1
|
Shute L, Fry M. Neuropeptide Y modulates the electrical activity of subfornical organ neurons. CURRENT RESEARCH IN NEUROBIOLOGY 2025; 8:100149. [PMID: 40308261 PMCID: PMC12041781 DOI: 10.1016/j.crneur.2025.100149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/16/2025] [Accepted: 03/16/2025] [Indexed: 05/02/2025] Open
Abstract
The subfornical organ (SFO) is a sensory circumventricular organ, lacking a blood-brain barrier. It is well-recognized as a key center for detection and integration of osmotic, ionic and hormonal signals for maintenance of hydromineral balance and cardiovascular regulation. Recently, the SFO has also been recognized as a center for the detection and integration of circulating satiety signals for regulation of energy balance. Neuropeptide Y (NPY) is a multifunctional neuropeptide, with effects on energy balance, cardiovascular tone and other aspects of homeostasis. Interestingly, despite the overlap of function between SFO and NPY, and observations that SFO expresses several subtypes of Y receptors, NPY regulation of SFO neurons has never been investigated. In this study, we examined the effects of NPY on dissociated rat SFO neurons using patch clamp electrophysiology. We observed that 300 nM NPY caused depolarization of 16 % of SFO neurons tested, and hyperpolarization of 26 %, while the remaining neurons were insensitive to NPY (n = 31). These effects were dose-dependent with an apparent EC50 of 3.9 nM for depolarizing neurons and 3.5 nM for hyperpolarizing neurons. Activation of Y5 receptors alone led to predominately hyperpolarizing effects, while activation of Y1 or Y2 receptors alone led to mixed responses. Voltage-clamp experiments demonstrated that NPY caused increases in voltage-gated K+ current amplitude as well as hyperpolarizing shifts in persistent Na+ current, mediating the hyperpolarizing and depolarizing effects, respectively. These findings indicate that NPY elicits direct electrophysiological effects on SFO neurons, suggesting that NPY acts via the SFO to regulate energy homeostatic function.
Collapse
Affiliation(s)
| | - Mark Fry
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
2
|
Lakhi S, Huang S, Wong S, Fry M. Fasting regulates expression of voltage-gated Na+ channel Nav1.3 in subfornical organ. Biochem Biophys Res Commun 2024; 741:151055. [PMID: 39612642 DOI: 10.1016/j.bbrc.2024.151055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
The subfornical organ (SFO) is a sensory circumventricular organ of the central nervous system and plays a key role in regulation of a number of homeostatic processes because of its ability to detect and respond to circulating signals and communication to homeostatic control centres. A previous study reported a change in expression of 687 transcripts in rat SFO following a 48h fast; of particular interest was the observed downregulation of the transcript encoding the Nav1.3 voltage-gated Na+ channel. Therefore, we carried out a study to examine the effects of a 48h fast on electrical properties of SFO neurons. First, we carried out an immunohistochemical analysis of rat SFO to confirm expression of Nav1.3 protein. Next, we carried out qPCR analysis of mRNA from SFO of sated rats and 48h fasted rats and confirm that a 48hr fast caused a downregulation of Nav1.3. Using patch clamp analysis of SFO neurons acutely isolated from rats following a 48h fast, a statistically significant decrease in peak Na+ current density, as well as shifts in voltage dependence of activation and inactivation, and a slowing to time dependent recovery from inactivation were observed. These changes were accompanied by a depolarization of the threshold to fire action potentials and a decrease in frequency of spontaneous action potentials. Together, these data show that the electrical properties of SFO neurons are altered by a 48hr fast, indicating SFO is a dynamic sensor of circulating signals.
Collapse
Affiliation(s)
- Suman Lakhi
- University of Manitoba, Department of Biological Sciences, Winnipeg, MB, Canada, R3X0B5
| | - Shuo Huang
- University of Manitoba, Department of Biological Sciences, Winnipeg, MB, Canada, R3X0B5
| | - Sylvia Wong
- University of Manitoba, Department of Biological Sciences, Winnipeg, MB, Canada, R3X0B5
| | - Mark Fry
- University of Manitoba, Department of Biological Sciences, Winnipeg, MB, Canada, R3X0B5.
