1
|
Aoki N, Yamaguchi S, Fujita T, Mori C, Fujita E, Matsushima T, Homma KJ. GABA-A and GABA-B Receptors in Filial Imprinting Linked With Opening and Closing of the Sensitive Period in Domestic Chicks ( Gallus gallus domesticus). Front Physiol 2018; 9:1837. [PMID: 30618842 PMCID: PMC6305906 DOI: 10.3389/fphys.2018.01837] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/06/2018] [Indexed: 12/31/2022] Open
Abstract
Filial imprinting of domestic chicks has a well-defined sensitive (critical) period lasting in the laboratory from hatching to day 3. It is a typical model to investigate the molecular mechanisms underlying memory formation in early learning. We recently found that thyroid hormone 3,5,3′-triiodothyronine (T3) is a determinant of the sensitive period. Rapid increases in cerebral T3 levels are induced by imprinting training, rendering chicks imprintable. Furthermore, the administration of exogenous T3 makes chicks imprintable on days 4 or 6 even after the sensitive period has ended. However, how T3 affects neural transmission to enable imprinting remains mostly unknown. In this study, we demonstrate opposing roles for gamma-aminobutyric acid (GABA)-A and GABA-B receptors in imprinting downstream of T3. Quantitative reverse transcription polymerase chain reaction and immunoblotting showed that the GABA-A receptor expression increases gradually from days 1 to 5, whereas the GABA-B receptor expression gradually decreases. We examined whether neurons in the intermediate medial mesopallium (IMM), the brain region responsible for imprinting, express both types of GABA receptors. Immunostaining showed that morphologically identified putative projection neurons express both GABA-A and GABA-B receptors, suggesting that those GABA receptors interact with each other in these cells to modulate the IMM outputs. The roles of GABA-A and GABA-B receptors were investigated using various agonists and antagonists. Our results show that GABA-B receptor antagonists suppressed imprinting on day 1, while its agonists made day 4 chicks imprintable without administration of exogenous T3. By contrast, GABA-A receptor agonists suppressed imprinting on day 1, while its antagonists induced imprintability on day 4 without exogenous T3. Furthermore, both GABA-A receptor agonists and GABA-B receptor antagonists suppressed T3-induced imprintability on day 4 after the sensitive period has ended. Our data from these pharmacological experiments indicate that GABA-B receptors facilitate imprinting downstream of T3 by initiating the sensitive period, while the GABA-A receptor contributes to the termination of the sensitive period. In conclusion, we propose that opposing roles of GABA-A and GABA-B receptors in the brain during development determine the induction and termination of the sensitive period.
Collapse
Affiliation(s)
- Naoya Aoki
- Department of Life and Health Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Shinji Yamaguchi
- Department of Life and Health Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Toshiyuki Fujita
- Department of Life and Health Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Chihiro Mori
- Research Fellow of the Japan Society for the Promotion of Science, Tokyo, Japan.,Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Eiko Fujita
- Department of Life and Health Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Toshiya Matsushima
- Department of Biology, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Koichi J Homma
- Department of Life and Health Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| |
Collapse
|
2
|
De Vry J, Martínez-Martínez P, Losen M, Bode GH, Temel Y, Steckler T, Steinbusch HWM, De Baets M, Prickaerts J. Low Current-driven Micro-electroporation Allows Efficient In Vivo Delivery of Nonviral DNA into the Adult Mouse Brain. Mol Ther 2016; 18:1183-91. [PMID: 20389292 DOI: 10.1038/mt.2010.62] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Viral gene transfer or transgenic animals are commonly used technologies to alter gene expression in the adult brain, although these approaches lack spatial specificity and are time consuming. We delivered plasmid DNA locally into the brain of adult C57BL/6 mice in vivo by voltage- and current-controlled electroporation. The low current-controlled delivery of unipolar square wave pulses of 125 µA with microstimulation electrodes at the injection site gave 16 times higher transfection rates than a voltage-controlled electroporation protocol with plate electrodes resulting in currents of about 400 mA. Transfection was restricted to the target region and no damage due to the electric pulses was found. Our current-controlled electroporation protocol indicated that the use of very low currents resulting in applied voltages within the physiological range of the membrane potential, allows efficient transfection of nonviral plasmid DNA. In conclusion, low current-controlled electroporation is an excellent approach for electroporation in the adult brain, i.e., gene function can be influenced locally at a high level with no mortality and minimal tissue damage.
Collapse
Affiliation(s)
- Jochen De Vry
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands;European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Involvement of nucleotide diphosphate kinase 2 in the reopening of the sensitive period of filial imprinting of domestic chicks (Gallus gallus domesticus). Neurosci Lett 2015; 612:32-37. [PMID: 26673886 DOI: 10.1016/j.neulet.2015.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/19/2015] [Accepted: 12/04/2015] [Indexed: 02/07/2023]
Abstract
Filial imprinting is a behavior characterized by the sensitive or critical period restricted to the first few days after hatching. Once the sensitive period is closed, it is widely believed that chicks can never be imprinted under natural conditions. Previously, we showed that the exogenous injection of T3 reopened the sensitive period which was already closed. That study suggested that T3 functioned by way of a rapid non-genomic action; however, the molecular mechanism of how T3 reopens the sensitive period remains unknown. Here, we show that the phosphorylation level of nucleotide diphosphate kinase 2 (NDPK2) was upregulated following T3 injection. Pharmacological deprivation of the kinase activity of NDPK hampered the molecular process prerequisite for the reopening of the sensitive period of filial imprinting. Moreover, it is shown that the kinase activity of NDPK2 participates in the priming process by T3 signaling which endows the potential for learning. Our data indicate that NDPK2 plays a crucial role downstream of T3 action and that its phosphorylation is involved in the non-genomic signaling during imprinting.
