-up, one patient reported a relevant pain reduction (NRS 2), only complaining of mild pain poorly interfering with activities of daily living. Concomitant improvements in the McGill and EuroQol5-domain pain questionnaires, SF-36 total and sub-item scores were also noticed at each follow-up. No surgical or stimulation-related complications occurred during the study period. CONCLUSIONS ACC DBS may be a safe and promising surgical option to alleviate discomfort and improve the overall quality of life in a patient affected by drug-resistant TPS. Further prospective, larger, and randomized studies are needed to validate these findings.
Collapse
|
9
|
Boring MJ, Jessen ZF, Wozny TA, Ward MJ, Whiteman AC, Richardson RM, Ghuman AS. Quantitatively validating the efficacy of artifact suppression techniques to study the cortical consequences of deep brain stimulation with magnetoencephalography. Neuroimage 2019; 199:366-374. [PMID: 31154045 DOI: 10.1016/j.neuroimage.2019.05.080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/16/2019] [Accepted: 05/29/2019] [Indexed: 11/17/2022] Open
Abstract
Deep brain stimulation (DBS) is an established and effective treatment for several movement disorders and is being developed to treat a host of neuropsychiatric disorders including epilepsy, chronic pain, obsessive compulsive disorder, and depression. However, the neural mechanisms through which DBS produces therapeutic benefits, and in some cases unwanted side effects, in these disorders are only partially understood. Non-invasive neuroimaging techniques that can assess the neural effects of active stimulation are important for advancing our understanding of the neural basis of DBS therapy. Magnetoencephalography (MEG) is a safe, passive imaging modality with relatively high spatiotemporal resolution, which makes it a potentially powerful method for examining the cortical network effects of DBS. However, the degree to which magnetic artifacts produced by stimulation and the associated hardware can be suppressed from MEG data, and the comparability between signals measured during DBS-on and DBS-off conditions, have not been fully quantified. The present study used machine learning methods in conjunction with a visual perception task, which should be relatively unaffected by DBS, to quantify how well neural data can be salvaged from artifact contamination introduced by DBS and how comparable DBS-on and DBS-off data are after artifact removal. Machine learning also allowed us to determine whether the spatiotemporal pattern of neural activity recorded during stimulation are comparable to those recorded when stimulation is off. The spatiotemporal patterns of visually evoked neural fields could be accurately classified in all 8 patients with DBS implants during both DBS-on and DBS-off conditions and performed comparably across those two conditions. Further, the classification accuracy for classifiers trained on the spatiotemporal patterns evoked during DBS-on trials and applied to DBS-off trials, and vice versa, were similar to that of the classifiers trained and tested on either trial type, demonstrating the comparability of these patterns across conditions. Together, these results demonstrate the ability of MEG preprocessing techniques, like temporal signal space separation, to salvage neural data from recordings contaminated with DBS artifacts and validate MEG as a powerful tool to study the cortical consequences of DBS.
Collapse
Affiliation(s)
- Matthew J Boring
- Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA; Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Zachary F Jessen
- Medical Scientist Training Program, Northwestern University, Chicago, IL, USA
| | - Thomas A Wozny
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael J Ward
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ashley C Whiteman
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - R Mark Richardson
- Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA; Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Avniel Singh Ghuman
- Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA; Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Corbett M, South E, Harden M, Eldabe S, Pereira E, Sedki I, Hall N, Woolacott N. Brain and spinal stimulation therapies for phantom limb pain: a systematic review. Health Technol Assess 2019; 22:1-94. [PMID: 30407905 DOI: 10.3310/hta22620] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Although many treatments exist for phantom limb pain (PLP), the evidence supporting them is limited and there are no guidelines for PLP management. Brain and spinal cord neurostimulation therapies are targeted at patients with chronic PLP but have yet to be systematically reviewed. OBJECTIVE To determine which types of brain and spinal stimulation therapy appear to be the best for treating chronic PLP. DESIGN Systematic reviews of effectiveness and epidemiology studies, and a survey of NHS practice. POPULATION All patients with PLP. INTERVENTIONS Invasive interventions - deep brain stimulation (DBS), motor cortex stimulation (MCS), spinal cord stimulation (SCS) and dorsal root ganglion (DRG) stimulation. Non-invasive interventions - repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS). MAIN OUTCOME MEASURES Phantom limb pain and quality of life. DATA SOURCES Twelve databases (including MEDLINE and EMBASE) and clinical trial registries were searched in May 2017, with no date limits applied. REVIEW METHODS Two reviewers screened titles and abstracts and full texts. Data extraction and quality assessments were undertaken by one reviewer and checked by another. A questionnaire was distributed to clinicians via established e-mail lists of two relevant clinical societies. All results were presented narratively with accompanying tables. RESULTS Seven randomised controlled trials (RCTs), 30 non-comparative group studies, 18 case reports and 21 epidemiology studies were included. Results from a good-quality RCT suggested short-term benefits of rTMS in reducing PLP, but not in reducing anxiety or depression. Small randomised trials of tDCS suggested the possibility of modest, short-term reductions in PLP. No RCTs of invasive therapies were identified. Results from small, non-comparative group studies suggested that, although many patients benefited from short-term pain reduction, far fewer maintained their benefits. Most studies had important methodological or reporting limitations and few studies reported quality-of-life data. The evidence on prognostic factors for the development of chronic PLP from the longitudinal studies also had important limitations. The results from these studies suggested that pre-amputation pain and early PLP intensity are good predictors of chronic PLP. Results from the cross-sectional studies suggested that the proportion of patients with severe chronic PLP is between around 30% and 40% of the chronic PLP population, and that around one-quarter of chronic PLP patients find their PLP to be either moderately or severely limiting or bothersome. There were 37 responses to the questionnaire distributed to clinicians. SCS and DRG stimulation are frequently used in the NHS but the prevalence of use of DBS and MCS was low. Most responders considered SCS and DRG stimulation to be at least sometimes effective. Neurosurgeons had mixed views on DBS, but most considered MCS to rarely be effective. Most clinicians thought that a randomised trial design could be successfully used to study neurostimulation therapies. LIMITATION There was a lack of robust research studies. CONCLUSIONS Currently available studies of the efficacy, effectiveness and safety of neurostimulation treatments do not provide robust, reliable results. Therefore, it is uncertain which treatments are best for chronic PLP. FUTURE WORK Randomised crossover trials, randomised N-of-1 trials and prospective registry trials are viable study designs for future research. STUDY REGISTRATION The study is registered as PROSPERO CRD42017065387. FUNDING The National Institute for Health Research Health Technology Assessment programme.
Collapse
Affiliation(s)
- Mark Corbett
- Centre for Reviews and Dissemination (CRD), University of York, York, UK
| | - Emily South
- Centre for Reviews and Dissemination (CRD), University of York, York, UK
| | - Melissa Harden
- Centre for Reviews and Dissemination (CRD), University of York, York, UK
| | - Sam Eldabe
- James Cook University Hospital, South Tees Hospitals NHS Foundation Trust, Middlesborough, UK
| | - Erlick Pereira
- Academic Neurosurgery Unit, St George's, University of London, London, UK
| | - Imad Sedki
- Royal National Orthopaedic Hospital, Stanmore, UK
| | - Neil Hall
- James Cook University Hospital, South Tees Hospitals NHS Foundation Trust, Middlesborough, UK
| | - Nerys Woolacott
- Centre for Reviews and Dissemination (CRD), University of York, York, UK
| |
Collapse
|
11
|
Jakobs M, Fomenko A, Lozano AM, Kiening KL. Cellular, molecular, and clinical mechanisms of action of deep brain stimulation-a systematic review on established indications and outlook on future developments. EMBO Mol Med 2019; 11:e9575. [PMID: 30862663 PMCID: PMC6460356 DOI: 10.15252/emmm.201809575] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/23/2018] [Accepted: 02/20/2019] [Indexed: 12/31/2022] Open
Abstract
Deep brain stimulation (DBS) has been successfully used to treat movement disorders, such as Parkinson's disease, for more than 25 years and heralded the advent of electrical neuromodulation to treat diseases with dysregulated neuronal circuits. DBS is now superseding ablative techniques, such as stereotactic radiofrequency lesions. While serendipity has played a role in developing DBS as a therapy, research during the past two decades has shown that electrical neuromodulation is far more than a functional lesion that can be switched on and off. This understanding broadens the field to enable new types of stimulation, clinical indications, and research. This review highlights the complex effects of DBS from the single cell to the neuronal network. Specifically, we examine the electrical, cellular, molecular, and neurochemical mechanisms of DBS as applied to Parkinson's disease and other emerging applications.
