1
|
Wu Y, Yin J, Yang B, Tang L, Feng W, Liu X, Zhao X, Cheng Z. Association Analysis of Polymorphisms in BIN1, MC1R, STARD6 and PVRL2 with Mild Cognitive Impairment in Elderly Carrying APOE ε4 Allele. Neuropsychiatr Dis Treat 2021; 17:1125-1133. [PMID: 33907405 PMCID: PMC8071212 DOI: 10.2147/ndt.s296144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/22/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Apolipoprotein (APOE) ε4 is recognized as an independent risk factor for mild cognitive impairment (MCI). However, not everyone with the ε4 allele develops MCI, suggesting that other susceptibility genes exist. This study aimed to identify MCI susceptibility genes, including BIN1, MC1R, STARD6, and PVRL2, in elderly Han Chinese and to verify their association with APOE ε4 allele in MCI onset. METHODS To determine whether polymorphisms in BIN1 (rs6733839, rs7561528), MC1R (rs2228479), STARD6 (rs10164112), and PVRL2 (rs6859) occurred in elderly MCI patients carrying APOE ε4 allele, we carried out a case-control study including 285 MCI patients and 326 healthy controls. RESULTS Statistically significant differences in the proportion of APOE ε4 carriers, and BESCI, ADAS-cog, and CNT scores existed between the NC and MCI groups (all P < 0.01). Frequencies of the rs10164112 T and rs6859 A alleles were significantly higher in the latter than in the former (P = 0.01; 0.029). However, no significant differences in allele and genotype distribution of BIN1 (rs6733839, rs7561528) and MC1R (rs2228479) existed between samples in our two groups (all P > 0.05). When stratified by APOE ε4 status (carriers/non-carriers), genotype frequencies of BIN1 rs7561528, STARD6 rs10164112, and PVRL2 rs6859 among the four groups (NCε4+, NCε4-, MCIε4+, MCIε4-) were significantly different. Additionally, our results suggest a significant association between MCI and BIN1 rs7561528, STARD6 rs10164112, and PVRL2 rs6859 (all P<0.05) in elderly carriers. CONCLUSION This suggests that among the Han Chinese, MCI in elderly APOE ε4 carriers may be related to the BIN1 (rs7561528), STARD6 (rs10164112) and PVRL2 (rs6859). Genotype AA of rs7561528 and TT of rs10164112 might be protective factors against MCI in elderly APOE ε4 carriers.
Collapse
Affiliation(s)
- Yue Wu
- Department of Geriatric Psychiatry, The Affiliated Wuxi Mental Health Center with Nanjing Medical University, Wuxi, Jiangsu Province, People’s Republic of China
| | - Jiajun Yin
- Brain Science Basic Laboratory, The Affiliated Wuxi Mental Health Center with Nanjing Medical University, Wuxi, Jiangsu Province, People’s Republic of China
| | - Bixiu Yang
- Department of Clinical Psychology, The Affiliated Wuxi Mental Health Center with Nanjing Medical University, Wuxi, Jiangsu Province, People’s Republic of China
| | - Li Tang
- Department of General Psychiatry, The Affiliated Wuxi Mental Health Center with Nanjing Medical University, Wuxi, Jiangsu Province, People’s Republic of China
| | - Wei Feng
- Department of Social Prevention and Control, The Affiliated Wuxi Mental Health Center with Nanjing Medical University, Wuxi, Jiangsu Province, People’s Republic of China
| | - Xiaowei Liu
- Department of Geriatric Psychiatry, The Affiliated Wuxi Mental Health Center with Nanjing Medical University, Wuxi, Jiangsu Province, People’s Republic of China
| | - Xingfu Zhao
- Department of Geriatric Psychiatry, The Affiliated Wuxi Mental Health Center with Nanjing Medical University, Wuxi, Jiangsu Province, People’s Republic of China
| | - Zaohuo Cheng
- Department of Geriatric Psychiatry, The Affiliated Wuxi Mental Health Center with Nanjing Medical University, Wuxi, Jiangsu Province, People’s Republic of China
| |
Collapse
|
2
|
Intracellular cholesterol transport proteins: roles in health and disease. Clin Sci (Lond) 2016; 130:1843-59. [DOI: 10.1042/cs20160339] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/12/2016] [Indexed: 12/13/2022]
Abstract
Effective cholesterol homoeostasis is essential in maintaining cellular function, and this is achieved by a network of lipid-responsive nuclear transcription factors, and enzymes, receptors and transporters subject to post-transcriptional and post-translational regulation, whereas loss of these elegant, tightly regulated homoeostatic responses is integral to disease pathologies. Recent data suggest that sterol-binding sensors, exchangers and transporters contribute to regulation of cellular cholesterol homoeostasis and that genetic overexpression or deletion, or mutations, in a number of these proteins are linked with diseases, including atherosclerosis, dyslipidaemia, diabetes, congenital lipoid adrenal hyperplasia, cancer, autosomal dominant hearing loss and male infertility. This review focuses on current evidence exploring the function of members of the ‘START’ (steroidogenic acute regulatory protein-related lipid transfer) and ‘ORP’ (oxysterol-binding protein-related proteins) families of sterol-binding proteins in sterol homoeostasis in eukaryotic cells, and the evidence that they represent valid therapeutic targets to alleviate human disease.