Collapse
|
4
|
Critical role of the neural pathway from the intermediate medial mesopallium to the intermediate hyperpallium apicale in filial imprinting of domestic chicks (Gallus gallus domesticus). Neuroscience 2015; 308:115-24. [DOI: 10.1016/j.neuroscience.2015.09.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/03/2015] [Accepted: 09/03/2015] [Indexed: 01/31/2023]
|
5
|
Solomonia RO, McCabe BJ. Molecular mechanisms of memory in imprinting. Neurosci Biobehav Rev 2015; 50:56-69. [PMID: 25280906 PMCID: PMC4726915 DOI: 10.1016/j.neubiorev.2014.09.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 09/20/2014] [Accepted: 09/22/2014] [Indexed: 11/03/2022]
Abstract
Converging evidence implicates the intermediate and medial mesopallium (IMM) of the domestic chick forebrain in memory for a visual imprinting stimulus. During and after imprinting training, neuronal responsiveness in the IMM to the familiar stimulus exhibits a distinct temporal profile, suggesting several memory phases. We discuss the temporal progression of learning-related biochemical changes in the IMM, relative to the start of this electrophysiological profile. c-fos gene expression increases <15 min after training onset, followed by a learning-related increase in Fos expression, in neurons immunopositive for GABA, taurine and parvalbumin (not calbindin). Approximately simultaneously or shortly after, there are increases in phosphorylation level of glutamate (AMPA) receptor subunits and in releasable neurotransmitter pools of GABA and taurine. Later, the mean area of spine synapse post-synaptic densities, N-methyl-D-aspartate receptor number and phosphorylation level of further synaptic proteins are elevated. After ∼ 15 h, learning-related changes in amounts of several synaptic proteins are observed. The results indicate progression from transient/labile to trophic synaptic modification, culminating in stable recognition memory.
Collapse
Affiliation(s)
- Revaz O Solomonia
- Institute of Chemical Biology, Ilia State University, 3/5 K Cholokashvili Av, Tbilisi 0162, Georgia; I. Beritashvili Centre of Experimental Biomedicine, Tbilisi, Georgia.
| | - Brian J McCabe
- University of Cambridge, Department of Zoology, Sub-Department of Animal Behaviour, Madingley, Cambridge CB23 8AA, United Kingdom.
| |
Collapse
|
6
|
Abstract
Imprinting is a type of learning by which an animal restricts its social preferences to an object after exposure to that object. Filial imprinting occurs shortly after birth or hatching and sexual imprinting, around the onset of sexual maturity; both have sensitive periods. This review is concerned mainly with filial imprinting. Filial imprinting in the domestic chick is an effective experimental system for investigating mechanisms underlying learning and memory. Extensive evidence implicates a restricted part of the chick forebrain, the intermediate and medial mesopallium (IMM), as a memory store for visual imprinting. After imprinting to a visual stimulus, neuronal responsiveness in IMM is specifically biased toward the imprinting stimulus. Both this bias and the strength of imprinting measured behaviorally depend on uninterrupted sleep shortly after training. When learning-related changes in IMM are lateralized they occur predominantly or completely on the left side. Ablation experiments indicate that the left IMM is responsible for long-term storage of information about the imprinting stimulus; the right side is also a store but additionally is necessary for extra storage outside IMM, in a region necessary for flexible use of information acquired through imprinting. Auditory imprinting gives rise to biochemical, neuroanatomical, and electrophysiological changes in the medio-rostral nidopallium/mesopallium, anterior to IMM. Auditory imprinting has not been shown to produce learning-related changes in IMM. Imprinting may be facilitated by predispositions. Similar predispositions for faces and biological motion occur in domestic chicks and human infants. WIREs Cogn Sci 2013, 4:375-390. doi: 10.1002/wcs.1231 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Brian J McCabe
- Sub-Department of Animal Behaviour, Department of Zoology, University of Cambridge, Madingley, Cambridge, UK
| |
Collapse
|
7
|
Matsui R, Tanabe Y, Watanabe D. Avian adeno-associated virus vector efficiently transduces neurons in the embryonic and post-embryonic chicken brain. PLoS One 2012; 7:e48730. [PMID: 23144948 PMCID: PMC3492410 DOI: 10.1371/journal.pone.0048730] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 09/28/2012] [Indexed: 11/18/2022] Open
Abstract
The domestic chicken is an attractive model system to explore the development and function of brain circuits. Electroporation-mediated and retrovirus (including lentivirus) vector-mediated gene transfer techniques have been widely used to introduce genetic material into chicken cells. However, it is still challenging to efficiently transduce chicken postmitotic neurons without harming the cells. To overcome this problem, we searched for a virus vector suitable for gene transfer into chicken neurons, and report here a novel recombinant virus vector derived from avian adeno-associated virus (A3V). A3V vector efficiently transduces neuronal cells, but not non-neuronal cells in the brain. A single A3V injection into a postembryonic chick brain allows gene expression selectively in neuronal cells within 24 hrs. Such rapid and neuron-specific gene transduction raises the possibility that A3V vector can be utilized for studies of memory formation in filial imprinting, which occurs during the early postnatal days. A3V injection into the neural tube near the ear vesicle at early embryonic stage resulted in persistent and robust gene expression until E20.5 in the auditory brainstem. We further devised an A3V-mediated tetracycline (Tet) dependent gene expression system as a tool for studying the auditory circuit, consisting of the nucleus magnocellularis (NM) and nucleus laminaris (NL), that primarily computes interaural time differences (ITDs). Using this Tet system, we can transduce NM neurons without affecting NL neurons. Thus, the A3V technology complements current gene transfer techniques in chicken studies and will contribute to better understanding of the functional organization of neural circuits.