Collapse
Affiliation(s)
- Martin Jakobs
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Anton Fomenko
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Karl L Kiening
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
12
|
Improved voiding function by deep brain stimulation in traumatic brain-injured animals with bladder dysfunctions. Int Urol Nephrol 2018; 51:41-52. [PMID: 30474784 DOI: 10.1007/s11255-018-2028-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 11/07/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Traumatic brain injury (TBI) is a global scenario with high mortality and disability, which does not have an effectual and approved therapy till now. Bladder dysfunction is a major symptom after TBI, and this study deals with the alleviation of bladder function in TBI rats, with the aid of deep brain stimulations (DBS). METHODS TBI was induced by weight drop model (WDM) and standardized with the experimental subjects with variable heights for weight dropping. The rats survived after TBI were considered for bladder dysfunction observations. DBS with variable stimulation parameters like cystometric analysis and MRI studies were also performed. RESULTS After experimental studies, TBI 2-m-height crash was determined as suitable parameter due to minimal mortality rate and significant reduction in the voiding efficiency from 67 to 28%, whereas DBS significantly reversed the value of voiding efficiency to 65-84%. MRI studies revealed the severity of TBI impact and DBS localization. CONCLUSION The results showed profound therapeutic effect of PnO-DBS on voiding functions and bladder control on TBI rats.
Collapse
|
13
|
The Current State of Deep Brain Stimulation for Chronic Pain and Its Context in Other Forms of Neuromodulation. Brain Sci 2018; 8:brainsci8080158. [PMID: 30127290 PMCID: PMC6119957 DOI: 10.3390/brainsci8080158] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 12/26/2022] Open
Abstract
Chronic intractable pain is debilitating for those touched, affecting 5% of the population. Deep brain stimulation (DBS) has fallen out of favour as the centrally implantable neurostimulation of choice for chronic pain since the 1970–1980s, with some neurosurgeons favouring motor cortex stimulation as the ‘last chance saloon’. This article reviews the available data and professional opinion of the current state of DBS as a treatment for chronic pain, placing it in the context of other neuromodulation therapies. We suggest DBS, with its newer target, namely anterior cingulate cortex (ACC), should not be blacklisted on the basis of a lack of good quality study data, which often fails to capture the merits of the treatment.
Collapse
|
14
|
Perturbation of whole-brain dynamics in silico reveals mechanistic differences between brain states. Neuroimage 2018; 169:46-56. [DOI: 10.1016/j.neuroimage.2017.12.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 11/27/2017] [Accepted: 12/04/2017] [Indexed: 01/11/2023] Open
|
15
|
Harmsen IE, Rowland NC, Wennberg RA, Lozano AM. Characterizing the effects of deep brain stimulation with magnetoencephalography: A review. Brain Stimul 2018; 11:481-491. [PMID: 29331287 DOI: 10.1016/j.brs.2017.12.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 12/26/2017] [Accepted: 12/28/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) is an important form of neuromodulation that is being applied to patients with motor, mood, or cognitive circuit disorders. Despite the efficacy and widespread use of DBS, the precise mechanisms by which it works remain unknown. Over the last decade, magnetoencephalography (MEG) has become an important functional neuroimaging technique used to study DBS. OBJECTIVE This review summarizes the literature related to the use of MEG to characterize the effects of DBS. METHODS Peer reviewed literature on DBS-MEG was obtained by searching the publicly accessible literature databases available on PubMed. The abstracts of all reports were scanned and publications which combined DBS-MEG in human subjects were selected for review. RESULTS A total of 32 publications met the selection criteria, and included studies which applied DBS for Parkinson's disease, dystonia, chronic pain, phantom limb pain, cluster headache, and epilepsy. DBS-MEG studies provided valuable insights into network connectivity, pathological coupling, and the modulatory effects of DBS. CONCLUSIONS As DBS-MEG research continues to develop, we can expect to gain a better understanding of diverse pathophysiological networks and their response to DBS. This knowledge will improve treatment efficacy, reduce side-effects, reveal optimal surgical targets, and advance the development of closed-loop neuromodulation.
Collapse
Affiliation(s)
- Irene E Harmsen
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Toronto Western Research Institute, Krembil Discovery Tower, University Health Network, Toronto, Ontario, Canada.
| | - Nathan C Rowland
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
| | - Richard A Wennberg
- Mitchell Goldhar Magnetoencephalography Unit, Krembil Neuroscience Centre, Toronto Western Hospital, Toronto, Ontario, Canada; Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Toronto Western Research Institute, Krembil Discovery Tower, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Saenger VM, Kahan J, Foltynie T, Friston K, Aziz TZ, Green AL, van Hartevelt TJ, Cabral J, Stevner ABA, Fernandes HM, Mancini L, Thornton J, Yousry T, Limousin P, Zrinzo L, Hariz M, Marques P, Sousa N, Kringelbach ML, Deco G. Uncovering the underlying mechanisms and whole-brain dynamics of deep brain stimulation for Parkinson's disease. Sci Rep 2017; 7:9882. [PMID: 28851996 PMCID: PMC5574998 DOI: 10.1038/s41598-017-10003-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 06/28/2017] [Indexed: 12/01/2022] Open
Abstract
Deep brain stimulation (DBS) for Parkinson's disease is a highly effective treatment in controlling otherwise debilitating symptoms. Yet the underlying brain mechanisms are currently not well understood. Whole-brain computational modeling was used to disclose the effects of DBS during resting-state functional Magnetic Resonance Imaging in ten patients with Parkinson's disease. Specifically, we explored the local and global impact that DBS has in creating asynchronous, stable or critical oscillatory conditions using a supercritical bifurcation model. We found that DBS shifts global brain dynamics of patients towards a Healthy regime. This effect was more pronounced in very specific brain areas such as the thalamus, globus pallidus and orbitofrontal regions of the right hemisphere (with the left hemisphere not analyzed given artifacts arising from the electrode lead). Global aspects of integration and synchronization were also rebalanced. Empirically, we found higher communicability and coherence brain measures during DBS-ON compared to DBS-OFF. Finally, using our model as a framework, artificial in silico DBS was applied to find potential alternative target areas for stimulation and whole-brain rebalancing. These results offer important insights into the underlying large-scale effects of DBS as well as in finding novel stimulation targets, which may offer a route to more efficacious treatments.
Collapse
Affiliation(s)
- Victor M Saenger
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, 08018, Spain
| | - Joshua Kahan
- Sobell Department of Motor Neuroscience & Movement Disorders, UCL Institute of Neurology, London, WC1N 3BG, United Kingdom
| | - Tom Foltynie
- Sobell Department of Motor Neuroscience & Movement Disorders, UCL Institute of Neurology, London, WC1N 3BG, United Kingdom
| | - Karl Friston
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom
| | - Tipu Z Aziz
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, United Kingdom
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Alexander L Green
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, United Kingdom
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Tim J van Hartevelt
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, United Kingdom
- Center for Music in the Brain, Aarhus University, Aarhus, 8000, Aarhus C, Denmark
| | - Joana Cabral
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, United Kingdom
- Center for Music in the Brain, Aarhus University, Aarhus, 8000, Aarhus C, Denmark
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057, Braga, Portugal
| | - Angus B A Stevner
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, United Kingdom
- Center for Music in the Brain, Aarhus University, Aarhus, 8000, Aarhus C, Denmark
| | - Henrique M Fernandes
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, United Kingdom
- Center for Music in the Brain, Aarhus University, Aarhus, 8000, Aarhus C, Denmark
| | - Laura Mancini
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, WC1N 3BG, United Kingdom
| | - John Thornton
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, WC1N 3BG, United Kingdom
| | - Tarek Yousry
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, WC1N 3BG, United Kingdom
| | - Patricia Limousin
- Sobell Department of Motor Neuroscience & Movement Disorders, UCL Institute of Neurology, London, WC1N 3BG, United Kingdom
| | - Ludvic Zrinzo
- Sobell Department of Motor Neuroscience & Movement Disorders, UCL Institute of Neurology, London, WC1N 3BG, United Kingdom
| | - Marwan Hariz
- Sobell Department of Motor Neuroscience & Movement Disorders, UCL Institute of Neurology, London, WC1N 3BG, United Kingdom
| | - Paulo Marques
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, 4710-057, Braga, Portugal
- Clinical Academic Center, 4710-057, Braga, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, 4710-057, Braga, Portugal
- Clinical Academic Center, 4710-057, Braga, Portugal
| | - Morten L Kringelbach
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, United Kingdom.