Collapse
|
3
|
STARD6 on steroids: solution structure, multiple timescale backbone dynamics and ligand binding mechanism. Sci Rep 2016; 6:28486. [PMID: 27340016 PMCID: PMC4919784 DOI: 10.1038/srep28486] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/03/2016] [Indexed: 12/17/2022] Open
Abstract
START domain proteins are conserved α/β helix-grip fold that play a role in the non-vesicular and intracellular transport of lipids and sterols. The mechanism and conformational changes permitting the entry of the ligand into their buried binding sites is not well understood. Moreover, their functions and the identification of cognate ligands is still an active area of research. Here, we report the solution structure of STARD6 and the characterization of its backbone dynamics on multiple time-scales through 15N spin-relaxation and amide exchange studies. We reveal for the first time the presence of concerted fluctuations in the Ω1 loop and the C-terminal helix on the microsecond-millisecond time-scale that allows for the opening of the binding site and ligand entry. We also report that STARD6 binds specifically testosterone. Our work represents a milestone for the study of ligand binding mechanism by other START domains and the elucidation of the biological function of STARD6.
Collapse
|
4
|
Kim YJ, Paik JW, Kang WS, Kim SK, Lee KJ, Na HR, Park HJ, Kim JW, Lim HK, Park JK. Genetic association of STARD6 polymorphisms with Alzheimer's disease in a Korean population. J Neurol Sci 2016; 366:100-101. [PMID: 27288785 DOI: 10.1016/j.jns.2016.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/06/2016] [Accepted: 05/09/2016] [Indexed: 10/21/2022]
Affiliation(s)
- Young Jong Kim
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jong-Woo Paik
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Won Sub Kang
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Su Kang Kim
- Kohwang Medical Research Institute, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kang Joon Lee
- Psychiatric Department, Inje University, Ilsanpaik Hospital, Goyang 10380, Republic of Korea
| | - Hae Ri Na
- Department of Neurology, Bobath Memorial Hospital, Seongnam 13618, Republic of Korea
| | - Hae Jeong Park
- Kohwang Medical Research Institute, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jong Woo Kim
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyun Kook Lim
- Department of Psychiatry, St. Vincent's Hospital, Suwon 16247, Republic of Korea
| | - Jin Kyung Park
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
5
|
Létourneau D, Lefebvre A, Lavigne P, LeHoux JG. The binding site specificity of STARD4 subfamily: Breaking the cholesterol paradigm. Mol Cell Endocrinol 2015; 408:53-61. [PMID: 25542846 DOI: 10.1016/j.mce.2014.12.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/19/2014] [Accepted: 12/19/2014] [Indexed: 11/16/2022]
Abstract
Steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domain proteins display diverse expression patterns and cellular localisations. They bind a large variety of lipids and sterols and are involved in lipid metabolism, lipid transfer and cell signalling. The START domain tertiary structure is an α-helix/β-grip fold module of approximately 210 amino acids delimiting an internal cavity forming the binding site. However, the determinants that dictate ligand specificity and the mechanism of ligand entry and exit are ill-defined. Herein, we review and discuss the current knowledge on ligand specificity and binding mechanism of START domains. More specifically, we highlight that the conserved residues of STARD1, STARD3, STARD4, STARD5 and STARD6 START domains binding sterol play an important structural role for the global protein fold, whereas the residues forming the cavity that fits the shape of their respective ligand are divergent, suggesting their participation in ligand specificity. We also explore the potential binding of steroids to STARD6 in the context of ligand selectivity.
