1
|
Hosaka S, Hosokawa M, Hibi M, Shimizu T. The Zebrafish Cerebellar Neural Circuits Are Involved in Orienting Behavior. eNeuro 2024; 11:ENEURO.0141-24.2024. [PMID: 39406478 PMCID: PMC11521796 DOI: 10.1523/eneuro.0141-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/22/2024] [Accepted: 08/13/2024] [Indexed: 11/01/2024] Open
Abstract
Deficits in social behavior are found in neurodevelopmental disorders, including autism spectrum disorders (ASDs). Since abnormalities in cerebellar morphology and function are observed in ASD patients, the cerebellum is thought to play a role in social behavior. However, it remains unknown whether the cerebellum is involved in social behavior in other animals and how cerebellar circuits control social behavior. To address this issue, we employed zebrafish stereotyped orienting behavior as a model of social behaviors, in which a pair of adult zebrafish in two separate tanks approach each other, with one swimming at synchronized angles (orienting angles) with the other. We harnessed transgenic zebrafish that express botulinum toxin, which inhibits the release of neurotransmitters, in either granule cells or Purkinje cells (PCs), and zebrafish mutants of reelin, which is involved in the positioning of cerebellar neurons, including PCs. These zebrafish, deficient in the function or formation of cerebellar neural circuits, showed a significantly shorter period of orienting behavior compared with their control siblings. We found an increase in c-fos and egr1 expression in the cerebellum after the orienting behavior. These results suggest that zebrafish cerebellar circuits play an important role in social orienting behavior.
Collapse
Affiliation(s)
- Shiori Hosaka
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Miu Hosokawa
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Masahiko Hibi
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Takashi Shimizu
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
2
|
Hu F, Jiang J, Yu G, Zang H, Sun H. Propofol Pretreatment Prevents Oxygen-Glucose Deprivation/Reoxygenation (OGD/R)-induced Inflammation Through Nuclear Transcription Factor κB (NF-κB) Pathway in Neuroblastoma Cells. Curr Neurovasc Res 2021; 17:27-34. [PMID: 31880261 DOI: 10.2174/1567202617666191227110158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/17/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Inflammation is one of the causes of neuroblastoma progression. Propofol attenuates inflammation by repressing nuclear transcription factor κB (NF-κB) in different diseases. But its effect on oxygen-glucose deprivation/reoxygenation (OGD/R)-induced inflammation is not known. OBJECTIVE This study investigated the role and mechanism of action of propofol on OGD/Rinduced inflammation in mouse N2A neuroblastoma cells. METHODS MTT was performed on mouse neuroblastoma cells N2A to assess and select the maximum safe dose of propofol. Next, N2A cells were pretreated with propofol and then, exposed to the OGD condition for 3 h and reoxygenated for 6 h. The content of the inflammatory factors, interleukin-1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α), in the medium was measured by ELISA, while their protein expression was detected by western blot and immunofluorescence. The protein expression of P65, p-P65, IKBα and p-IKBα belonging to the NF-κB pathway was also determined by western blot in N2A cells. To further confirm the mechanism of propofol on OGD/R-induced inflammation in mouse N2A cells, P65 was over-expressed and the above experiments were repeated. RESULTS Propofol did not affect cell viability of N2A cells even at the maximum concentration used (30 µM), thus, 30 µM of propofol was selected to perform our experiments. Besides, OGD/R induced inflammation and activation of NF-κB pathway with increased p-P65 and p-IKBα expression, and propofol pretreatment inhibited OGD/R induced inflammation and activation of NF-κB pathway in N2A cells. Over-expression of P56 abolished the effects of propofol on OGD/Rinduced inflammation and activation of NF-κB pathway in N2A cells. CONCLUSION Our work demonstrated for the first time that propofol pretreatment ameliorated OGD/R induced inflammation via NF-κB pathway modulation in mouse neuroblastoma N2A cells, indicating that propofol might be considered as a potential therapeutic approach to reduce inflammation in neuroblastoma.
