1
|
Hörner SJ, Couturier N, Gueiber DC, Hafner M, Rudolf R. Development and In Vitro Differentiation of Schwann Cells. Cells 2022; 11:3753. [PMID: 36497014 PMCID: PMC9739763 DOI: 10.3390/cells11233753] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Schwann cells are glial cells of the peripheral nervous system. They exist in several subtypes and perform a variety of functions in nerves. Their derivation and culture in vitro are interesting for applications ranging from disease modeling to tissue engineering. Since primary human Schwann cells are challenging to obtain in large quantities, in vitro differentiation from other cell types presents an alternative. Here, we first review the current knowledge on the developmental signaling mechanisms that determine neural crest and Schwann cell differentiation in vivo. Next, an overview of studies on the in vitro differentiation of Schwann cells from multipotent stem cell sources is provided. The molecules frequently used in those protocols and their involvement in the relevant signaling pathways are put into context and discussed. Focusing on hiPSC- and hESC-based studies, different protocols are described and compared, regarding cell sources, differentiation methods, characterization of cells, and protocol efficiency. A brief insight into developments regarding the culture and differentiation of Schwann cells in 3D is given. In summary, this contribution provides an overview of the current resources and methods for the differentiation of Schwann cells, it supports the comparison and refinement of protocols and aids the choice of suitable methods for specific applications.
Collapse
Affiliation(s)
- Sarah Janice Hörner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | - Nathalie Couturier
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | - Daniele Caroline Gueiber
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Department of Electronics Engineering, Federal University of Technology Paraná, Ponta Grossa 84017-220, Brazil
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Institute of Medical Technology, Heidelberg University and Mannheim University of Applied Sciences, 69117 Heidelberg, Germany
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Institute of Medical Technology, Heidelberg University and Mannheim University of Applied Sciences, 69117 Heidelberg, Germany
| |
Collapse
|
2
|
Su Q, Nasser MI, He J, Deng G, Ouyang Q, Zhuang D, Deng Y, Hu H, Liu N, Li Z, Zhu P, Li G. Engineered Schwann Cell-Based Therapies for Injury Peripheral Nerve Reconstruction. Front Cell Neurosci 2022; 16:865266. [PMID: 35602558 PMCID: PMC9120533 DOI: 10.3389/fncel.2022.865266] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/04/2022] [Indexed: 12/12/2022] Open
Abstract
Compared with the central nervous system, the adult peripheral nervous system possesses a remarkable regenerative capacity, which is due to the strong plasticity of Schwann cells (SCs) in peripheral nerves. After peripheral nervous injury, SCs de-differentiate and transform into repair phenotypes, and play a critical role in axonal regeneration, myelin formation, and clearance of axonal and myelin debris. In view of the limited self-repair capability of SCs for long segment defects of peripheral nerve defects, it is of great clinical value to supplement SCs in necrotic areas through gene modification or stem cell transplantation or to construct tissue-engineered nerve combined with bioactive scaffolds to repair such tissue defects. Based on the developmental lineage of SCs and the gene regulation network after peripheral nerve injury (PNI), this review summarizes the possibility of using SCs constructed by the latest gene modification technology to repair PNI. The therapeutic effects of tissue-engineered nerve constructed by materials combined with Schwann cells resembles autologous transplantation, which is the gold standard for PNI repair. Therefore, this review generalizes the research progress of biomaterials combined with Schwann cells for PNI repair. Based on the difficulty of donor sources, this review also discusses the potential of “unlimited” provision of pluripotent stem cells capable of directing differentiation or transforming existing somatic cells into induced SCs. The summary of these concepts and therapeutic strategies makes it possible for SCs to be used more effectively in the repair of PNI.