| |
Collapse
|
3
|
Electrophysiological properties of rat subfornical organ neurons expressing calbindin D28K. Neuroscience 2019; 404:459-469. [DOI: 10.1016/j.neuroscience.2019.02.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 01/13/2023]
|
4
|
Medlock L, Shute L, Fry M, Standage D, Ferguson AV. Ionic mechanisms underlying tonic and burst firing behavior in subfornical organ neurons: a combined experimental and modeling study. J Neurophysiol 2018; 120:2269-2281. [PMID: 30089060 DOI: 10.1152/jn.00340.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Subfornical organ (SFO) neurons exhibit heterogeneity in current expression and spiking behavior, where the two major spiking phenotypes appear as tonic and burst firing. Insight into the mechanisms behind this heterogeneity is critical for understanding how the SFO, a sensory circumventricular organ, integrates and selectively influences physiological function. To integrate efficient methods for studying this heterogeneity, we built a single-compartment, Hodgkin-Huxley-type model of an SFO neuron that is parameterized by SFO-specific in vitro patch-clamp data. The model accounts for the membrane potential distribution and spike train variability of both tonic and burst firing SFO neurons. Analysis of model dynamics confirms that a persistent Na+ and Ca2+ currents are required for burst initiation and maintenance and suggests that a slow-activating K+ current may be responsible for burst termination in SFO neurons. Additionally, the model suggests that heterogeneity in current expression and subsequent influence on spike afterpotential underlie the behavioral differences between tonic and burst firing SFO neurons. Future use of this model in coordination with single neuron patch-clamp electrophysiology provides a platform for explaining and predicting the response of SFO neurons to various combinations of circulating signals, thus elucidating the mechanisms underlying physiological signal integration within the SFO. NEW & NOTEWORTHY Our understanding of how the subfornical organ (SFO) selectively influences autonomic nervous system function remains incomplete but theoretically results from the electrical responses of SFO neurons to physiologically important signals. We have built a computational model of SFO neurons, derived from and supported by experimental data, which explains how SFO neurons produce different electrical patterns. The model provides an efficient system to theoretically and experimentally explore how changes in the essential features of SFO neurons affect their electrical activity.
Collapse
Affiliation(s)
- Laura Medlock
- Center for Neuroscience Studies, Queen's University , Kingston, Ontario , Canada
| | - Lauren Shute
- Department of Biological Sciences, University of Manitoba , Winnipeg, Manitoba , Canada
| | - Mark Fry
- Department of Biological Sciences, University of Manitoba , Winnipeg, Manitoba , Canada
| | - Dominic Standage
- Center for Neuroscience Studies, Queen's University , Kingston, Ontario , Canada
| | - Alastair V Ferguson
- Center for Neuroscience Studies, Queen's University , Kingston, Ontario , Canada
| |
Collapse
|
5
|
Kuksis M, Ferguson AV. Actions of a hydrogen sulfide donor (NaHS) on transient sodium, persistent sodium, and voltage-gated calcium currents in neurons of the subfornical organ. J Neurophysiol 2015; 114:1641-51. [PMID: 26180118 DOI: 10.1152/jn.00252.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/01/2015] [Indexed: 12/19/2022] Open
Abstract
Hydrogen sulfide (H2S) is an endogenously found gasotransmitter that has been implicated in a variety of beneficial physiological functions. This study was performed to investigate the cellular mechanisms underlying actions of H2S previously observed in subfornical organ (SFO), where H2S acts to regulate blood pressure through a depolarization of the membrane and an overall increase in the excitability of SFO neurons. We used whole cell patch-clamp electrophysiology in the voltage-clamp configuration to analyze the effect of 1 mM NaHS, an H2S donor, on voltage-gated potassium, sodium, and calcium currents. We observed no effect of NaHS on potassium currents; however, both voltage-gated sodium currents (persistent and transient) and the N-type calcium current had a depolarized activation curve and an enhanced peak-induced current in response to a series of voltage-step and ramp protocols run in the control and NaHS conditions. These effects were not responsible for the previously observed depolarization of the membrane potential, as depolarizing effects of H2S were still observed following block of these conductances with tetrodotoxin (5 μM) and ω-conotoxin-GVIA (100 nM). Our studies are the first to investigate the effect of H2S on a variety of voltage-gated conductances in a single brain area, and although they do not explain mechanisms underlying the depolarizing actions of H2S on SFO neurons, they provide evidence of potential mechanisms through which this gasotransmitter influences the excitability of neurons in this important brain area as a consequence of the modulation of multiple ion channels.