Collapse
Affiliation(s)
- Fang Hu
- Department of Anesthesiology, The First People's Hospital of Fuyang Hangzhou, Hangzhou 311400, China
| | - Jianhua Jiang
- Endoscopy Center, The First People's Hospital of Fuyang Hangzhou, Hangzhou 311400, China
| | - Guocan Yu
- Department of Anesthesiology, The First People's Hospital of Fuyang Hangzhou, Hangzhou 311400, China
| | - Hongcheng Zang
- Department of Anesthesiology, The First People's Hospital of Fuyang Hangzhou, Hangzhou 311400, China
| | - Haoliang Sun
- Department of Anesthesiology, The First People's Hospital of Fuyang Hangzhou, Hangzhou 311400, China
| |
Collapse
|
3
|
Lv S, Zhou Y, Feng Y, Zhang X, Wang X, Yang Y, Wang X. Peripheral Spexin Inhibited Food Intake in Mice. Int J Endocrinol 2020; 2020:4913785. [PMID: 32831833 PMCID: PMC7426757 DOI: 10.1155/2020/4913785] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/31/2020] [Accepted: 06/15/2020] [Indexed: 11/17/2022] Open
Abstract
Spexin (SPX, NPQ), a novel endogenous neuropeptide, was firstly identified by bioinformatics. Spexin gene and protein widely distributed in the central nervous system and peripheral tissues, such as the hypothalamus and digestive tract. The role of spexin in appetite regulation in mammalian is still unclear. The present study was designed to investigate the mechanism and effect of peripheral spexin on food intake in mice. During the light period, an intraperitoneal (i.p.) injection of spexin (10 nmol/mouse) significantly inhibited cumulative food intake at 2, 4, and 6 h after treatment in fasted mice. During the dark period, spexin (1 and 10 nmol/mouse, i.p.) significantly suppressed cumulative food intake at 4 and 6 h after treatment in freely feeding mice. The GALR3 antagonist SNAP37889, not GALR2 antagonist, significantly antagonized the inhibitory effect on cumulative food intake (0-6 h) induced by spexin. Spexin significantly reduced the mRNA level of Npy mRNA, not Agrp, Pomc, Cart, Crh, Orexin, or Mch, in the hypothalamus. Spexin (10 nmol/mouse, i.p.) increased the number of c-Fos positive neurons in hypothalamic AHA and SCN, but not in ARC, DMN, LHA, PVN, SON, or VMH. The hypothalamic p-CaMK2 protein expression was upregulated by spexin. This study indicated that acute peripheral injection of spexin inhibited mouse food intake. The anorectic effect may be mediated by GALR3, and inhibiting neuropeptide Y (NPY) via p-CaMK2 and c-Fos in the hypothalamus.
Collapse
Affiliation(s)
- Shuangyu Lv
- Institute of Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yuchen Zhou
- Institute of Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yu Feng
- Institute of Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Xiaomei Zhang
- Institute of Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Xinyue Wang
- Institute of Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yanjie Yang
- Institute of Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Xinchun Wang
- The First Affiliated Hospital of Henan University, Kaifeng 475001, China
| |
Collapse
|
4
|
Vaos G, Zavras N. Antioxidants in experimental ischemia-reperfusion injury of the testis: Where are we heading towards? World J Methodol 2017; 7:37-45. [PMID: 28706858 PMCID: PMC5489422 DOI: 10.5662/wjm.v7.i2.37] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 04/07/2017] [Accepted: 05/15/2017] [Indexed: 02/06/2023] Open
Abstract
Testicular torsion (TT) is a medical emergency that primary affects newborns and young adolescents. It causes testicular injury due to the torsion of the spermatic cord and its components, initially in the venous blood flow and finally in the arterial blood flow. Prompt diagnosis and early surgical management are necessary in managing this urgent situation. The process of the pathophysiological events in ischemia-reperfusion is multifactorial and deals with the perception of the oxidative stress responsible for the consequences of ischemia/reperfusion (I/R) stress following TT. Duration and severity of torsion also play a significant role in the oxidative stress. A detrimental result of the defense system of the testes takes place resulting finally in testicular atrophy and impaired function. Antioxidant factors have been experimentally studied in an effort to front this state. They have been classified as endogenous or exogenous antioxidants. Endogenous antioxidants comprise a structure of enzymic enzymatic and non-enzymic enzymatic particles presented within cytoplasm and numerous other subunits in the cells. Exogenous antioxidants include a variety of natural and pharmaceutical agents that may prevent or ameliorate the harmful effects of I/R injury. In this study we review those factors and their ability to enhance the oxidative status of the testis. A feature insight into where we are heading is attempted.