Collapse
Affiliation(s)
- Qisong Su
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial People’s Hospital, Guangdong Cardiovascular Institute, Guangzhou, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Moussa Ide Nasser
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial People’s Hospital, Guangdong Cardiovascular Institute, Guangzhou, China
| | - Jiaming He
- School of Basic Medical Science, Shandong University, Jinan, China
| | - Gang Deng
- Guangdong Provincial People’s Hospital, Guangdong Cardiovascular Institute, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Qing Ouyang
- Guangdong Provincial People’s Hospital, Guangdong Cardiovascular Institute, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Donglin Zhuang
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuzhi Deng
- Guangdong Provincial People’s Hospital, Guangdong Cardiovascular Institute, Guangzhou, China
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Haoyun Hu
- Guangdong Provincial People’s Hospital, Guangdong Cardiovascular Institute, Guangzhou, China
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Nanbo Liu
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zhetao Li
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ping Zhu
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial People’s Hospital, Guangdong Cardiovascular Institute, Guangzhou, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Structural Heart Disease, Guangzhou, China
- *Correspondence: Ping Zhu,
| | - Ge Li
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial People’s Hospital, Guangdong Cardiovascular Institute, Guangzhou, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Structural Heart Disease, Guangzhou, China
- Ge Li,
| |
Collapse
|
3
|
Hopf A, Schaefer DJ, Kalbermatten DF, Guzman R, Madduri S. Schwann Cell-Like Cells: Origin and Usability for Repair and Regeneration of the Peripheral and Central Nervous System. Cells 2020; 9:E1990. [PMID: 32872454 PMCID: PMC7565191 DOI: 10.3390/cells9091990] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/06/2020] [Accepted: 08/22/2020] [Indexed: 12/14/2022] Open
Abstract
Functional recovery after neurotmesis, a complete transection of the nerve fiber, is often poor and requires a surgical procedure. Especially for longer gaps (>3 mm), end-to-end suturing of the proximal to the distal part is not possible, thus requiring nerve graft implantation. Artificial nerve grafts, i.e., hollow fibers, hydrogels, chitosan, collagen conduits, and decellularized scaffolds hold promise provided that these structures are populated with Schwann cells (SC) that are widely accepted to promote peripheral and spinal cord regeneration. However, these cells must be collected from the healthy peripheral nerves, resulting in significant time delay for treatment and undesired morbidities for the donors. Therefore, there is a clear need to explore the viable source of cells with a regenerative potential similar to SC. For this, we analyzed the literature for the generation of Schwann cell-like cells (SCLC) from stem cells of different origins (i.e., mesenchymal stem cells, pluripotent stem cells, and genetically programmed somatic cells) and compared their biological performance to promote axonal regeneration. Thus, the present review accounts for current developments in the field of SCLC differentiation, their applications in peripheral and central nervous system injury, and provides insights for future strategies.
Collapse
Affiliation(s)
- Alois Hopf
- Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, 4123 Allschwil, Switzerland; (A.H.); (D.F.K.)
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (D.J.S.); (R.G.)
| | - Dirk J. Schaefer
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (D.J.S.); (R.G.)
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, University of Basel, Spitalstrasse 21, 4031 Basel, Switzerland
| | - Daniel F. Kalbermatten
- Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, 4123 Allschwil, Switzerland; (A.H.); (D.F.K.)
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, University of Basel, Spitalstrasse 21, 4031 Basel, Switzerland
| | - Raphael Guzman
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (D.J.S.); (R.G.)
- Department of Neurosurgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland
| | - Srinivas Madduri
- Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, 4123 Allschwil, Switzerland; (A.H.); (D.F.K.)
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (D.J.S.); (R.G.)