- Center for Music in the Brain, Aarhus University, Aarhus, 8000, Aarhus C, Denmark.
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, 08018, Spain
- Instituci Catalana de la Recerca i Estudis Avanats (ICREA), Universitat Pompeu Fabra, Barcelona, 08010, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
- School of Psychological Sciences, Monash University, Clayton VIC, 3800, Melbourne, Australia
| |
Collapse
|
17
|
Long-Term Results of Deep Brain Stimulation of the Anterior Cingulate Cortex for Neuropathic Pain. World Neurosurg 2017; 106:625-637. [PMID: 28710048 DOI: 10.1016/j.wneu.2017.06.173] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) of the anterior cingulate cortex (ACC) is a recent technique that has shown some promising short-term results in patients with chronic refractory neuropathic pain. Three years after the first case series, we assessed its efficacy on a larger cohort, with longer follow-up. METHODS Twenty-four patients (19 males; average age, 49.1 years) with neuropathic pain underwent bilateral ACC DBS. Patient-reported outcome measures were collected before and after surgery, using the Numerical Rating Scale (NRS), Short-Form 36 quality of life (SF-36), McGill Pain Questionnaire (MPQ), and EuroQol 5-domain quality of life (EQ-5D) questionnaire. RESULTS Twenty-two patients after a trial week were fully internalized and 12 had a mean follow-up of 38.9 months. Six months after surgery the mean NRS score decreased from 8.0 to 4.27 (P = 0.004). There was a significant improvement in the MPQ (mean, -36%; P = 0.021) and EQ-5D score significantly decreased (mean, -21%; P = 0.036). The physical functioning domain of SF-36 was significantly improved (mean, +54.2%; P = 0.01). Furthermore, in 83% of these patients, at 6 months, NRS score was improved by 60% (P < 0.001) and MPQ decreased by 47% (P < 0.01). After 1 year, NRS score decreased by 43% (P < 0.01), EQ-5D was significantly reduced (mean, -30.8; P = 0.05) and significant improvements were also observed for different domains of the SF-36. At longer follow-ups, efficacy was sustained up to 42 months in some patients, with an NRS score as low as 3. CONCLUSIONS Follow-up results confirm that ACC DBS alleviates chronic neuropathic pain refractory to pharmacotherapy and improves quality of life in many patients.
Collapse
|
18
|
Rejecting deep brain stimulation artefacts from MEG data using ICA and mutual information. J Neurosci Methods 2016; 268:131-41. [PMID: 27090949 DOI: 10.1016/j.jneumeth.2016.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 11/21/2022]
Abstract
BACKGROUND Recording brain activity during deep brain stimulation (DBS) using magnetoencephalography (MEG) can potentially help clarifying the neurophysiological mechanism of DBS. The DBS artefact, however, distorts MEG data significantly. We present an artefact rejection approach to remove the DBS artefact from MEG data. NEW METHODS We developed an approach consisting of four consecutive steps: (i) independent component analysis was used to decompose MEG data to independent components (ICs); (ii) mutual information (MI) between stimulation signal and all ICs was calculated; (iii) artefactual ICs were identified by means of an MI threshold; and (iv) the MEG signal was reconstructed using only non-artefactual ICs. This approach was applied to MEG data from five Parkinson's disease patients with implanted DBS stimulators. MEG was recorded with DBS ON (unilateral stimulation of the subthalamic nucleus) and DBS OFF during two experimental conditions: a visual attention task and alternating right and left median nerve stimulation. RESULTS With the presented approach most of the artefact could be removed. The signal of interest could be retrieved in both conditions. COMPARISON WITH EXISTING METHODS In contrast to existing artefact rejection methods for MEG-DBS data (tSSS and S(3)P), the proposed method uses the actual artefact source, i.e. the stimulation signal, as reference signal. CONCLUSIONS Using the presented method, the DBS artefact can be significantly rejected and the physiological data can be restored. This will facilitate research addressing the impact of DBS on brain activity during rest and various tasks.
Collapse
|
19
|
Russo JF, Sheth SA. Deep brain stimulation of the dorsal anterior cingulate cortex for the treatment of chronic neuropathic pain. Neurosurg Focus 2016; 38:E11. [PMID: 26030699 DOI: 10.3171/2015.3.focus1543] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chronic neuropathic pain is estimated to affect 3%-4.5% of the worldwide population. It is associated with significant loss of productive time, withdrawal from the workforce, development of mood disorders such as depression and anxiety, and disruption of family and social life. Current medical therapeutics often fail to adequately treat chronic neuropathic pain. Deep brain stimulation (DBS) targeting subcortical structures such as the periaqueductal gray, the ventral posterior lateral and medial thalamic nuclei, and the internal capsule has been investigated for the relief of refractory neuropathic pain over the past 3 decades. Recent work has identified the dorsal anterior cingulate cortex (dACC) as a new potential neuromodulation target given its central role in cognitive and affective processing. In this review, the authors briefly discuss the history of DBS for chronic neuropathic pain in the United States and present evidence supporting dACC DBS for this indication. They review existent literature on dACC DBS and summarize important findings from imaging and neurophysiological studies supporting a central role for the dACC in the processing of chronic neuropathic pain. The available neurophysiological and empirical clinical evidence suggests that dACC DBS is a viable therapeutic option for the treatment of chronic neuropathic pain and warrants further investigation.
Collapse
Affiliation(s)
- Jennifer F Russo
- 1Columbia University College of Physicians and Surgeons and.,2Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| | - Sameer A Sheth
- 2Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| |
Collapse
|
20
|
Sierakowski A, Jing S, Poel J, Elliot D. Transcutaneous Peripheral Nerve Stimulation for the Treatment of Neuropathic Pain in the Upper Limb. J Hand Surg Asian Pac Vol 2016; 21:37-43. [DOI: 10.1142/s2424835516500041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background: A small number of patients develop intractable peripheral nerve pain following injury or surgery to the upper limb that is refractory to pharmacological treatment. This study reports our results of using transcutaneous peripheral nerve stimulation (TPNS), a non-invasive form of neuromodulation, to treat this difficult problem. Methods: Seventy-two patients were treated for intractable pain in the upper limb using this technique. Electrical current was delivered transcutaneously through a handheld probe, placed on the skin overlying the affected peripheral nerve proximal to the site of pain. Pain severity was determined before and immediately after treatment by subjective patient self-assessment using a visual analogue pain scale. Pre-post treatment changes in pain severity were analysed by Student's test for paired data. Outcome in respect of overall effectiveness of this treatment, was graded according to the maximum duration of pain relief achieved. Results: Overall, TPNS reduced pain intensity from 8.4 (SD 1.6) before treatment to 4.2 (SD 3.5) immediately after treatment, a highly significant effect ([Formula: see text]). The treatment achieved cure in 8/72 (11%) of our patients and a useful therapeutic outcome (pain relief ≥ 1 day) in 27/72 (38%). The treatment failed in 37/72 (51%). Conclusions: TPNS warrants consideration as a therapy for neuropathic pain in the upper limb after drug treatment has failed and before offering surgery or spinal root stimulation.