Collapse
Affiliation(s)
- Danny Létourneau
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Andrée Lefebvre
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Pierre Lavigne
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Jean-Guy LeHoux
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| |
Collapse
|
6
|
Chang IY, Ohn T, Jeon YJ, Lee KH, Kim JW, Kim IY, Yoon SP. A comparison of the steroidogenic acute regulatory protein-related lipid transfer (START) domain-containing 6 on the brain and testes between young and aged rats. Acta Histochem 2014; 116:551-8. [PMID: 24360190 DOI: 10.1016/j.acthis.2013.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/12/2013] [Accepted: 11/13/2013] [Indexed: 11/24/2022]
Abstract
The START domain-containing 6 (StarD6) was originally reported to play a role during male germ cell maturation. We have since reported on StarD6 in the developing hypothyroid rat brain. Therefore, we investigated qualitative and quantitative changes of StarD6 in the aging rat brain and testes of male Sprague-Dawley rats. Serum testosterone levels decreased with aging and total protein levels of StarD6 in the testes decreased. While the immunolocalization of StarD6 in the spermatocytes decreased, cytoplasmic localization appeared in the aged testes. Compared with young rats, aged rats showed decreased StarD6 in the cerebrum and cerebellum without changes in immunolocalization in the cortical neurons of the cerebral cortex and Purkinje cells of the cerebellar cortex. Aged rats also showed increases in StarD6 in the hippocampus with changes in its immunolocalization from the Stratum pyramidale to the Stratum radiatum and Stratum lacunosum-moleculare. Taken together, StarD6 decreased with aging in the testes, which implies that StarD6 might play a role in impaired spermatogenesis in the aged rat. StarD6 decreased in the cerebrum and the cerebellum, but slightly increased in the hippocampus, which suggests that StarD6 might also play a role for neurosteroidogenesis in the hippocampus of aged rats.
Collapse
|
7
|
LaVoie HA, Whitfield NE, Shi B, King SR, Bose HS, Hui YY. STARD6 is expressed in steroidogenic cells of the ovary and can enhance de novo steroidogenesis. Exp Biol Med (Maywood) 2014; 239:430-5. [PMID: 24595982 DOI: 10.1177/1535370213517616] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
STARD6 is a member of the StAR-related lipid transfer (START) domain family of proteins whose function thus far remains obscure. While it recently was shown to facilitate steroidogenesis in a cell-free setting, it has not been localized to steroidogenic cells of normal reproductive tissues. In a recent microarray study, we detected STARD6 mRNA in cultured porcine ovarian granulosa cells which are steroidogenic. In the present study, we examined regulation of STARD6 mRNA in porcine granulosa cultures, and found that it was not regulated by cyclic AMP, but it was reduced by combined knockdown of the transcription factors GATA4 and GATA6. We detected both STARD6 mRNA and protein in fresh granulosa cells and whole antral follicles and different stage corpora lutea of pig. The highest levels were discovered in the mid-luteal phase corpus luteum. Immunolocalization within ovarian tissues indicated robust STARD6 immunoreactivity in steroidogenic cells of the corpus luteum. Relatively lesser amounts of STARD6 signal were found in granulosa cells, theca cells, and oocytes. To test the ability of STARD6 to facilitate de novo steroidogenesis, non-steroidogenic COS-1 cells were co-transfected with components of the P450 cholesterol side-chain cleavage system, enabling them to make pregnenolone, and STARD6. STARD6 increased pregnenolone production by two- to three-fold over the empty vector control. In summary, STARD6 is found in the pig ovary, exhibits the strongest expression in highly steroidogenic luteal cells, and significantly enhances pregnenolone production in transfected COS cells independent of cyclic AMP treatment. Collectively, these findings indicate that STARD6 may contribute to steroidogenesis in ovarian cells, but also suggests other cellular functions that require cholesterol trafficking.