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, University of Basel, Spitalstrasse 21, 4031 Basel, Switzerland
| |
Collapse
|
4
|
|
5
|
Use of engineered Schwann cells in peripheral neuropathy: Hopes and hazards. Brain Res 2016; 1638:97-104. [DOI: 10.1016/j.brainres.2015.10.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 10/23/2015] [Indexed: 01/16/2023]
|
6
|
Yoon HH, Han MJ, Park JK, Lee JH, Seo YK. Effect of low temperature on Schwann-like cell differentiation of bone marrow mesenchymal stem cells. Tissue Eng Regen Med 2015. [DOI: 10.1007/s13770-014-0058-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
7
|
XIAO YUZHOU, WANG SHENG. Differentiation of Schwann-like cells from human umbilical cord blood mesenchymal stem cells in vitro. Mol Med Rep 2014; 11:1146-52. [DOI: 10.3892/mmr.2014.2840] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 08/08/2014] [Indexed: 11/05/2022] Open
|
8
|
Kuroda Y, Dezawa M. Mesenchymal stem cells and their subpopulation, pluripotent muse cells, in basic research and regenerative medicine. Anat Rec (Hoboken) 2013; 297:98-110. [PMID: 24293378 DOI: 10.1002/ar.22798] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) have gained a great deal of attention for regenerative medicine because they can be obtained from easy accessible mesenchymal tissues, such as bone marrow, adipose tissue, and the umbilical cord, and have trophic and immunosuppressive effects to protect tissues. The most outstanding property of MSCs is their potential for differentiation into cells of all three germ layers. MSCs belong to the mesodermal lineage, but they are known to cross boundaries from mesodermal to ectodermal and endodermal lineages, and differentiate into a variety of cell types both in vitro and in vivo. Such behavior is exceptional for tissue stem cells. As observed with hematopoietic and neural stem cells, tissue stem cells usually generate cells that belong to the tissue in which they reside, and do not show triploblastic differentiation. However, the scientific basis for the broad multipotent differentiation of MSCs still remains an enigma. This review summarizes the properties of MSCs from representative mesenchymal tissues, including bone marrow, adipose tissue, and the umbilical cord, to demonstrate their similarities and differences. Finally, we introduce a novel type of pluripotent stem cell, multilineage-differentiating stress-enduring (Muse) cells, a small subpopulation of MSCs, which can explain the broad spectrum of differentiation ability in MSCs.
Collapse
Affiliation(s)
- Yasumasa Kuroda
- Department of Anatomy and Anthropology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | |
Collapse
|
9
|
|
10
|
Qian DX, Zhang HT, Cai YQ, Luo P, Xu RX. Expression of tyrosine kinase receptor C in the segments of the spinal cord and the cerebral cortex after cord transection in adult rats. Neurosci Bull 2011; 27:83-90. [PMID: 21441969 DOI: 10.1007/s12264-011-1150-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE To investigate the role of tyrosine kinase receptor C (TrkC), the receptor of neurotrophin-3 (NT-3), in neuroplasticity following spinal cord injury (SCI). METHODS Rats with cord transection were allowed to survive for 1, 3, 7 and 14 d post operation (dpo). TrkC expressions at lower thoracic levels of the spinal cord and in precentral gyrus of cerebral cortex were investigated. RESULTS TrkC protein levels at both the site of injury (T10-T11) and the neighboring segments (T9 and T12) in the spinal cord decreased significantly at 1-7 dpo, followed by a rapid increase at 14 dpo. The temporal changes in TrkC mRNA expression level showed a similar pattern with that of TrkC protein. In addition, the levels of TrkC protein and mRNA at the site of injury (T10-T11) were significantly higher than those at the neighboring spinal segments (T9 and T12). Besides, the levels of TrkC protein and mRNA were higher at the rostral segment than at the caudal segment. However, in the motor cortex, TrkC protein was not detected and TrkC mRNA was expressed at a very low level. CONCLUSION These results suggest that TrkC may be involved in neuroplasticity after SCI.