Collapse
Affiliation(s)
- A. Sierakowski
- Department of Hand Surgery, St Andrew's Centre For Plastic Surgery, Broomfield Hospital, Chelmsford, Essex, UK
| | - S.S. Jing
- Department of Hand Surgery, St Andrew's Centre For Plastic Surgery, Broomfield Hospital, Chelmsford, Essex, UK
| | - J. Poel
- Department of Hand Surgery, St Andrew's Centre For Plastic Surgery, Broomfield Hospital, Chelmsford, Essex, UK
| | - D. Elliot
- Department of Hand Surgery, St Andrew's Centre For Plastic Surgery, Broomfield Hospital, Chelmsford, Essex, UK
| |
Collapse
|
21
|
Hart MG, Ypma RJF, Romero-Garcia R, Price SJ, Suckling J. Graph theory analysis of complex brain networks: new concepts in brain mapping applied to neurosurgery. J Neurosurg 2015; 124:1665-78. [PMID: 26544769 DOI: 10.3171/2015.4.jns142683] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neuroanatomy has entered a new era, culminating in the search for the connectome, otherwise known as the brain's wiring diagram. While this approach has led to landmark discoveries in neuroscience, potential neurosurgical applications and collaborations have been lagging. In this article, the authors describe the ideas and concepts behind the connectome and its analysis with graph theory. Following this they then describe how to form a connectome using resting state functional MRI data as an example. Next they highlight selected insights into healthy brain function that have been derived from connectome analysis and illustrate how studies into normal development, cognitive function, and the effects of synthetic lesioning can be relevant to neurosurgery. Finally, they provide a précis of early applications of the connectome and related techniques to traumatic brain injury, functional neurosurgery, and neurooncology.
Collapse
Affiliation(s)
- Michael G Hart
- Brain Mapping Unit, Department of Psychiatry, and.,Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital; and
| | - Rolf J F Ypma
- Brain Mapping Unit, Department of Psychiatry, and.,Hughes Hall, University of Cambridge, United Kingdom
| | | | - Stephen J Price
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital; and
| | | |
Collapse
|
22
|
Boccard SGJ, Pereira EAC, Aziz TZ. Deep brain stimulation for chronic pain. J Clin Neurosci 2015; 22:1537-43. [PMID: 26122383 DOI: 10.1016/j.jocn.2015.04.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 04/11/2015] [Indexed: 11/29/2022]
Abstract
Deep brain stimulation (DBS) is a neurosurgical intervention popularised in movement disorders such as Parkinson's disease, and also reported to improve symptoms of epilepsy, Tourette's syndrome, obsessive compulsive disorders and cluster headache. Since the 1950s, DBS has been used as a treatment to relieve intractable pain of several aetiologies including post stroke pain, phantom limb pain, facial pain and brachial plexus avulsion. Several patient series have shown benefits in stimulating various brain areas, including the sensory thalamus (ventral posterior lateral and medial), the periaqueductal and periventricular grey, or, more recently, the anterior cingulate cortex. However, this technique remains "off label" in the USA as it does not have Federal Drug Administration approval. Consequently, only a small number of surgeons report DBS for pain using current technology and techniques and few regions approve it. Randomised, blinded and controlled clinical trials that may use novel trial methodologies are desirable to evaluate the efficacy of DBS in patients who are refractory to other therapies. New imaging techniques, including tractography, may help optimise electrode placement and clinical outcome.
Collapse
Affiliation(s)
- Sandra G J Boccard
- Oxford Functional Neurosurgery and Experimental Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, West Wing, Level 6, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK.
| | - Erlick A C Pereira
- Oxford Functional Neurosurgery and Experimental Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, West Wing, Level 6, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| | - Tipu Z Aziz
- Oxford Functional Neurosurgery and Experimental Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, West Wing, Level 6, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| |
Collapse
|
23
|
Kringelbach ML. A Balanced Mind: A Network Perspective on Mood and Motivation Brain Pathways. Brain Stimul 2015. [DOI: 10.1002/9781118568323.ch2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
24
|
Pereira EAC, Boccard SG, Aziz TZ. Deep brain stimulation for pain: distinguishing dorsolateral somesthetic and ventromedial affective targets. Neurosurgery 2015; 61 Suppl 1:175-81. [PMID: 25032548 DOI: 10.1227/neu.0000000000000397] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Erlick A C Pereira
- *Oxford Functional Neurosurgery and Experimental Neurology Group, Department of Neurological Surgery and Nuffield Department of Surgical Sciences, Oxford University, John Radcliffe Hospital, Oxford, United Kingdom; ‡Department of Neurosciences and Mental Health, Faculty of Medicine, University of Porto, Portugal
| | | | | |
Collapse
|
25
|
Kringelbach ML. The pleasure of food: underlying brain mechanisms of eating and other pleasures. ACTA ACUST UNITED AC 2015. [DOI: 10.1186/s13411-014-0029-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Kim J, Lee SE, Shin J, Jung HH, Kim SJ, Chang JW. The neuromodulation of neuropathic pain by measuring pain response rate and pain response duration in animal. J Korean Neurosurg Soc 2015; 57:6-11. [PMID: 25674337 PMCID: PMC4323508 DOI: 10.3340/jkns.2015.57.1.6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 03/31/2014] [Accepted: 04/09/2014] [Indexed: 12/02/2022] Open
Abstract
Objective Neuropathic pain causes patients feel indescribable pain. Deep Brain Stimulation (DBS) is one of the treatment methods in neuropathic pain but the action mechanism is still unclear. To study the effect and mechanism of analgesic effects from DBS in neuropathic pain and to enhance the analgesic effect of DBS, we stimulated the ventral posterolateral nucleus (VPL) in rats. Methods To observe the effect from VPL stimulation, we established 3 groups : normal group (Normal group), neuropathic pain group (Pain group) and neuropathic pain+DBS group (DBS group). Rats in DBS group subjected to electrical stimulation and the target is VPL. Results We observed the behavioral changes by DBS in VPL (VPL-DBS) on neuropathic pain rats. In our study, the pain score which is by conventional test method was effectively decreased. In specific, the time of showing withdrawal response from painful stimulation which is not used measuring method in our animal model was also decreased by DBS. Conclusion The VPL is an effective target on pain modulation. Specifically we could demonstrate changes of pain response duration which is not used, and it was also significantly meaningful. We thought that this study would be helpful in understanding the relation between VPL-DBS and neuropathic pain.
Collapse
Affiliation(s)
- Jinhyung Kim
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea. ; Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Eun Lee
- School of Electrical Engineering and Computer Science, Seoul National University, Seoul, Korea. ; Nano Bioelectronics and System Research Center, Seoul National University, Seoul, Korea
| | - Jaewoo Shin
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Ho Jung
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Sung June Kim
- School of Electrical Engineering and Computer Science, Seoul National University, Seoul, Korea. ; Nano Bioelectronics and System Research Center, Seoul National University, Seoul, Korea. ; Inter-University Semiconductor Research Center, Seoul National University, Seoul, Korea
| | - Jin Woo Chang
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea. ; Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
27
|
Abstract
Deep brain stimulation (DBS) is a neurosurgical intervention the efficacy, safety, and utility of which are established in the treatment of Parkinson's disease. For the treatment of chronic, neuropathic pain refractory to medical therapies, many prospective case series have been reported, but few have published findings from patients treated with current standards of neuroimaging and stimulator technology over the last decade . We summarize the history, science, selection, assessment, surgery, programming, and personal clinical experience of DBS of the ventral posterior thalamus, periventricular/periaqueductal gray matter, and latterly rostral anterior cingulate cortex (Cg24) in 113 patients treated at 2 centers (John Radcliffe, Oxford, UK, and Hospital de São João, Porto, Portugal) over 13 years. Several experienced centers continue DBS for chronic pain, with success in selected patients, in particular those with pain after amputation, brachial plexus injury, stroke, and cephalalgias including anesthesia dolorosa. Other successes include pain after multiple sclerosis and spine injury. Somatotopic coverage during awake surgery is important in our technique, with cingulate DBS under general anesthesia considered for whole or hemibody pain, or after unsuccessful DBS of other targets. Findings discussed from neuroimaging modalities, invasive neurophysiological insights from local field potential recording, and autonomic assessments may translate into improved patient selection and enhanced efficacy, encouraging larger clinical trials.
Collapse
Affiliation(s)
- Erlick A C Pereira
- Oxford Functional Neurosurgery and Experimental Neurology Group, Department of Neurological Surgery and Nuffield Department of Surgical Sciences, Oxford University, John Radcliffe Hospital, Oxford, OX3 9DU, UK,
| | | |
Collapse
|
28
|
Boccard SG, Fitzgerald JJ, Pereira EA, Moir L, Van Hartevelt TJ, Kringelbach ML, Green AL, Aziz TZ. Targeting the Affective Component of Chronic Pain. Neurosurgery 2014; 74:628-35; discussion 635-7. [DOI: 10.1227/neu.0000000000000321] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
ABSTRACT
BACKGROUND:
Deep brain stimulation (DBS) has shown considerable promise for relieving nociceptive and neuropathic symptoms of refractory chronic pain. Nevertheless, for some patients, standard DBS for pain remains poorly efficacious. Pain is a multidimensional experience with an affective component: the unpleasantness. The anterior cingulate cortex (ACC) is a structure involved in this affective component, and targeting it may relieve patients' pain.
