1
|
Pagida MA, Konstantinidou AE, Chrysanthou-Piterou MA, Patsouris ES, Panayotacopoulou MT. Apoptotic Markers in the Midbrain of the Human Neonate After Perinatal Hypoxic/Ischemic Injury. J Neuropathol Exp Neurol 2020; 79:86-101. [PMID: 31803912 DOI: 10.1093/jnen/nlz114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/01/2019] [Accepted: 10/23/2019] [Indexed: 11/13/2022] Open
Abstract
Our previous postmortem studies on neonates with neuropathological injury of perinatal hypoxia/ischemia (PHI) showed a dramatic reduction of tyrosine hydroxylase expression (dopamine synthesis enzyme) in substantia nigra (SN) neurons, with reduction of their cellular size. In order to investigate if the above observations represent an early stage of SN degeneration, we immunohistochemically studied the expression of cleaved caspase-3 (CCP3), apoptosis inducing factor (AIF), and DNA fragmentation by using terminal deoxynucleotidyltransferase-mediated dUTP-biotin 3'-end-labeling (TUNEL) technique in the SN of 22 autopsied neonates (corrected age ranging from 34 to 46.5 gestational weeks), in relation to the severity/duration of PHI injury, as estimated by neuropathological criteria. No CCP3-immunoreactive neurons and a limited number of apoptotic TUNEL-positive neurons with pyknotic characteristics were found in the SN. Nuclear AIF staining was revealed only in few SN neurons, indicating the presence of early signs of AIF-mediated degeneration. By contrast, motor neurons of the oculomotor nucleus showed higher cytoplasmic AIF expression and nuclear translocation, possibly attributed to the combined effect of developmental processes and increased oxidative stress induced by antemortem and postmortem factors. Our study indicates the activation of AIF, but not CCP3, in the SN and oculomotor nucleus of the human neonate in the developmentally critical perinatal period.
Collapse
Affiliation(s)
- Marianna A Pagida
- 1st Department of Psychiatry (MPag, MC-P, MPan); Laboratory of Neurobiology and Histochemistry, University Mental Health Research Institute (MPag, MC-P, MPan); and 1st Department of Pathology (AK, EP), National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasia E Konstantinidou
- 1st Department of Psychiatry (MPag, MC-P, MPan); Laboratory of Neurobiology and Histochemistry, University Mental Health Research Institute (MPag, MC-P, MPan); and 1st Department of Pathology (AK, EP), National and Kapodistrian University of Athens, Athens, Greece
| | - Margarita A Chrysanthou-Piterou
- 1st Department of Psychiatry (MPag, MC-P, MPan); Laboratory of Neurobiology and Histochemistry, University Mental Health Research Institute (MPag, MC-P, MPan); and 1st Department of Pathology (AK, EP), National and Kapodistrian University of Athens, Athens, Greece
| | - Efstratios S Patsouris
- 1st Department of Psychiatry (MPag, MC-P, MPan); Laboratory of Neurobiology and Histochemistry, University Mental Health Research Institute (MPag, MC-P, MPan); and 1st Department of Pathology (AK, EP), National and Kapodistrian University of Athens, Athens, Greece
| | - Maria T Panayotacopoulou
- 1st Department of Psychiatry (MPag, MC-P, MPan); Laboratory of Neurobiology and Histochemistry, University Mental Health Research Institute (MPag, MC-P, MPan); and 1st Department of Pathology (AK, EP), National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
Shin YS, Ryall JG, Britto JM, Lau CL, Devenish RJ, Nagley P, Beart PM. Inhibition of bioenergetics provides novel insights into recruitment of PINK1-dependent neuronal mitophagy. J Neurochem 2019; 149:269-283. [PMID: 30664245 DOI: 10.1111/jnc.14667] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/11/2018] [Accepted: 01/08/2019] [Indexed: 01/01/2023]
Abstract
Contributions of damaged mitochondria to neuropathologies have stimulated interest in mitophagy. We investigated triggers of neuronal mitophagy by disruption of mitochondrial energy metabolism in primary neurons. Mitophagy was examined in cultured murine cerebellar granule cells after inhibition of mitochondrial respiratory chain by drugs rotenone, 3-nitropropionic acid, antimycin A, and potassium cyanide, targeting complexes I, II, III, and IV, respectively. Inhibitor concentrations producing slow cellular demise were determined from analyses of cellular viability, morphology of neuritic damage, plasma membrane permeability, and oxidative phosphorylation. Live cell imaging of dissipation of mitochondrial membrane potential (ΔΨm ) by drugs targeting mitochondrial complexes was referenced to complete depolarization by carbonyl cyanide m-chlorophenyl hydrazone. While inhibition of complexes I, III and IV effected rapid dissipation of ΔΨm , inhibition of complex II using 3-nitropropionic acid led to minimal depolarization of mitochondria. Nonetheless, all respiratory chain inhibitors triggered mitophagy as indicated by increased aggregation of mitochondrially localized PINK1. Mitophagy was further analyzed using a dual fluorescent protein biosensor reporting mitochondrial relocation to acidic lysosomal environment. Significant acidification of mitochondria was observed in neurons treated with rotenone or 3-nitropropionic acid, revealing mitophagy at distal processes. Neurons treated with antimycin A or cyanide failed to show mitochondrial acidification. Minor dissipation of ΔΨm by 3-nitropropionic acid coupled with vigorous triggering of mitophagy suggested depolarization of mitochondria is not a necessary condition to trigger mitophagy. Moreover, weak elicitation of mitophagy by antimycin A, subsequent to loss of ΔΨm , suggested that mitochondrial depolarization is not a sufficient condition for triggering robust neuronal mitophagy. Our findings provide new insight into complexities of mitophagic clearance of neuronal mitochondria.