Collapse
Affiliation(s)
- Dong-Xiang Qian
- Department of Neurosurgery, the Third Affiliated Hospital, Guangzhou Medical College, Guangzhou 510150, China
| | | | | | | | | |
Collapse
|
11
|
Xu Q, Zhang HT, Liu K, Rao JH, Liu XM, Wu L, Xu BN. In vitro and in vivo magnetic resonance tracking of Sinerem-labeled human umbilical mesenchymal stromal cell-derived Schwann cells. Cell Mol Neurobiol 2011; 31:365-75. [PMID: 21120599 PMCID: PMC11498374 DOI: 10.1007/s10571-010-9628-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 11/02/2010] [Indexed: 10/18/2022]
Abstract
Tracking of ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles-labeled embryonic stem cells, neural stem cells, or adult mesenchymal stem cells in vitro and in vivo by using magnetic resonance (MR) imaging have been reported. However, whether the transdifferentiated cells can be effectively labeled by USPIO has not yet been investigated. The requirement for nerve donor material evokes additional morbidity and inability to generate a sufficiently large number of cells in a short time to hamper the clinic application of Schwann cells (SCs) transplantation. These limitations may be avoided if SCs can be generated from clinically accessible sources, such as bone marrow and umbilical cord. However, a reliable means of inducing the selective differentiation of human mesenchymal stromal cells isolated from the umbilical cord (HUMSCs) into SCs in vitro has not yet been established. In this study, we induce HUMSCs into Schwann-like cells in terms of morphology, phenotype, and function by an improved protocol basing on our previous studies. Furthermore, HUMSCs-derived SCs are labeled efficiently in vitro with ultrasmall superparamagnetic iron oxide contrast agent (USPIO) Sinerem and poly-L-lysine (PLL) without affecting morphology, cell cycle, proliferation, and differentiation ability of the labeled cells between the concentration of 200 to 800 μg/ml. Importantly, when grafted into the intact cerebral cortex and striatum, the survival and migration of these Sinerem-labeled cells were observed using MRI. Our study suggest the effective concentration field for Sinerem use in tracking transdifferentiated HUMSCs, and Sinerem labeling transdifferentiated HUMSCs is feasible, efficient, and safe for MRI tracing following grafting into nervous system.
Collapse
Affiliation(s)
- Qiang Xu
- Department of Neurosurgery, The General Hospital of PLA, Beijing, 100853 China
- Department of Neurosurgery, The Military General Hospital of Beijing PLA, Beijing, 100700 China
- Department of Neurosurgery, Huadu Hospital, Southern Medical University, Guangzhou, China
- Guangdong Landau Biotechnology Co. Ltd, Guangzhou, China
| | - Hong-Tian Zhang
- Department of Neurosurgery, The Military General Hospital of Beijing PLA, Beijing, 100700 China
| | - Ke Liu
- Department of Neurosurgery, Huadu Hospital, Southern Medical University, Guangzhou, China
| | - Jun-Hua Rao
- Guangdong Landau Biotechnology Co. Ltd, Guangzhou, China
| | - Xiao-Ming Liu
- Guangdong Landau Biotechnology Co. Ltd, Guangzhou, China
| | - Li Wu
- The Second Cadre Sanatorium of Tianjin Garrison of the PLA, Tianjin, 300191 China
| | - Bai-Nan Xu
- Department of Neurosurgery, The General Hospital of PLA, Beijing, 100853 China
| |
Collapse
|
12
|
Peng J, Wang Y, Zhang L, Zhao B, Zhao Z, Chen J, Guo Q, Liu S, Sui X, Xu W, Lu S. Human umbilical cord Wharton's jelly-derived mesenchymal stem cells differentiate into a Schwann-cell phenotype and promote neurite outgrowth in vitro. Brain Res Bull 2011; 84:235-43. [DOI: 10.1016/j.brainresbull.2010.12.013] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Revised: 11/24/2010] [Accepted: 12/22/2010] [Indexed: 12/17/2022]
|
13
|
Human Umbilical Cord-Derived Schwann-Like Cell Transplantation Combined with Neurotrophin-3 Administration in Dyskinesia of Rats with Spinal Cord Injury. Neurochem Res 2011; 36:783-92. [DOI: 10.1007/s11064-011-0402-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2011] [Indexed: 10/25/2022]
|
14
|