Collapse
|
5
|
Gray A, Marrero-Berrios I, Ghodbane M, Maguire T, Weinberg J, Manchikalapati D, SchianodiCola J, Schloss RS, Yarmush J. Effect of Local Anesthetics on Human Mesenchymal Stromal Cell Secretion. ACTA ACUST UNITED AC 2015; 5:1550001-1550014. [PMID: 26539251 DOI: 10.1142/s1793984415500014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Anti-fibrotic and tissue regenerative mesenchymal stromal cell (MSC) properties are largely mediated by secreted cytokines and growth factors. MSCs are implanted to augment joint cartilage replacement and to treat diabetic ulcers and burn injuries simultaneously with local anesthetics, which reduce pain. However, the effect of anesthetics on therapeutic human MSC secretory function has not been evaluated. In order to assess the effect of local anesthetics on the MSC secretome, a panel of four anesthetics with different potencies - lidocaine, procaine, ropivacaine and bupivacaine - was evaluated. Since injured tissues secrete inflammatory cytokines, the effects of anesthetics on MSCs stimulated with tumor necrosis factor (TNF)-α and interferon (IFN)-γ were also measured. Dose dependent and anesthesia specific effects on cell viability, post exposure proliferation and secretory function were quantified using alamar blue reduction and immunoassays, respectively. Computational pathway analysis was performed to identify upstream regulators and molecular pathways likely associated with the effects of these chemicals on the MSC secretome. Our results indicated while neither lidocaine nor procaine greatly reduced unstimulated cell viability, ropivacaine and bupivacaine induced dose dependent viability decreases. This pattern was exaggerated in the simulated inflammatory environment. The reversibility of these effects after withdrawal of the anesthetics was attenuated for TNF-α/IFN-γ-stimulated MSCs exposed to ropivacaine and bupivacaine. In addition, secretome analysis indicated that constitutive secretion changes were clearly affected by both anesthetic alone and anesthetic plus TNFα/IFNγ cell stimulation, but the secretory pattern was drug specific and did not necessarily coincide with viability changes. Pathway analysis identified different intracellular regulators for stimulated and unstimulated MSCs. Within these groups, ropivacaine and bupivacaine appeared to act on MSCs similarly via the same regulatory mechanisms. Given the variable effect of local anesthetics on MSC viability and function, these studies underscore the need to evaluate MSC in the presence of medications, such as anesthetics, that are likely to accompany cell implantation.
Collapse
Affiliation(s)
- Andrea Gray
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, New Jersey 08805, USA
| | - Ileana Marrero-Berrios
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, New Jersey 08805, USA
| | - Mehdi Ghodbane
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, New Jersey 08805, USA
| | - Timothy Maguire
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, New Jersey 08805, USA
| | - Jonathan Weinberg
- Department of Anesthesiology, New York Methodist Hospital, Brooklyn, New York 11215, USA
| | | | - Joseph SchianodiCola
- Department of Anesthesiology, New York Methodist Hospital, Brooklyn, New York 11215, USA
| | - Rene S Schloss
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, New Jersey 08805, USA
| | - Joel Yarmush
- Department of Anesthesiology, New York Methodist Hospital, Brooklyn, New York 11215, USA
| |
Collapse
|
6
|
Abstract
Testicular torsion is a urological emergency most commonly seen in adolescence, involving a decrease in blood flow in the testis resulting from torsion of the spermatic cord that can result in gonad injury or even loss if not treated in time. Testicular ischaemia-reperfusion injury represents the principle pathophysiology of testicular torsion, with ischaemia caused by twisting of the spermatic cord, and reperfusion on its subsequent release. Many cellular and molecular mechanisms are involved in ischaemia-reperfusion injury following testicular torsion. Studies have investigated the use of pharmacological agents as supportive therapy to surgical repair in order to prevent the adverse effects of testicular torsion. Numerous substances have been proposed as important in the prevention of post-ischaemia-reperfusion testicular injury. A range of chemicals and drugs has been successfully tested in animal models for the purpose of mitigating the dangerous effects of ischaemia-reperfusion in testis torsion.