Collapse
Affiliation(s)
- Yea Seul Shin
- Florey Institute of Neuroscience and Mental Health, Parkville, Vic., Australia.,Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Vic., Australia
| | - James G Ryall
- Department of Physiology, University of Melbourne, Parkville, Vic., Australia
| | - Joanne M Britto
- Florey Institute of Neuroscience and Mental Health, Parkville, Vic., Australia
| | - Chew L Lau
- Florey Institute of Neuroscience and Mental Health, Parkville, Vic., Australia
| | - Rodney J Devenish
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic., Australia
| | - Phillip Nagley
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic., Australia
| | - Philip M Beart
- Florey Institute of Neuroscience and Mental Health, Parkville, Vic., Australia.,Department of Pharmacology, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
3
|
Wang H, Dong X, Liu Z, Zhu S, Liu H, Fan W, Hu Y, Hu T, Yu Y, Li Y, Liu T, Xie C, Gao Q, Li G, Zhang J, Ding Z, Sun J. Resveratrol Suppresses Rotenone-induced Neurotoxicity Through Activation of SIRT1/Akt1 Signaling Pathway. Anat Rec (Hoboken) 2018; 301:1115-1125. [PMID: 29350822 DOI: 10.1002/ar.23781] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/20/2017] [Accepted: 11/27/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Hui Wang
- Department of Anatomy, School of Basic Medical Sciences; Shandong University; Jinan Shandong 250012 China
| | - Xiaoguang Dong
- Department of Orthopedic; Osteological Hospital of Yishengjian; Qingdao Shandong 266100 China
| | - Zengxun Liu
- Department of Anatomy, School of Basic Medical Sciences; Shandong University; Jinan Shandong 250012 China
| | - Shaowei Zhu
- Department of Anatomy, School of Basic Medical Sciences; Shandong University; Jinan Shandong 250012 China
| | - Haili Liu
- Department of Anatomy, School of Basic Medical Sciences; Shandong University; Jinan Shandong 250012 China
| | - Wenchuang Fan
- Department of Traumatic Orthopaedics; Yantaishan Hospital; Yantai Shandong 264025 China
| | - Yanlai Hu
- Department of Anatomy, School of Basic Medical Sciences; Shandong University; Jinan Shandong 250012 China
| | - Tao Hu
- Department of Orthopedic; Osteological Hospital of Yishengjian; Qingdao Shandong 266100 China
| | - Yonghui Yu
- Department of Anatomy, School of Basic Medical Sciences; Shandong University; Jinan Shandong 250012 China
| | - Yizhao Li
- Department of Rehabilitation; Laiwu Rehabilitation Hospital; Laiwu Shandong 271100 China
| | - Tianwei Liu
- Department of Anatomy, School of Basic Medical Sciences; Shandong University; Jinan Shandong 250012 China
| | - Chengjia Xie
- Department of Periodontics; Stomatological Hospital of Shandong University; Shandong 250012 China
| | - Qing Gao
- Department of Anatomy, School of Basic Medical Sciences; Shandong University; Jinan Shandong 250012 China
| | - Guibao Li
- Department of Anatomy, School of Basic Medical Sciences; Shandong University; Jinan Shandong 250012 China
| | - Jing Zhang
- Department of Anatomy, School of Basic Medical Sciences; Shandong University; Jinan Shandong 250012 China
| | - Zhaoxi Ding
- Department of Anatomy, School of Basic Medical Sciences; Shandong University; Jinan Shandong 250012 China
| | - Jinhao Sun
- Department of Anatomy, School of Basic Medical Sciences; Shandong University; Jinan Shandong 250012 China
| |
Collapse
|
4
|
Kim C, Lee J, Ko YU, Oh YJ. Cyclin-dependent kinase 5-mediated phosphorylation of CHIP promotes the tAIF-dependent death pathway in rotenone-treated cortical neurons. Neurosci Lett 2018; 662:295-301. [PMID: 29111393 DOI: 10.1016/j.neulet.2017.10.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/21/2017] [Accepted: 10/26/2017] [Indexed: 12/21/2022]