Collapse
Affiliation(s)
- Markus Kuksis
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Alastair V Ferguson
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
6
|
Young CK, Eggermont JJ. Coupling of mesoscopic brain oscillations: recent advances in analytical and theoretical perspectives. Prog Neurobiol 2009; 89:61-78. [PMID: 19549556 DOI: 10.1016/j.pneurobio.2009.06.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 04/27/2009] [Accepted: 06/15/2009] [Indexed: 01/12/2023]
Abstract
Oscillatory brain activities have been traditionally studied in the context of how oscillations at a single frequency recorded from a single area could reveal functional insights. Recent advances in methodology used in signal analysis have revealed that cross-frequency coupling, within or between functional related areas, is more informative in determining the possible roles played by brain oscillations. In this review, we begin by describing the cellular basis of oscillatory field potentials and its theorized as well as demonstrated role in brain function. The recent development of mathematical tools that allow the investigation of cross-frequency and cross-area oscillation coupling will be presented and discussed in the context of recent advances in oscillation research based on animal data. Particularly, some pitfalls and caveats of methods currently available are discussed. Data generated from the application of examined techniques are integrated back into the theoretical framework regarding the functional role of brain oscillations. We suggest that the coupling of oscillatory activities at different frequencies between brain regions is crucial for understanding the brain from a functional ensemble perspective. Effort should be directed to elucidate how cross-frequency and area coupling are modulated and controlled. To achieve this, only the correct application of analytical tools may shed light on the intricacies of information representation, generation, binding, encoding, storage and retrieval in the brain.
Collapse
Affiliation(s)
- Calvin K Young
- Behavioural Neuroscience Group, Department of Psychology, University of Calgary, Calgary, AB, Canada
| | | |
Collapse
|
7
|
Fry M, Cottrell GT, Ferguson AV. Prokineticin 2 influences subfornical organ neurons through regulation of MAP kinase and the modulation of sodium channels. Am J Physiol Regul Integr Comp Physiol 2008; 295:R848-56. [DOI: 10.1152/ajpregu.00779.2007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prokineticin 2 (PK2) is a neuropeptide that acts as a signaling molecule regulating circadian rhythms in mammals. We have previously reported PK2 actions on subfornical organ (SFO) neurons, identifying this circumventricular organ as a target at which PK2 acts to influence autonomic control (Cottrell GT, and Ferguson AV. J. Neurosci. 24: 2375–2379, 2004). In this study, we have examined the cellular mechanisms by which PK2 increases the excitability of SFO neurons. Whole cell patch recordings from dissociated rat SFO neurons demonstrated that the mitogen-activated protein (MAP) kinase inhibitor PD-98059 prevented PK2-induced depolarization and decreases in delayed rectifier K+ current. PK2 also increased intracellular Ca2+ concentration ([Ca2+]i) in 39% of dissociated SFO neurons (mean increase = 20.8 ± 5.5%), effects that were maintained in the presence of thapsigargin but abolished by both nifedipine, or the absence of extracellular Ca2+, suggesting that PK2-induced [Ca2+]i transients resulted from Ca2+ entry through voltage-gated Ca2+ channels. Voltage-clamp recordings showed that PK2 was without effects on Ca2+ currents evoked by voltage ramps, suggesting that PK2-induced Ca2+ influx was secondary to PK2-induced increases in action potential frequency, an hypothesis supported by data showing that tetrodotoxin abolished effects of PK2 on [Ca2+]i. These observations suggested PK2 modulation of voltage-gated Na+ currents, a possibility confirmed by voltage-clamp experiments showing that PK2 increased the amplitude of both transient and persistent Na+ currents in 29% of SFO neurons (by 34 and 38%, respectively). These data indicate that PK2 influences SFO neurons through the activation of a MAP kinase cascade, which, in turn, modulates Na+ and K+ conductances.
Collapse
|
8
|
Erchova I, McGonigle DJ. Rhythms of the brain: an examination of mixed mode oscillation approaches to the analysis of neurophysiological data. CHAOS (WOODBURY, N.Y.) 2008; 18:015115. [PMID: 18377096 DOI: 10.1063/1.2900015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In the nervous system many behaviorally relevant dynamical processes are characterized by episodes of complex oscillatory states, whose periodicity may be expressed over multiple temporal and spatial scales. In at least some of these instances the variability in oscillatory amplitude and frequency can be explained in terms of deterministic dynamics, rather than being purely noise-driven. Recently interest has increased in studying the application of mixed-mode oscillations (MMOs) to neurophysiological data. MMOs are complex periodic waveforms where each period is comprised of several maxima and minima of different amplitudes. While MMOs might be expected to occur in brain kinetics, only a few examples have been identified thus far. In this article, we review recent theoretical and experimental findings on brain oscillatory rhythms in relation to MMOs, focusing on examples at the single neuron level but also briefly touching on possible instances of the phenomenon across local and global brain networks.
Collapse
Affiliation(s)
- Irina Erchova
- Institute for Adaptive and Neural Computation, School of Informatics and Centre of Neuroscience Research, University of Edinburgh, 5 Forrest Hill Road, Edinburgh EH1 2QL, United Kingdom
| | | |
Collapse
|