OBJECTIVE:
To describe the first case series of ACC DBS to relieve the affective component of chronic neuropathic pain.
METHODS:
Sixteen patients (13 male and 3 female patients) with neuropathic pain underwent bilateral ACC DBS. The mean age at surgery was 48.7 years (range, 33-63 years). Patient-reported outcome measures were collected before and after surgery using a Visual Analog Scale, SF-36 quality of life survey, McGill Pain Questionnaire, and EQ-5D (EQ-5D and EQ-5D Health State) questionnaires.
RESULTS:
Fifteen patients (93.3%) transitioned from externalized to fully internalized systems. Eleven patients had data to be analyzed with a mean follow-up of 13.2 months. Post-surgery, the Visual Analog Scale score dropped below 4 for 5 of the patients, with 1 patient free of pain. Highly significant improvement on the EQ-5D was observed (mean, +20.3%; range, +0%-+83%; P = .008). Moreover, statistically significant improvements were observed for the physical functioning and bodily pain domains of the SF-36 quality-of-life survey: mean, +64.7% (range, −8.9%-+276%; P = .015) and mean +39.0% (range, −33.8%-+159%; P = .050), respectively.
CONCLUSION:
Affective ACC DBS can relieve chronic neuropathic pain refractory to pharmacotherapy and restore quality of life.
Collapse
Affiliation(s)
- Sandra G.J. Boccard
- Oxford Functional Neurosurgery and Experimental Neurology Group, Nuffield Departments of Clinical Neuroscience and Surgery
| | - James J. Fitzgerald
- Oxford Functional Neurosurgery and Experimental Neurology Group, Nuffield Departments of Clinical Neuroscience and Surgery
| | - Erlick A.C. Pereira
- Oxford Functional Neurosurgery and Experimental Neurology Group, Nuffield Departments of Clinical Neuroscience and Surgery
| | - Liz Moir
- Oxford Functional Neurosurgery and Experimental Neurology Group, Nuffield Departments of Clinical Neuroscience and Surgery
| | | | | | - Alexander L. Green
- Oxford Functional Neurosurgery and Experimental Neurology Group, Nuffield Departments of Clinical Neuroscience and Surgery
| | - Tipu Z. Aziz
- Oxford Functional Neurosurgery and Experimental Neurology Group, Nuffield Departments of Clinical Neuroscience and Surgery
| |
Collapse
|
29
|
Gray AM, Pounds-Cornish E, Eccles FJR, Aziz TZ, Green AL, Scott RB. Deep brain stimulation as a treatment for neuropathic pain: a longitudinal study addressing neuropsychological outcomes. THE JOURNAL OF PAIN 2013; 15:283-92. [PMID: 24333399 DOI: 10.1016/j.jpain.2013.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 10/21/2013] [Accepted: 11/14/2013] [Indexed: 11/30/2022]
Abstract
UNLABELLED Deep brain stimulation (DBS) of the periventricular/periaqueductal gray area and sensory thalamus can reduce pain intensity in patients with neuropathic pain. However, little is known about its impact on quality of life, emotional well-being, and cognition. This study followed up 18 patients who had received DBS for neuropathic pain. Each participant had previously undergone psychometric evaluation of each of the above areas as part of a routine presurgical neuropsychological assessment. Commensurate measures were employed at a follow-up assessment at least 6 months postsurgery. DBS significantly improved mood, anxiety, and aspects of quality of life. Improvements correlated with reduced pain severity. However, the sample continued to show impairments in most areas when compared against normative data published on nonclinical samples. There was little change in general cognitive functioning, aside from deterioration in spatial working memory. However, improvements in pain severity were associated with less improvement (and even deterioration) on measures of executive cognitive functioning. Improvements in emotional well-being also were correlated with changes in cognition. These results suggest that DBS of the periventricular/periaqueductal gray and/or sensory thalamus improves quality of life and emotional well-being in sufferers, although there is some indication of executive dysfunction, particularly among those reporting greatest pain alleviation. PERSPECTIVE This article examines the neuropsychological outcomes of DBS surgery as a treatment for neuropathic pain. This intervention was found to improve pain severity, emotional well-being, and quality of life, although such benefits may be accompanied by reduced ability on tasks measuring executive functioning.
Collapse
Affiliation(s)
- Alan M Gray
- Headwise Ltd, Birmingham, England, United Kingdom; Clinical Psychology Unit, University of Sheffield, Sheffield, England, United Kingdom.
| | - Elizabeth Pounds-Cornish
- National Spinal Injuries Centre, Stoke Mandeville Hospital, Buckinghamshire Healthcare NHS Trust, Aylesbury, Buckinghamshire, England
| | - Fiona J R Eccles
- Division of Health Research, Lancaster University, Lancaster, England, United Kingdom
| | - Tipu Z Aziz
- Oxford Functional Neurosurgery and Experimental Neurology, John Radcliffe Hospital, Oxford, England, United Kingdom
| | - Alexander L Green
- Oxford Functional Neurosurgery and Experimental Neurology, John Radcliffe Hospital, Oxford, England, United Kingdom
| | - Richard B Scott
- Oxford Functional Neurosurgery and Experimental Neurology, John Radcliffe Hospital, Oxford, England, United Kingdom
| |
Collapse
|
30
|
Kim J, Eun Lee S, Sik Min K, Jung HH, Lee JE, Kim SJ, Chang JW. Ventral posterolateral deep brain stimulation treatment for neuropathic pain shortens pain response after cold stimuli. J Neurosci Res 2013; 91:997-1004. [PMID: 23606542 DOI: 10.1002/jnr.23222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 11/26/2013] [Accepted: 02/22/2013] [Indexed: 11/07/2022]
Abstract
Neuropathic pain is often severe. Deep brain stimulation (DBS) is a treatment method for neuropathic pain, but its mechanism of action remains unclear. Patients with neuropathic pain are affected by various stimulations, such as mechanical and cold stimuli, but studies of cold allodynia showed the associated pain to be less than that caused by mechanical stimuli. This study focused on the effects of DBS on cold allodynia in rats. To observe the effects of DBS, we established three groups: a normal group (normal), a neuropathic pain group (pain), and a DBS with neuropathic pain group (DBS). The stimulation target was the ventral posterolateral nucleus (VPL). We observed differences in the degree of cold allodynia elicited between a conventional method that measured the number of pain responses and our altered novel method that measured the duration of pain responses. Cold allodynia after DBS did not differ when conventional analysis was applied, but the pain response duration was decreased. We suggest that VPL DBS was partially effective in cold allodynia, implicating complex pathways of pain signaling.
Collapse
Affiliation(s)
- Jinhyung Kim
- Brain Korea 21 Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Deep brain stimulation (DBS) is a neurosurgical intervention whose efficacy, safety, and utility have been shown in the treatment of movement disorders. For the treatment of chronic pain refractory to medical therapies, many prospective case series have been reported, but few have published findings from patients treated during the past decade using current standards of neuroimaging and stimulator technology. We summarize the history, science, selection, assessment, surgery, and personal clinical experience of DBS of the ventral posterior thalamus, periventricular/periaqueductal gray matter, and, latterly, the rostral anterior cingulate cortex (Cg24) in 100 patients treated now at two centers (John Radcliffe Hospital, Oxford, UK, and Hospital de São João, Porto, Portugal) over 12 years. Several experienced centers continue DBS for chronic pain with success in selected patients, in particular those with pain after amputation, brachial plexus injury, stroke, and cephalalgias including anesthesia dolorosa. Other successes include pain after multiple sclerosis and spine injury. Somatotopic coverage during awake surgery is important in our technique, with cingulate DBS considered for whole-body pain or after unsuccessful DBS of other targets. Findings discussed from neuroimaging modalities, invasive neurophysiological insights from local field potential recording, and autonomic assessments may translate into improved patient selection and enhanced efficacy, encouraging larger clinical trials.