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase. Its dysregulation has been implicated in various neurodegenerative diseases. We previously reported that phosphorylation of the C-terminus of the Hsc70-interacting protein (CHIP) by Cdk5 promotes truncated apoptosis-inducing factor (tAIF)-mediated neuronal death induced by oxidative stress. Here, we determined whether this Cdk5-dependent cell death signaling pathway is present in experimental models of Parkinson's disease. First, we showed that rotenone activates Cdk5 in primary cultures of cortical neurons and causes tAIF-dependent neuronal cell death. This event was attenuated by negative regulation of endogenous Cdk5 activity by the pharmacological Cdk5 inhibitor, roscovitine, or by lentiviral knockdown of Cdk5. Cdk5 phosphorylates CHIP at Ser20 in rotenone-treated neurons. Consequently, overexpression of CHIPS20A, but not CHIPWT, attenuates tAIF-induced cell death in rotenone-treated cortical neurons. Taken together, these results indicate that phosphorylation of CHIP at Ser20 by Cdk5 activation inhibits CHIP-mediated tAIF degradation, thereby contributing to tAIF-induced neuronal cell death following rotenone treatment.
Collapse
Affiliation(s)
- Chiho Kim
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Republic of Korea; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Juhyung Lee
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Republic of Korea; Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yeon Uk Ko
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Republic of Korea
| | - Young J Oh
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Republic of Korea.
| |
Collapse
|
5
|
Yap YW, Llanos RM, La Fontaine S, Cater MA, Beart PM, Cheung NS. Comparative Microarray Analysis Identifies Commonalities in Neuronal Injury: Evidence for Oxidative Stress, Dysfunction of Calcium Signalling, and Inhibition of Autophagy-Lysosomal Pathway. Neurochem Res 2015; 41:554-67. [PMID: 26318862 DOI: 10.1007/s11064-015-1666-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 07/14/2015] [Accepted: 07/14/2015] [Indexed: 12/21/2022]
Abstract
Mitochondrial dysfunction, ubiquitin-proteasomal system impairment and excitotoxicity occur during the injury and death of neurons in neurodegenerative conditions. The aim of this work was to elucidate the cellular mechanisms that are universally altered by these conditions. Through overlapping expression profiles of rotenone-, lactacystin- and N-methyl-D-aspartate-treated cortical neurons, we have identified three affected biological processes that are commonly affected; oxidative stress, dysfunction of calcium signalling and inhibition of the autophagic-lysosomal pathway. These data provides many opportunities for therapeutic intervention in neurodegenerative conditions, where mitochondrial dysfunction, proteasomal inhibition and excitotoxicity are evident.
Collapse
Affiliation(s)
- Yann Wan Yap
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia
| | - Roxana M Llanos
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia
| | - Sharon La Fontaine
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia.,Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Michael A Cater
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia
| | - Philip M Beart
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Nam Sang Cheung
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia.