Collapse
|
7
|
Jun J, Cho J, Shim Y, Shim J, Kwak Y. Effects of propofol on the expression of matric metalloproteinases in rat cardiac fibroblasts after hypoxia and reoxygenation. Br J Anaesth 2011; 106:650-8. [DOI: 10.1093/bja/aer006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
8
|
Wu GJ, Chen WF, Hung HC, Jean YH, Sung CS, Chakraborty C, Lee HP, Chen NF, Wen ZH. Effects of propofol on proliferation and anti-apoptosis of neuroblastoma SH-SY5Y cell line: new insights into neuroprotection. Brain Res 2011; 1384:42-50. [PMID: 21315692 DOI: 10.1016/j.brainres.2011.02.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 01/29/2011] [Accepted: 02/02/2011] [Indexed: 12/22/2022]
Abstract
Recently, it has been suggested that anesthetic agents may have neuroprotective potency. The notion that anesthetic agents can offer neuroprotection remains controversial. Propofol, which is a short-acting intravenous anesthetic agent, may have potential as a neuroprotective agent. In this study, we tried to determine whether propofol affected the viability of human neuroblastoma SH-SY5Y cells by using the MTT assay. Surprisingly, our results showed that propofol at a dose of 1-10 μM could improve cell proliferation. However, at higher doses (200 μM), propofol appears to be cytotoxic. On the other hand, propofol could up-regulate the expression of key proteins involved in neuroprotection including B-cell lymphoma 2 at a dose range of 1-10 μM, activation of phospho-serine/threonine protein kinase at a dose range of 0.5-10 μM, and activation of phospho-extracellular signal-regulated kinases at a dose range of 5-10 μM. Similarly, we demonstrate that propofol (10 μM) could elevate protein levels of heat shock protein 90 and heat shock protein 70. Therefore, we choose to utilize a 10 μM concentration of propofol to assess neuroprotective activities in our studies. In the following experiments, we used dynorphin A to generate cytotoxic effects on SH-SY5Y cells. Our data indicate that propofol (10 μM) could inhibit the cytotoxicity in SH-SY5Y cells induced by dynorphin A. Furthermore, propofol (10 μM) could decrease the expression of the p-P38 protein as well. These data together suggest that propofol may have the potential to act as a neuroprotective agent against various neurologic diseases. However, further delineation of the precise neuroprotective effects of propofol will need to be examined.
Collapse
Affiliation(s)
- Gong-Jhe Wu
- Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kidambi S, Yarmush J, Berdichevsky Y, Kamath S, Fong W, Schianodicola J. Propofol induces MAPK/ERK cascade dependant expression of cFos and Egr-1 in rat hippocampal slices. BMC Res Notes 2010; 3:201. [PMID: 20637119 PMCID: PMC2916009 DOI: 10.1186/1756-0500-3-201] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 07/17/2010] [Indexed: 11/10/2022] Open
Abstract
Background Propofol is a commonly used intravenous anesthetic agent, which produce rapid induction of and recovery from general anesthesia. Numerous clinical studies reported that propofol can potentially cause amnesia and memory loss in human subjects. The underlying mechanism for this memory loss is unclear but may potentially be related to the induction of memory-associated genes such as c-Fos and Egr-1 by propofol. This study explored the effects of propofol on c-Fos and Egr-1 expression in rat hippocampal slices. Findings Hippocampal brain slices were exposed to varying concentrations of propofol at multiple time intervals. The transcription of the immediate early genes, c-Fos and Egr-1, was quantified using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). MAPK/ERK inhibitors were used to investigate the mechanism of action. We demonstrate that propofol induced the expression of c-Fos and Egr-1 within 30 and 60 min of exposure time. At 16.8 μM concentration, propofol induced a 110% increase in c-Fos transcription and 90% decrease in the transcription of Egr-1. However, at concentrations above 100 μM, propofol failed to induce expression of c-Fos but did completely inhibit the transcription of Egr-1. Propofol-induced c-Fos and Egr-1 transcription was abolished by inhibitors of RAS, RAF, MEK, ERK and p38-MAPK in the MAPK/ERK cascade. Conclusions Our study shows that clinically relevant concentrations of propofol induce c-Fos and down regulated Egr-1 expression via an MAPK/ERK mediated pathway. We demonstrated that propofol induces a time and dose dependant transcription of IEGs c-Fos and Egr-1 in rat hippocampal slices. We further demonstrate for the first time that propofol induced IEG expression was mediated via a MAPK/ERK dependant pathway. These novel findings provide a new avenue to investigate transcription-dependant mechanisms and suggest a parallel pathway of action with an unclear role in the activity of general anesthetics.
Collapse
Affiliation(s)
- Srivatsan Kidambi
- Department of Anesthesiology, New York Methodist Hospital, Brooklyn, NY, USA.
| | | | | | | | | | | |
Collapse
|