Collapse
Affiliation(s)
- Erlick A C Pereira
- Oxford Functional Neurosurgery and Experimental Neurology Group, Department of Neurological Surgery and Nuffield Department of Surgical Sciences, Oxford University, John Radcliffe Hospital, Oxford, UK
| | | | | |
Collapse
|
32
|
Pereira EA, Wang S, Peachey T, Lu G, Shlugman D, Stein JF, Aziz TZ, Green AL. Elevated gamma band power in humans receiving naloxone suggests dorsal periaqueductal and periventricular gray deep brain stimulation produced analgesia is opioid mediated. Exp Neurol 2013; 239:248-55. [DOI: 10.1016/j.expneurol.2012.10.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/03/2012] [Accepted: 10/24/2012] [Indexed: 11/29/2022]
|
33
|
Magnetoencephalography and neuromodulation. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2012. [PMID: 23206680 DOI: 10.1016/b978-0-12-404706-8.00007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Magnetoencephalography (MEG) is a noninvasive method which allows recordings of human brain activity with excellent temporal and good spatial resolution. In this chapter, we review applications of MEG in neuromodulation. We provide an overview of studies which used MEG to optimize parameters for neuromodulation and to characterize the electrophysiological effects of brain stimulation. In particular, we discuss how MEG may be employed to study deep brain stimulation. In this context, we describe the problems arising from stimulation artifacts and present approaches to solve them.
Collapse
|
34
|
Anderson RJ, Frye MA, Abulseoud OA, Lee KH, McGillivray JA, Berk M, Tye SJ. Deep brain stimulation for treatment-resistant depression: efficacy, safety and mechanisms of action. Neurosci Biobehav Rev 2012; 36:1920-33. [PMID: 22721950 DOI: 10.1016/j.neubiorev.2012.06.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 06/06/2012] [Accepted: 06/10/2012] [Indexed: 12/22/2022]
Abstract
Deep brain stimulation (DBS), a neuromodulation therapy that has been used successfully in the treatment of symptoms associated with movement disorders, has recently undergone clinical trials for individuals suffering from treatment-resistant depression (TRD). Although the small patient numbers and open label study design limit our ability to identify optimum targets and make definitive conclusions about treatment efficacy, a review of the published research demonstrates significant reductions in depressive symptomatology and high rates of remission in a severely treatment-resistant patient group. Despite these encouraging results, an incomplete understanding of the mechanisms of action underlying the therapeutic effects of DBS for TRD is highlighted, paralleling the incomplete understanding of the neuroanatomy of mood regulation and treatment resistance. Proposed mechanisms of action include short and long-term local effects of stimulation at the neuronal level, to modulation of neural network activity.
Collapse
|
35
|
Mohseni HR, Smith PP, Parsons CE, Young KS, Hyam JA, Stein A, Stein JF, Green AL, Aziz TZ, Kringelbach ML. MEG can map short and long-term changes in brain activity following deep brain stimulation for chronic pain. PLoS One 2012; 7:e37993. [PMID: 22675503 PMCID: PMC3366994 DOI: 10.1371/journal.pone.0037993] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 05/01/2012] [Indexed: 11/18/2022] Open
Abstract
Deep brain stimulation (DBS) has been shown to be clinically effective for some forms of treatment-resistant chronic pain, but the precise mechanisms of action are not well understood. Here, we present an analysis of magnetoencephalography (MEG) data from a patient with whole-body chronic pain, in order to investigate changes in neural activity induced by DBS for pain relief over both short- and long-term. This patient is one of the few cases treated using DBS of the anterior cingulate cortex (ACC). We demonstrate that a novel method, null-beamforming, can be used to localise accurately brain activity despite the artefacts caused by the presence of DBS electrodes and stimulus pulses. The accuracy of our source localisation was verified by correlating the predicted DBS electrode positions with their actual positions. Using this beamforming method, we examined changes in whole-brain activity comparing pain relief achieved with deep brain stimulation (DBS ON) and compared with pain experienced with no stimulation (DBS OFF). We found significant changes in activity in pain-related regions including the pre-supplementary motor area, brainstem (periaqueductal gray) and dissociable parts of caudal and rostral ACC. In particular, when the patient reported experiencing pain, there was increased activity in different regions of ACC compared to when he experienced pain relief. We were also able to demonstrate long-term functional brain changes as a result of continuous DBS over one year, leading to specific changes in the activity in dissociable regions of caudal and rostral ACC. These results broaden our understanding of the underlying mechanisms of DBS in the human brain.
Collapse
Affiliation(s)
- Hamid R. Mohseni
- University Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Institute of Biomedical Engineering, School of Engineering Science, University of Oxford, Oxford, United Kingdom
- Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Aarhus, Denmark
- Department of Neurosurgery, John Radcliffe Hospital, Oxford, United Kingdom
- Department of Psychiatry, Oxford Centre for Human Brain Activity (OHBA), University of Oxford, Oxford, United Kingdom
| | - Penny P. Smith
- Institute of Biomedical Engineering, School of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Christine E. Parsons
- University Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Aarhus, Denmark
- Department of Psychiatry, Oxford Centre for Human Brain Activity (OHBA), University of Oxford, Oxford, United Kingdom
| | - Katherine S. Young
- University Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Aarhus, Denmark
- Department of Psychiatry, Oxford Centre for Human Brain Activity (OHBA), University of Oxford, Oxford, United Kingdom
| | - Jonathan A. Hyam
- Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Aarhus, Denmark
| | - Alan Stein
- University Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - John F. Stein
- Department of Neurosurgery, John Radcliffe Hospital, Oxford, United Kingdom
| | - Alexander L. Green
- Department of Neurosurgery, John Radcliffe Hospital, Oxford, United Kingdom
| | - Tipu Z. Aziz
- Department of Neurosurgery, John Radcliffe Hospital, Oxford, United Kingdom
| | - Morten L. Kringelbach
- University Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Aarhus, Denmark
- Department of Neurosurgery, John Radcliffe Hospital, Oxford, United Kingdom
- Department of Psychiatry, Oxford Centre for Human Brain Activity (OHBA), University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
36
|
Effects of arterial cannulation stress on regional cerebral blood flow in major depressive disorder. Sci Rep 2012; 2:308. [PMID: 22403745 PMCID: PMC3297085 DOI: 10.1038/srep00308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 02/06/2012] [Indexed: 12/24/2022] Open
Abstract
Individuals with major depressive disorder (MDD) display abnormal neurophysiological responses to psychological stress but little is known about their neurophysiological responses to physiological stressors. Using [15O-H2O] positron emission tomography we assessed whether the regional cerebral blood flow (rCBF) response to arterial cannulation differed between patients with MDD and healthy controls (HCs). Fifty-one MDD patients and 62 HCs were scanned following arterial cannulation and 15 MDD patients and 17 HCs were scanned without arterial cannulation. A region-of-interest analysis showed that a significantly increased rCBF of the anterior cingulate cortex and right amygdala was associated with arterial cannulation in MDD. A whole brain analysis showed increased rCBF of the right post-central gyrus, left temporopolar cortex, and right amygdala during arterial cannulation in MDD patients. The rCBF in the right amygdala was significantly correlated with depression severity. Conceivably, the limbic response to invasive physical stress is greater in MDD subjects than in HCs.