Collapse
Affiliation(s)
- Holly A LaVoie
- Dept. of Cell Biology and Anatomy, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | | | |
Collapse
|
8
|
Létourneau D, Lefebvre A, Lavigne P, LeHoux JG. STARD5 specific ligand binding: comparison with STARD1 and STARD4 subfamilies. Mol Cell Endocrinol 2013; 371:20-5. [PMID: 23337244 DOI: 10.1016/j.mce.2013.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/09/2013] [Accepted: 01/09/2013] [Indexed: 10/27/2022]
Abstract
We present herein a review of our recent results on the characterization of the binding sites of STARD1, STARD5 and STARD6 using NMR and other biophysical techniques. Whereas STARD1 and STARD6 bind cholesterol, no cholesterol binding could be detected for STARD5. However, titration of STARD5 with cholic acid and chenodeoxycholic acid led to specific binding. Using perturbation of the (1)H-(15)N-HSQC spectra and the sequence specific NMR assignments, we identified the amino acids in contact with those ligands. The most perturbed residues in presence of ligands are lining the internal cavity of the protein. Interestingly, these residues are not conserved in STARD1 and STARD6 and could therefore be key structural determinants of the specificity of START domains toward their ligands. We highlight three tissues expressing STARD5 that are affected by bile acids.
Collapse
Affiliation(s)
- Danny Létourneau
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | | | | | | |
Collapse
|
9
|
Chang IY, Kim JH, Cho KW, Yoon SP. Acute responses of DNA repair proteins and StarD6 in rat hippocampus after domoic acid-induced excitotoxicity. Acta Histochem 2013; 115:234-9. [PMID: 22883302 DOI: 10.1016/j.acthis.2012.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 07/04/2012] [Accepted: 07/05/2012] [Indexed: 10/28/2022]
Abstract
StarD6, which might be considered to be neuroprotective, and DNA repair proteins can play a role against oxidative damages by excitotoxin in the nervous system. In order to investigate the relationship between StarD6 and DNA repair proteins, excitotoxicity was induced by domoic acid in male Sprague-Dawley rats. Western blot analysis revealed transitorily elevated levels in StarD6, apurinic/apyrimidinic endonuclease (APE) and 8-oxoguanine DNA-glycosylase (Ogg1) in accord with the DNA damage marker phosphorylated H2AX. Immunohistochemistry revealed that increased intensity was transiently seen not only in the Stratum (Str.) radiatum and Str. lacunosum-moleculare with StarD6 and APE, but also in the Str. pyramidale with Ogg1. Intensities decreased 24h after domoic acid injection in CA3 with APE and Ogg1 as well as in the Str. radiatum and Str. lacunosum-moleculare with StarD6 and APE. These results suggested that StarD6 may not be closely related with DNA repair proteins in the hippocampus after domoic acid-induced excitotoxicity, although the activities of these proteins might be positively affected by excitotoxic stimuli.
Collapse
|
10
|
Létourneau D, Lorin A, Lefebvre A, Frappier V, Gaudreault F, Najmanovich R, Lavigne P, LeHoux JG. StAR-related lipid transfer domain protein 5 binds primary bile acids. J Lipid Res 2012; 53:2677-89. [PMID: 23018617 DOI: 10.1194/jlr.m031245] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Steroidogenic acute regulatory-related lipid transfer (START) domain proteins are involved in the nonvesicular intracellular transport of lipids and sterols. The STARD1 (STARD1 and STARD3) and STARD4 subfamilies (STARD4-6) have an internal cavity large enough to accommodate sterols. To provide a deeper understanding on the structural biology of this domain, the binding of sterols to STARD5, a member of the STARD4 subfamily, was monitored. The SAR by NMR [(1)H-(15)N heteronuclear single-quantum coherence (HSQC)] approach, complemented by circular dichroism (CD) and isothermal titration calorimetry (ITC), was used. Titration of STARD5 with cholic (CA) and chenodeoxycholic acid (CDCA), ligands of the farnesoid X receptor (FXR), leads to drastic perturbation of the (1)H-(15)N HSQC spectra and the identification of the residues in contact with those ligands. The most perturbed residues in presence of ligands are lining the internal cavity of the protein. Ka values of 1.8·10-(4) M(-1) and 6.3·10(4) M(-1) were measured for CA and CDCA, respectively. This is the first report of a START domain protein in complex with a sterol ligand. Our original findings indicate that STARD5 may be involved in the transport of bile acids rather than cholesterol.