| |
Collapse
|
6
|
Zhou Q, Liu C, Liu W, Zhang H, Zhang R, Liu J, Zhang J, Xu C, Liu L, Huang S, Chen L. Rotenone induction of hydrogen peroxide inhibits mTOR-mediated S6K1 and 4E-BP1/eIF4E pathways, leading to neuronal apoptosis. Toxicol Sci 2014; 143:81-96. [PMID: 25304210 DOI: 10.1093/toxsci/kfu211] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Rotenone, a common pesticide and inhibitor of mitochondrial complex I, induces loss of dopaminergic neurons and consequential aspects of Parkinson's disease (PD). However, the exact mechanism of rotenone neurotoxicity is not fully elucidated. Here, we show that rotenone induced reactive oxygen species (ROS), leading to apoptotic cell death in PC12 cells and primary neurons. Pretreatment with catalase (CAT), a hydrogen peroxide-scavenging enzyme, attenuated rotenone-induced ROS and neuronal apoptosis, implying hydrogen peroxide (H₂O₂) involved, which was further verified by imaging intracellular H₂O₂ using a peroxide-selective probe H2DCFDA. Using thenoyltrifluoroacetone (TTFA), antimycin A, or Mito-TEMPO, we further demonstrated rotenone-induced mitochondrial H₂O₂-dependent neuronal apoptosis. Rotenone dramatically inhibited mTOR-mediated phosphorylation of S6K1 and 4E-BP1, which was also attenuated by CAT in the neuronal cells. Of interest, ectopic expression of wild-type mTOR or constitutively active S6K1, or downregulation of 4E-BP1 partially prevented rotenone-induced H₂O₂ and cell apoptosis. Furthermore, we noticed that rotenone-induced H₂O₂ was linked to the activation of caspase-3 pathway. This was evidenced by the finding that pretreatment with CAT partially blocked rotenone-induced cleavages of caspase-3 and poly (ADP-ribose) polymerase. Of note, zVAD-fmk, a pan caspase inhibitor, only partially prevented rotenone-induced apoptosis in PC12 cells and primary neurons. Expression of mTOR-wt, S6K1-ca, or silencing 4E-BP1 potentiated zVAD-fmk protection against rotenone-induced apoptosis in the cells. The results indicate that rotenone induction of H₂O₂ inhibits mTOR-mediated S6K1 and 4E-BP1/eIF4E pathways, resulting in caspase-dependent and -independent apoptosis in neuronal cells. Our findings suggest that rotenone-induced neuronal loss in PD may be prevented by activating mTOR signaling and/or administering antioxidants.
Collapse
Affiliation(s)
- Qian Zhou
- *Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China, Department of Biochemistry and Molecular Biology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932
| | - Chunxiao Liu
- *Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China, Department of Biochemistry and Molecular Biology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932
| | - Wen Liu
- *Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China, Department of Biochemistry and Molecular Biology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932
| | - Hai Zhang
- *Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China, Department of Biochemistry and Molecular Biology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932
| | - Ruijie Zhang
- *Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China, Department of Biochemistry and Molecular Biology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932
| | - Jia Liu
- *Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China, Department of Biochemistry and Molecular Biology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932
| | - Jinfei Zhang
- *Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China, Department of Biochemistry and Molecular Biology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932
| | - Chong Xu
- *Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China, Department of Biochemistry and Molecular Biology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932
| | - Lei Liu
- *Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China, Department of Biochemistry and Molecular Biology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932
| | - Shile Huang
- *Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China, Department of Biochemistry and Molecular Biology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932 *Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China, Department of Biochemistry and Molecular Biology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932
| | - Long Chen
- *Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China, Department of Biochemistry and Molecular Biology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932
| |
Collapse
|
7
|
Gene expression profiling of rotenone-mediated cortical neuronal death: Evidence for inhibition of ubiquitin–proteasome system and autophagy-lysosomal pathway, and dysfunction of mitochondrial and calcium signaling. Neurochem Int 2013. [DOI: 10.1016/j.neuint.2012.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Klein A, Gidyk DC, Shriner AM, Colwell KL, Tatton NA, Tatton WG, Metz GA. Dose-dependent loss of motor function after unilateral medial forebrain bundle rotenone lesion in rats: A cautionary note. Behav Brain Res 2011; 222:33-42. [DOI: 10.1016/j.bbr.2011.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 03/07/2011] [Accepted: 03/09/2011] [Indexed: 12/21/2022]
|
9
|
Franco R, Li S, Rodriguez-Rocha H, Burns M, Panayiotidis MI. Molecular mechanisms of pesticide-induced neurotoxicity: Relevance to Parkinson's disease. Chem Biol Interact 2010; 188:289-300. [PMID: 20542017 PMCID: PMC2942983 DOI: 10.1016/j.cbi.2010.06.003] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/27/2010] [Accepted: 06/03/2010] [Indexed: 11/20/2022]
Abstract
Pesticides are widely used in agricultural and other settings, resulting in continued human exposure. Pesticide toxicity has been clearly demonstrated to alter a variety of neurological functions. Particularly, there is strong evidence suggesting that pesticide exposure predisposes to neurodegenerative diseases. Epidemiological data have suggested a relationship between pesticide exposure and brain neurodegeneration. However, an increasing debate has aroused regarding this issue. Paraquat is a highly toxic quaternary nitrogen herbicide which has been largely studied as a model for Parkinson's disease providing valuable insight into the molecular mechanisms involved in the toxic effects of pesticides and their role in the progression of neurodegenerative diseases. In this work, we review the molecular mechanisms involved in the neurotoxic action of pesticides, with emphasis on the mechanisms associated with the induction of neuronal cell death by paraquat as a model for Parkinsonian neurodegeneration.