Collapse
|
37
|
Nölte IS, Gerigk L, Al-Zghloul M, Groden C, Kerl HU. Visualization of the internal globus pallidus: sequence and orientation for deep brain stimulation using a standard installation protocol at 3.0 Tesla. Acta Neurochir (Wien) 2012; 154:481-94. [PMID: 22167532 DOI: 10.1007/s00701-011-1242-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 11/21/2011] [Indexed: 12/11/2022]
Abstract
BACKGROUND Deep-brain stimulation (DBS) of the internal globus pallidus (GPi) has shown remarkable therapeutic benefits for treatment-resistant neurological disorders including dystonia and Parkinson's disease (PD). The success of the DBS is critically dependent on the reliable visualization of the GPi. The aim of the study was to evaluate promising 3.0 Tesla magnetic resonance imaging (MRI) methods for pre-stereotactic visualization of the GPi using a standard installation protocol. METHODS MRI at 3.0 T of nine healthy individuals and of one patient with PD was acquired (FLAIR, T1-MPRAGE, T2-SPACE, T2*-FLASH2D, susceptibility-weighted imaging mapping (SWI)). Image quality and visualization of the GPi for each sequence were assessed by two neuroradiologists independently using a 6-point scale. Axial, coronal, and sagittal planes of the T2*-FLASH2D images were compared. Inter-rater reliability, contrast-to-noise ratios (CNR) and signal-to-noise ratios (SNR) for the GPi were determined. For illustration, axial T2*-FLASH2D images were fused with a section schema of the Schaltenbrand-Wahren stereotactic atlas. RESULTS The GPi was best and reliably visualized in axial and to a lesser degree on coronal T2*-FLASH2D images. No major artifacts in the GPi were observed in any of the sequences. SWI offered a significantly higher CNR for the GPi compared to standard T2-weighted imaging using the standard parameters. The fusion of the axial T2*-FLASH2D images and the atlas projected the GPi clearly in the boundaries of the section schema. CONCLUSIONS Using a standard installation protocol at 3.0 T T2*-FLASH2D imaging (particularly axial view) provides optimal and reliable delineation of the GPi.
Collapse
Affiliation(s)
- Ingo S Nölte
- Medical Faculty Mannheim, Department of Neuroradiology, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, Mannheim, Germany.
| | | | | | | | | |
Collapse
|
38
|
Michels L, Moazami-Goudarzi M, Jeanmonod D. Correlations between EEG and clinical outcome in chronic neuropathic pain: surgical effects and treatment resistance. Brain Imaging Behav 2012; 5:329-48. [PMID: 21948245 DOI: 10.1007/s11682-011-9135-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chronic neuropathic pain may require a neurosurgical treatment, but for reasons that have not been fully explored yet, a significant number of patients do not benefit from the intervention. We compared the resting EEG of 15 healthy controls to the EEG of 23 chronic neuropathic pain patients before and 12 months after treatment by the central lateral thalamotomy (CLT). A patient subgroup had a high (n = 14, pain relief (PR) ≥ 50%) and another subgroup a low (n = 9, PR < 50%) postoperative PR. EEG spectral power and source localization of the high PR patients were normalized postoperatively. In contrast, low PR patients showed postoperative maintenance of insular, cingulate and prefrontal overactivities, and their frustration values were positively correlated with cingulate and prefrontal activity. These findings demonstrate a normalizing effect of CLT on cortical activity and suggest that treatment resistance is associated with a frustration-based dynamics.
Collapse
Affiliation(s)
- Lars Michels
- Laboratory for Functional Neurosurgery, University Hospital Zurich, CH-8091 Zurich, Switzerland.
| | | | | |
Collapse
|
39
|
Wilbertz G, Tebartz van Elst L, Delgado MR, Maier S, Feige B, Philipsen A, Blechert J. Orbitofrontal reward sensitivity and impulsivity in adult attention deficit hyperactivity disorder. Neuroimage 2012; 60:353-61. [DOI: 10.1016/j.neuroimage.2011.12.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 11/25/2011] [Accepted: 12/08/2011] [Indexed: 01/25/2023] Open
|
40
|
Connolly AT, Bajwa JA, Johnson MD. Cortical magnetoencephalography of deep brain stimulation for the treatment of postural tremor. Brain Stimul 2012; 5:616-24. [PMID: 22425066 DOI: 10.1016/j.brs.2011.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 11/22/2011] [Accepted: 11/23/2011] [Indexed: 11/25/2022] Open
Abstract
The effects of deep brain stimulation (DBS) on motor cortex circuitry in Essential tremor (ET) and Parkinson's disease (PD) patients are not well understood, in part, because most imaging modalities have difficulty capturing and localizing motor cortex dynamics on the same temporal scale as motor symptom expression. Here, we report on the use of magnetoencephalography (MEG) to characterize sources of postural tremor activity within the brain of an ET/PD patient and the effects of bilateral subthalamic nucleus DBS on these sources. Recordings were performed during unilateral and bilateral DBS at stimulation amplitudes of 0 V, 1 V, and 3 V corresponding to no therapy, subtherapeutic, and therapeutic configurations, respectively. Dipole source localization in reference to the postural tremor frequency recorded with electromyography (EMG) showed prominent sources in both right and left motor cortices when no therapy was provided. These sources dissipated as the amplitude of stimulation increased to a therapeutic level (P = 0.0062). Coherence peaks between the EMG and MEG recordings were seen at both 4 Hz, postural tremor frequency, and at 8 Hz, twice the tremor frequency, with no therapy. Both peaks were reduced with therapeutic DBS. These results demonstrate the capabilities of MEG to record cortical dynamics of tremor during deep brain stimulation and suggest that MEG could be used to examine DBS in the context of motor symptoms of PD and of ET.
Collapse
Affiliation(s)
- Allison T Connolly
- Department of Biomedical Engineering, University of Minnesota, 7-105 NHH, 312 Church Street SE, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
41
|
Kringelbach ML, Green AL, Aziz TZ. Balancing the brain: resting state networks and deep brain stimulation. Front Integr Neurosci 2011; 5:8. [PMID: 21577250 PMCID: PMC3088866 DOI: 10.3389/fnint.2011.00008] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2011] [Accepted: 04/18/2011] [Indexed: 01/28/2023] Open
Abstract
Over the last three decades, large numbers of patients with otherwise treatment-resistant disorders have been helped by deep brain stimulation (DBS), yet a full scientific understanding of the underlying neural mechanisms is still missing. We have previously proposed that efficacious DBS works by restoring the balance of the brain's resting state networks. Here, we extend this proposal by reviewing how detailed investigations of the highly coherent functional and structural brain networks in health and disease (such as Parkinson's) have the potential not only to increase our understanding of fundamental brain function but of how best to modulate the balance. In particular, some of the newly identified hubs and connectors within and between resting state networks could become important new targets for DBS, including potentially in neuropsychiatric disorders. At the same time, it is of essence to consider the ethical implications of this perspective.
Collapse
|
42
|
Kringelbach ML, Green AL, Owen SLF, Schweder PM, Aziz TZ. Sing the mind electric - principles of deep brain stimulation. Eur J Neurosci 2011; 32:1070-9. [PMID: 21039946 DOI: 10.1111/j.1460-9568.2010.07419.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The remarkable efficacy of deep brain stimulation (DBS) for a range of treatment-resistant disorders is still not matched by a comparable understanding of the underlying neural mechanisms. Some progress has been made using translational research with a range of neuroscientific techniques, and here we review the most promising emerging principles. On balance, DBS appears to work by restoring normal oscillatory activity between a network of key brain regions. Further research using this causal neuromodulatory tool may provide vital insights into fundamental brain function, as well as guide targets for future treatments. In particular, DBS could have an important role in restoring the balance of the brain's default network and thus repairing the malignant brain states associated with affective disorders, which give rise to serious disabling problems such as anhedonia, the lack of pleasure. At the same time, it is important to proceed with caution and not repeat the errors from the era of psychosurgery.
Collapse
Affiliation(s)
- Morten L Kringelbach
- University of Oxford, Department of Psychiatry, Warneford Hospital, Oxford OX3 7JX, UK.
| | | | | | | | | |
Collapse
|
43
|
Berridge KC, Kringelbach ML. Building a neuroscience of pleasure and well-being. ACTA ACUST UNITED AC 2011; 1:1-3. [PMID: 22328976 DOI: 10.1186/2211-1522-1-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND: How is happiness generated via brain function in lucky individuals who have the good fortune to be happy? Conceptually, well-being or happiness has long been viewed as requiring at least two crucial ingredients: positive affect or pleasure (hedonia) and a sense of meaningfulness or engagement in life (eudaimonia). Science has recently made progress in relating hedonic pleasure to brain function, and so here we survey new insights into how brains generate the hedonic ingredient of sustained or frequent pleasure. We also briefly discuss how brains might connect hedonia states of pleasure to eudaimonia assessments of meaningfulness, and so create balanced states of positive well-being. RESULTS: Notable progress has been made in understanding brain bases of hedonic processing, producing insights into that brain systems that cause and/or code sensory pleasures. Progress has been facilitated by the recognition that hedonic brain mechanisms are largely shared between humans and other mammals, allowing application of conclusions from animal studies to a better understanding of human pleasures. In the past few years, evidence has also grown to indicate that for humans, brain mechanisms of higher abstract pleasures strongly overlap with more basic sensory pleasures. This overlap may provide a window into underlying brain circuitry that generates all pleasures, including even the hedonic quality of pervasive well-being that detaches from any particular sensation to apply to daily life in a more sustained or frequent fashion. CONCLUSIONS: Hedonic insights are applied to understanding human well-being here. Our strategy combines new findings on brain mediators that generate the pleasure of sensations with evidence that human brains use many of the same hedonic circuits from sensory pleasures to create the higher pleasures. This in turn may be linked to how hedonic systems interact with other brain systems relevant to self-understanding and the meaning components of eudaimonic happiness. Finally, we speculate a bit about how brains that generate hedonia states might link to eudaimonia assessments to create properly balanced states of positive well-being that approach true happiness.