Collapse
Affiliation(s)
- Danny Létourneau
- Département de Biochimie, Faculté de médecine et des sciences de lsanté, Université de Sherbrooke, Sherbrooke, Québec, Canada, J1H 5N4
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Chang IY, Ohn T, Ko GS, Yoon Y, Kim JW, Yoon SP. Immunolocalization of steroidogenic acute regulatory protein-related lipid transfer (START) domain-containing proteins in the developing cerebellum of normal and hypothyroid rats. J Chem Neuroanat 2011; 43:28-33. [PMID: 22024186 DOI: 10.1016/j.jchemneu.2011.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 10/10/2011] [Accepted: 10/10/2011] [Indexed: 10/16/2022]
Abstract
Cholesterol transport proteins are a prerequisite for neurosteroidogenesis. Steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domain-containing proteins, such as StAR and START domain-containing 6 (StarD6), are known to be distributed in the brain. Since perinatal hypothyroidism affects cerebellar development, we examined postnatal changes in StAR and StarD6 immunolocalization in the developing cerebellum of control and hypothyroid rats. Pregnant Sprague-Dawley rats were given 0.05% 6-propyl-2-thiouracil (PTU) or water from gestation day 11 until postnatal day (P) 28, and were then killed together with age-matched control rats. As shown by calbindin D-28k immunostaining, the developing cerebellar cytoarchitecture and Purkinje cells were affected by PTU-induced hypothyroidism as compared to control rats. The immunolocalization of StAR and StarD6 generally followed the maturation pattern of Purkinje cells from the vermis to the cerebellar hemisphere. StAR immunostaining first appeared in the Purkinje cells of the vermis at P7 in both control and hypothyroid rats. In control rats, a few StarD6 immunoreactive cells were seen at birth and a nuclear localization of StarD6 in Purkinje cells was obvious at P14. PTU-induced hypothyroidism delayed the appearance of StarD6 immunopositive cells until P7. Moreover, the nuclear localization of StarD6 in PTU-treated rats was not obvious at P14. An adult-like distribution of StAR and StarD6 was achieved by P21 in control and hypothyroid rats. These results suggest that StarD6 may affect the development of Purkinje cells during the first and second postnatal weeks, a known period of thyroid hormone action.
Collapse
Affiliation(s)
- In Youb Chang
- Department of Anatomy, College of Medicine, Chosun University, Gwangju, Republic of Korea
| | | | | | | | | | | |
Collapse
|
12
|
Rodriguez-Agudo D, Calderon-Dominguez M, Ren S, Marques D, Redford K, Medina-Torres MA, Hylemon P, Gil G, Pandak WM. Subcellular localization and regulation of StarD4 protein in macrophages and fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1811:597-606. [PMID: 21767660 PMCID: PMC3156897 DOI: 10.1016/j.bbalip.2011.06.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/07/2011] [Accepted: 06/30/2011] [Indexed: 10/18/2022]
Abstract
StarD4 is a member of the StarD4 subfamily of START domain proteins with a characteristic lipid binding pocket specific for cholesterol. The objective of this study was to define StarD4 subcellular localization, regulation, and function. Immunobloting showed that StarD4 is highly expressed in the mouse fibroblast cell line 3T3-L1, in human THP-1 macrophages, Kupffer cells (liver macrophages), and hepatocytes. In 3T3-L1 cells and THP-1 macrophages, StarD4 protein appeared localized to the cytoplasm and the endoplasmic reticulum (ER). More specifically, in THP-1 macrophages StarD4 co-localized to areas of the ER enriched in Acyl-CoA:cholesterol acyltransferase-1 (ACAT-1), and was closely associated with budding lipid droplets. The addition of purified StarD4 recombinant protein to an in vitro assay increased ACAT activity 2-fold, indicating that StarD4 serves as a rate-limiting step in cholesteryl ester formation by delivering cholesterol to ACAT-1-enriched ER. In addition, StarD4 protein was found to be highly regulated and to redistribute in response to sterol levels. In summary, these observations, together with our previous findings demonstrating the ability of increased StarD4 expression to increase bile acid synthesis and cholesteryl ester formation, provide strong evidence for StarD4 as a highly regulated, non-vesicular, directional, intracellular transporter of cholesterol which plays a key role in the maintenance of intracellular cholesterol homeostasis.