Collapse
Affiliation(s)
- Rodrigo Franco
- Redox Biology Center, University of Nebraska-Lincoln, 68583, United States.
| | | | | | | | | |
Collapse
|
10
|
Multifaceted deaths orchestrated by mitochondria in neurones. Biochim Biophys Acta Mol Basis Dis 2010; 1802:167-85. [DOI: 10.1016/j.bbadis.2009.09.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 09/07/2009] [Accepted: 09/08/2009] [Indexed: 12/16/2022]
|
11
|
Diwakarla S, Mercer LD, Kardashsyan L, Chu PWY, Shin YS, Lau CL, Hughes MLR, Nagley P, Beart PM. GABAergic striatal neurons exhibit caspase-independent, mitochondrially mediated programmed cell death. J Neurochem 2009; 109 Suppl 1:198-206. [PMID: 19393028 DOI: 10.1111/j.1471-4159.2009.05937.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
GABAergic striatal neurons are compromised in basal ganglia pathologies and we analysed how insult nature determined their patterns of injury and recruitment of the intrinsic mitochondrial pathway during programmed cell death (PCD). Stressors affecting targets implicated in striatal neurodegeneration [3-morpholinylsydnoneimine (SIN-1), 3-nitropropionic acid (3-NP), NMDA, 3,5-dihydroxyphenylglycine (DHPG), and staurosporine (STS)] were compared in cultured GABAergic neurons from murine striatum by analyzing the progression of injury and its correlation with mitochondrial involvement, the redistribution of intermembrane space (IMS) proteins, and patterns of protease activation. Stressors produced PCD exhibiting slow-onset kinetics with time-dependent annexin-V labeling and eventual DNA fragmentation. IMS proteins including cytochrome c were differentially distributed, although stressors except STS produced early redistribution of apoptosis-inducing factor and Omi, suggestive of early recruitment of both caspase-dependent and caspase-independent signaling. In general, Bax mobilization to mitochondria appeared to promote IMS protein redistribution. Caspase 3 activation was prominent after STS, whereas NMDA and SIN-1 produced mainly calpain activation, and 3-NP and DHPG elicited a mixed profile of protease activation. PCD and redistribution of IMS proteins in striatal GABAergic neurons were canonical and insult-dependent, reflecting differential interplay between the caspase cascade and alternate cell death pathways.
Collapse
Affiliation(s)
- Shanti Diwakarla
- Brain Injury and Repair Program, Florey Neuroscience Institutes, The University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Chinta SJ, Rane A, Yadava N, Andersen JK, Nicholls DG, Polster BM. Reactive oxygen species regulation by AIF- and complex I-depleted brain mitochondria. Free Radic Biol Med 2009; 46:939-47. [PMID: 19280713 PMCID: PMC2775507 DOI: 10.1016/j.freeradbiomed.2009.01.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Apoptosis-inducing factor (AIF)-deficient harlequin (Hq) mice undergo neurodegeneration associated with a 40-50% reduction in complex I level and activity. We tested the hypothesis that AIF and complex I regulate reactive oxygen species (ROS) production by brain mitochondria. Isolated Hq brain mitochondria oxidizing complex I substrates displayed no difference compared to wild type (WT) in basal ROS production, H2O2 removal, or ROS production stimulated by complex I inhibitors rotenone or 1-methyl-4-phenylpyridinium. In contrast, ROS production caused by reverse electron transfer to complex I was attenuated by approximately 50% in Hq mitochondria oxidizing the complex II substrate succinate. Basal and rotenone-stimulated rates of H2O2 release from in situ mitochondria did not differ between Hq and WT synaptosomes metabolizing glucose, nor did the level of in vivo oxidative protein carbonyl modifications detected in synaptosomes, brain mitochondria, or homogenates. Our results suggest that AIF does not directly modulate ROS release from brain mitochondria. In addition, they demonstrate that in contrast to ROS produced by mitochondria oxidizing succinate, ROS release from in situ synaptosomal mitochondria or from isolated brain mitochondria oxidizing complex I substrates is not proportional to the amount of complex I. These findings raise the important possibility that complex I contributes less to physiological ROS production by brain mitochondria than previously suggested.