Collapse
Affiliation(s)
- Kent C Berridge
- Department of Psychology, University of Michigan, Ann Arbor, USA
| | | |
Collapse
|
44
|
Pereira EAC, Lu G, Wang S, Schweder PM, Hyam JA, Stein JF, Paterson DJ, Aziz TZ, Green AL. Ventral periaqueductal grey stimulation alters heart rate variability in humans with chronic pain. Exp Neurol 2010; 223:574-81. [PMID: 20178783 DOI: 10.1016/j.expneurol.2010.02.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Revised: 02/06/2010] [Accepted: 02/10/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND The midbrain periaqueductal grey (PAG) area is important for both pain modulation and cardiovascular control via the autonomic nervous system (ANS). While changes in blood pressure dependent upon dorsal or ventral electrode positioning have been described with PAG deep brain stimulation (DBS), little is known mechanistically about the relationships between pain and cardiovascular regulation in humans. Heart rate variability (HRV) is an established measure of cardiovascular regulation, and an index of autonomic function. METHODS AND RESULTS 16 patients undergoing DBS of the rostral PAG for chronic neuropathic pain were investigated post-operatively to determine whether PAG stimulation would alter HRV, and the subjects' perception of pain. Mean heart rate together with HRV, time and frequency domain measures, low frequency (LF) and high frequency (HF) power components of heart rate and the ratio of LF to HF were calculated before and during DBS. Ventral but not dorsal PAG DBS significantly decreased the ratio of LF to HF power (p<0.05, n=8) with HF power significantly increased. Changes in LF/HF ratio correlated significantly with subjective reporting of analgesic efficacy using a visual analogue score (VAS; gamma(2)=0.36, p=0.01, n=16). Diffusion tensor imaging and probabilistic tractography of 17 normal controls' seeding voxels from the mean ventral and dorsal PAG stimulation sites of the 16 patient cohort revealed significant differences between rostral tract projections and separate, adjacent projections to ipsilateral dorsolateral medulla. CONCLUSIONS Ventral PAG DBS may increase parasympathetic activity to reduce pain via anatomical connections distinct from dorsal PAG DBS, which may act by sympathetic mechanisms.
Collapse
|
45
|
Litvak V, Eusebio A, Jha A, Oostenveld R, Barnes GR, Penny WD, Zrinzo L, Hariz MI, Limousin P, Friston KJ, Brown P. Optimized beamforming for simultaneous MEG and intracranial local field potential recordings in deep brain stimulation patients. Neuroimage 2010; 50:1578-88. [PMID: 20056156 PMCID: PMC3221048 DOI: 10.1016/j.neuroimage.2009.12.115] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 12/23/2009] [Accepted: 12/24/2009] [Indexed: 11/26/2022] Open
Abstract
Insight into how brain structures interact is critical for understanding the principles of functional brain architectures and may lead to better diagnosis and therapy for neuropsychiatric disorders. We recorded, simultaneously, magnetoencephalographic (MEG) signals and subcortical local field potentials (LFP) in a Parkinson's disease (PD) patient with bilateral deep brain stimulation (DBS) electrodes in the subthalamic nucleus (STN). These recordings offer a unique opportunity to characterize interactions between the subcortical structures and the neocortex. However, high-amplitude artefacts appeared in the MEG. These artefacts originated from the percutaneous extension wire, rather than from the actual DBS electrode and were locked to the heart beat. In this work, we show that MEG beamforming is capable of suppressing these artefacts and quantify the optimal regularization required. We demonstrate how beamforming makes it possible to localize cortical regions whose activity is coherent with the STN-LFP, extract artefact-free virtual electrode time-series from regions of interest and localize cortical areas exhibiting specific task-related power changes. This furnishes results that are consistent with previously reported results using artefact-free MEG data. Our findings demonstrate that physiologically meaningful information can be extracted from heavily contaminated MEG signals and pave the way for further analysis of combined MEG-LFP recordings in DBS patients.
Collapse
Affiliation(s)
- Vladimir Litvak
- UCL Institute of Neurology, Queen Square, WC1N 3BG, London, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Mohseni HR, Kringelbach ML, Probert Smith P, Green AL, Parsons CE, Young KS, Brittain JS, Hyam JA, Schweder PM, Stein JF, Aziz TZ. Application of a null-beamformer to source localisation in MEG data of deep brain stimulation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2010; 2010:4120-4123. [PMID: 21096632 DOI: 10.1109/iembs.2010.5627325] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In this paper, we present an analysis of magnetoencephalography (MEG) signals from a patient with whole-body chronic pain in order to investigate changes in neural activity induced by DBS. The patient is one of the few cases treated using DBS of the anterior cingulate cortex (ACC). Using MEG to reconstruct the neural activity of interest is challenging because of interference to the signal from the DBS device. We demonstrate that a null-beamformer can be used to localise neural activity despite artefacts caused by the presence of DBS electrodes and stimulus pulses. We subsequently verified the accuracy of our source localisation by correlating the predicted DBS electrode positions with their actual positions, previously identified using anatomical imaging. We also demonstrated increased activity in pain-related regions including the pre-supplementary motor area, brainstem periaqueductal gray and medial prefrontal areas when the patient was in pain compared to when the patient experienced pain relief.
Collapse
Affiliation(s)
- Hamid R Mohseni
- Institute of Biomedical Engineering, School of Engineering Science, University of Oxford, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Cortico-muscular coherence increases with tremor improvement after deep brain stimulation in Parkinson's disease. Neuroreport 2009; 20:1444-9. [DOI: 10.1097/wnr.0b013e328331a51a] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Towards a functional neuroanatomy of pleasure and happiness. Trends Cogn Sci 2009; 13:479-87. [PMID: 19782634 DOI: 10.1016/j.tics.2009.08.006] [Citation(s) in RCA: 262] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 08/16/2009] [Accepted: 08/17/2009] [Indexed: 11/21/2022]
Abstract
The pursuit of happiness is a preoccupation for many people. Yet only the pursuit can be promised, not happiness itself. Can science help? We focus on the most tractable ingredient, hedonia or positive affect. A step toward happiness might be gained by improving the pleasures and positive moods in daily life. The neuroscience of pleasure and reward provides relevant insights, and we discuss how specific hedonic mechanisms might relate to happiness or the lack thereof. Although the neuroscience of happiness is still in its infancy, further advances might be made through mapping overlap between brain networks of hedonic pleasure with others, such as the brain's default network, potentially involved in the other happiness ingredient, eudaimonia or life meaning and engagement.
Collapse
|
49
|
Grover PJ, Pereira EA, Green AL, Brittain JS, Owen SL, Schweder P, Kringelbach ML, Davies PT, Aziz TZ. Deep brain stimulation for cluster headache. J Clin Neurosci 2009; 16:861-6. [DOI: 10.1016/j.jocn.2008.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2008] [Accepted: 10/31/2008] [Indexed: 10/20/2022]
|
50
|
Green AL, Wang S, Stein JF, Pereira EAC, Kringelbach ML, Liu X, Brittain JS, Aziz TZ. Neural signatures in patients with neuropathic pain. Neurology 2009; 72:569-71. [PMID: 19204269 DOI: 10.1212/01.wnl.0000342122.25498.8b] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- A L Green
- Department of Physiology, Anatomy & Genetics, University of Oxford, UK.
| | | | | | | | | | | | | | | |
Collapse
|