Collapse
Affiliation(s)
| | - Maria Calderon-Dominguez
- Department of Medicine, Veterans Affairs Medical Center and Virginia Commonwealth University; Richmond, Virginia,Department of Molecular Biology and Biochemistry, Universidad de Malaga, Spain
| | - Shunlin Ren
- Department of Medicine, Veterans Affairs Medical Center and Virginia Commonwealth University; Richmond, Virginia
| | - Dalila Marques
- Department of Medicine, Veterans Affairs Medical Center and Virginia Commonwealth University; Richmond, Virginia
| | - Kaye Redford
- Department of Medicine, Veterans Affairs Medical Center and Virginia Commonwealth University; Richmond, Virginia
| | | | - Phillip Hylemon
- Department of Microbiology/Immunology, Veterans Affairs Medical Center and Virginia Commonwealth University; Richmond, Virginia
| | - Gregorio Gil
- Department of Biochemistry and Molecular Biology, Veterans Affairs Medical Center and Virginia Commonwealth University; Richmond, Virginia
| | - William M. Pandak
- Department of Medicine, Veterans Affairs Medical Center and Virginia Commonwealth University; Richmond, Virginia
| |
Collapse
|
13
|
Chang IY, Jeon YJ, Jung SM, Jang YH, Ahn JB, Park KS, Yoon SP. Does the StarD6 mark the same as the StAR in the nervous system? J Chem Neuroanat 2010; 40:239-42. [PMID: 20609383 DOI: 10.1016/j.jchemneu.2010.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 06/18/2010] [Accepted: 06/28/2010] [Indexed: 11/28/2022]
Abstract
Unlike steroidogenic acute regulatory protein (StAR), one of the cholesterol transport protein, little attention is given to StarD6 which belongs to a family of StAR-related lipid transfer domain proteins. Although we undertook previous works with StarD6 in the nervous system, the characteristics are in controversy to date. Therefore, we attempted to investigate the morphological characteristics of StarD6 in the nervous system are the same as StAR in vitro and in vivo. The number of immunoreactive cells was significantly different by StAR or StarD6 in the cultured glioblastoma cell lines and dopaminergic neuronal cell lines. StarD6 immunoreactivity was changed by the presence of DNA-dependent protein kinase, while the dependency was not observed in StAR immunoreactivity. Besides, StarD6 was mainly observed in the stratum pyramidale and StAR in the other strata of normal rat hippocampus proper. Increased immunolocalization of StAR and StarD6 was seen in the stratum pyramidale and the strata lacunosum-moleculare, respectively, 3h after pilocarpine-induced epilepsy. Taken together, morphological aspects of StarD6 were significantly different from those of StAR in cultured glial and neuronal cells, as well as the distribution in the normal and epileptic rat hippocampus. These results suggested that StarD6 did not mark the same as StAR in vitro and in vivo.
Collapse
Affiliation(s)
- In Youb Chang
- Korean DNA Repair Research Center, Chosun University, Gwangju, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Alpy F, Legueux F, Bianchetti L, Tomasetto C. [START domain-containing proteins: a review of their role in lipid transport and exchange]. Med Sci (Paris) 2009; 25:181-91. [PMID: 19239851 DOI: 10.1051/medsci/2009252181] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Fifteen START domain-containing proteins exist in mammals. On the basis of their structural homology, this family is divided into several sub-families consisting mainly of non-vesicular intracellular lipid carriers. With the exception of the Thioesterase-START subfamily, the other subfamilies are represented among invertebrates. The START domain is always located in the C-terminus of the protein. It is a module of about 210 residues that binds lipids, including sterols. Cholesterol, 25-hydroxycholesterol, phosphatidylcholine, phosphatidylethanolamine and ceramides are ligands for STARD1/STARD3-6, STARD5, STARD2/STARD10, STARD10 and STARD11, respectively. The lipids or sterols bound by the remaining 7 START proteins are unknown. The START domain can be regarded as a lipid-exchange and/or a lipid-sensing domain. The START domain consists in a deep lipid-binding pocket--that shields the hydrophic ligand from the external aqueous environment--covered by a lid formed by a C-terminal alpha helix. Within the same subgroup, such as the sterols-carriers subgroup, different START domains have similar biochemical properties; however, their expression profile and their subcellular localization distinguish them and are critical for their different biological functions. START proteins act in a variety of distinct physiological processes, such as lipid transfer between intracellular compartments, lipid metabolism and modulation of signaling events. Mutation or misexpression of START proteins is linked to pathological processes, including genetic disorders, autoimmune diseases and cancers.
Collapse
Affiliation(s)
- Fabien Alpy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Biologie du Cancer, UPR 6520 CNRS/U964 Inserm/Université Louis Pasteur, BP10142, 67404 Illkirch, CU de Strasbourg, France
| | | | | | | |
Collapse
|