Collapse
|
13
|
Sun AY, Wang Q, Simonyi A, Sun GY. Botanical phenolics and brain health. Neuromolecular Med 2008; 10:259-74. [PMID: 19191039 PMCID: PMC2682367 DOI: 10.1007/s12017-008-8052-z] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 10/02/2008] [Indexed: 12/16/2022]
Abstract
The high demand for molecular oxygen, the enrichment of polyunsaturated fatty acids in membrane phospholipids, and the relatively low abundance of antioxidant defense enzymes are factors rendering cells in the central nervous system (CNS) particularly vulnerable to oxidative stress. Excess production of reactive oxygen species (ROS) in the brain has been implicated as a common underlying factor for the etiology of a number of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and stroke. While ROS are generated by enzymatic and nonenzymatic reactions in the mitochondria and cytoplasm under normal conditions, excessive production under pathological conditions is associated with activation of Ca(2+)-dependent enzymes including proteases, phospholipases, nucleases, and alterations of signaling pathways which subsequently lead to mitochondrial dysfunction, release of inflammatory factors, and apoptosis. In recent years, there is considerable interest to investigate antioxidative and anti-inflammatory effects of phenolic compounds from different botanical sources. In this review, we describe oxidative mechanisms associated with AD, PD, and stroke, and evaluate neuroprotective effects of phenolic compounds, such as resveratrol from grape and red wine, curcumin from turmeric, apocynin from Picrorhiza kurroa, and epi-gallocatechin from green tea. The main goal is to provide a better understanding of the mode of action of these compounds and assess their use as therapeutics to ameliorate age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Albert Y. Sun
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, 65211
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, 65211
| | - Qun Wang
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, 65211
| | - Agnes Simonyi
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211
| | - Grace Y. Sun
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, 65211
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211
| |
Collapse
|
14
|
Beart PM, Lim MLR, Chen B, Diwakarla S, Mercer LD, Cheung NS, Nagley P. Hierarchical recruitment by AMPA but not staurosporine of pro-apoptotic mitochondrial signaling in cultured cortical neurons: evidence for caspase-dependent/independent cross-talk. J Neurochem 2007; 103:2408-27. [PMID: 17887970 DOI: 10.1111/j.1471-4159.2007.04937.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Excitotoxicity mediated via the (S)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) subtype of receptor for l-glutamate contributes to various neuropathologies involving acute brain injury and chronic degenerative disorders. In this study, AMPA-induced neuronal injury and staurosporine (STS)-mediated apoptosis were compared in primary neuronal cultures of murine cerebral cortex by analyzing indices up- and downstream of mitochondrial activation. AMPA-mediated apoptosis involved induction of Bax, loss of mitochondrial transmembrane potential (deltapsi(m)), early release of cytochrome c (cyt c), and more delayed release of second mitochondrial activator of caspases (SMAC), Omi, and apoptosis-inducing factor (AIF) with early calpain and minor late activation of caspase 3. STS-induced apoptosis was characterized by a number of differences, a more rapid time course, non-involvement of deltapsi(m), and relatively early recruitment of SMAC and caspase 3. The AMPA-induced rise in intracellular calcium appeared insufficient to evoke feltapsi(m) as release of cyt c preceded mitochondrial depolarization, which was followed by the cytosolic translocation of SMAC, Omi, and AIF. Bax translocation preceded cyt c release for both stimuli inferring its involvement in apoptotic induction. Inclusion of the broad spectrum caspase inhibitor zVAD-fmk reduced the AMPA-induced release of cyt c, SMAC, and AIF, while only affecting the redistribution of Omi and AIF in the STS-treated neurons. Only AIF release was affected by a calpain inhibitor (calpastatin) which exerted relatively minor effects on the progression of cellular injury. AMPA-mediated release of apoptogenic proteins was more hierarchical relative to STS with its calpain activation and caspase-dependent AIF redistribution arguing for a model with cross-talk between caspase-dependent/independent apoptosis.
Collapse
Affiliation(s)
- Philip M Beart
- Brain Injury and Repair Program, Howard Florey Institute, University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|