Schwann cell-like remyelination following transplantation of human umbilical cord blood (hUCB)-derived mesenchymal stem cells in dogs with acute spinal cord injury. J Neurol Sci 2010; 300:86-96. [PMID: 21071039 DOI: 10.1016/j.jns.2010.09.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 09/20/2010] [Accepted: 09/21/2010] [Indexed: 12/22/2022]
Abstract
Human umbilical cord blood derived mesenchymal stem cells (hUCB-MSCs) have significant therapeutic potential in cell-based therapies following spinal cord injury (SCI). To evaluate this potential, we conducted our preliminary investigations on the remyelination of injured spinal cords with hUCB-MSC transplantations and we observed its long term effects on dogs with SCI. Of the ten injured dogs, seven were transplanted with hUCB-MSCs 1 week after SCI, whereas the remaining three dogs were not transplanted. Two transplanted dogs died over the first month after transplantation because of urinary tract infection, bedsores and sepsis. The SCI dogs showed no improvement in motor and sensory functions and their urinary dysfunction persisted until they were euthanized (from 3 months to 1 year) while hind-limb recovery in 4 dogs among the five transplanted dogs was significantly improved. In the recovered dogs, functional recovery was sustained for three years following transplantation. Histological results from five transplanted dogs showed that many axons were remyelinated by P0-positive myelin sheaths after transplantation. Our results suggest that transplantation of hUCB-derived MSCs may have beneficial therapeutic effects. Furthermore, histological results provided the first in vivo evidence that hUCB-MSCs are able to enhance the remyelination of peripheral-type myelin sheaths following SCI.
Collapse
|
15
|
Jiang TM, Yang ZJ, Kong CZ, Zhang HT. Schwann-like cells can be induction from human nestin-positive amniotic fluid mesenchymal stem cells. In Vitro Cell Dev Biol Anim 2010; 46:793-800. [DOI: 10.1007/s11626-010-9335-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 06/16/2010] [Indexed: 02/03/2023]
|
16
|
Luo YC, Zhang HT, Cheng HY, Yang ZJ, Dai YW, Xu RX. Differentiation of cryopreserved human umbilical cord blood-derived stromal cells into cells with an oligodendrocyte phenotype. In Vitro Cell Dev Biol Anim 2010; 46:585-9. [DOI: 10.1007/s11626-010-9314-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 03/17/2010] [Indexed: 01/22/2023]
|
17
|
Comparison of the efficiencies of three neural induction protocols in human adipose stromal cells. Neurochem Res 2009; 35:572-9. [PMID: 19960248 DOI: 10.1007/s11064-009-0101-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2009] [Indexed: 01/01/2023]
Abstract
The aim of this study was to compare the neural differentiation potential and the expression of neurotrophic factors (NTFs) in differentiated adipose-derived stem cells (ADSCs) using three established induction protocols, serum free (Protocol 1), chemical reagents (Protocol 2), and spontaneous (Protocol 3) protocols. Protocol 1 produced the highest percentage of mature neural-like cells (MAP2ab(+)). Protocol 2 showed the highest percentage of immature neural-like cells (beta-tubulin III(+)), but the neural-like state was transient and reversible. Protocol 3 caused ADSCs to differentiate spontaneously into immature neural-like cells, but not into mature neural cell types. The neural-like cells produced by Protocol 1 lived the longest in culture with little cell death, but Protocol 2 and 3 led to the significant cell death. Therefore, Protocol 1 is the most efficient among these protocols. Additionally, soon after differentiation, the mRNA levels of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) in dADSCs were sharply decreased by Protocol 1 and 2 (acute induction protocol), but not by Protocol 3 (chronic induction protocol). The results indicate that NTFs played an important role in neural differentiation via acute responses to NGF and BDNF, but not chronically during the transdifferentiation process.
Collapse
|
18
|
Comparison of adult neurospheres derived from different origins for treatment of rat spinal cord injury. Neurosci Lett 2009; 458:116-21. [DOI: 10.1016/j.neulet.2009.04.045] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 03/21/2009] [Accepted: 04/20/2009] [Indexed: 01/01/2023]
|