Collapse
Affiliation(s)
- Ryosuke Matsui
- Department of Molecular and Systems Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yasuto Tanabe
- Department of Developmental Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Dai Watanabe
- Department of Molecular and Systems Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Biological Sciences, Faculty of Medicine, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
8
|
IJIRI D, SAEGUSA A, MATSUBARA T, KANAI Y, HIRABAYASHI M. In vivo gene transfer into skeletal muscle of neonatal chicks by electroporation. Anim Sci J 2011; 83:504-9. [DOI: 10.1111/j.1740-0929.2011.00983.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Activation of brain-derived neurotrophic factor/tropomyosin-related kinase B signaling accompanying filial imprinting in domestic chicks (Gallus gallus domesticus). Neuroreport 2011; 22:929-34. [DOI: 10.1097/wnr.0b013e32834d0be7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Molecular function of microtubule-associated protein 2 for filial imprinting in domestic chicks (Gallus gallus domesticus). Neurosci Res 2011; 69:32-40. [DOI: 10.1016/j.neures.2010.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 09/10/2010] [Accepted: 09/14/2010] [Indexed: 01/15/2023]
|
11
|
De Vry J, Martínez-Martínez P, Losen M, Temel Y, Steckler T, Steinbusch HWM, De Baets MH, Prickaerts J. In vivo electroporation of the central nervous system: a non-viral approach for targeted gene delivery. Prog Neurobiol 2010; 92:227-44. [PMID: 20937354 DOI: 10.1016/j.pneurobio.2010.10.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 09/24/2010] [Accepted: 10/01/2010] [Indexed: 01/11/2023]
Abstract
Electroporation is a widely used technique for enhancing the efficiency of DNA delivery into cells. Application of electric pulses after local injection of DNA temporarily opens cell membranes and facilitates DNA uptake. Delivery of plasmid DNA by electroporation to alter gene expression in tissue has also been explored in vivo. This approach may constitute an alternative to viral gene transfer, or to transgenic or knock-out animals. Among the most frequently electroporated target tissues are skin, muscle, eye, and tumors. Moreover, different regions in the central nervous system (CNS), including the developing neural tube and the spinal cord, as well as prenatal and postnatal brain have been successfully electroporated. Here, we present a comprehensive review of the literature describing electroporation of the CNS with a focus on the adult brain. In addition, the mechanism of electroporation, different ways of delivering the electric pulses, and the risk of damaging the target tissue are highlighted. Electroporation has been successfully used in humans to enhance gene transfer in vaccination or cancer therapy with several clinical trials currently ongoing. Improving the knowledge about in vivo electroporation will pave the way for electroporation-enhanced gene therapy to treat brain carcinomas, as well as CNS disorders such as Alzheimer's disease, Parkinson's disease, and depression.
Collapse
Affiliation(s)
- Jochen De Vry
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Yamaguchi S, Iikubo E, Hirose N, Kitajima T, Katagiri S, Kawamori A, Fujii-Taira I, Matsushima T, Homma KJ. Bioluminescence imaging of c-fos gene expression accompanying filial imprinting in the newly hatched chick brain. Neurosci Res 2010; 67:192-5. [DOI: 10.1016/j.neures.2010.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 02/03/2010] [Accepted: 02/10/2010] [Indexed: 10/19/2022]
|
13
|
Yamaguchi S, Fujii-Taira I, Murakami A, Hirose N, Aoki N, Izawa EI, Fujimoto Y, Takano T, Matsushima T, Homma KJ. Up-regulation of microtubule-associated protein 2 accompanying the filial imprinting of domestic chicks (Gallus gallus domesticus). Brain Res Bull 2008; 76:282-8. [DOI: 10.1016/j.brainresbull.2008.02.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 12/06/2007] [Accepted: 02/06/2008] [Indexed: 12/28/2022]
|