1
|
Lee TY, Cho IS, Bashyal N, Naya FJ, Tsai MJ, Yoon JS, Choi JM, Park CH, Kim SS, Suh-Kim H. ERK Regulates NeuroD1-mediated Neurite Outgrowth via Proteasomal Degradation. Exp Neurobiol 2020; 29:189-206. [PMID: 32606250 PMCID: PMC7344372 DOI: 10.5607/en20021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 12/22/2022] Open
Abstract
Neurogenic differentiation 1 (NeuroD1) is a class B basic helix-loop-helix (bHLH) transcription factor and regulates differentiation and survival of neuronal and endocrine cells by means of several protein kinases, including extracellular signal-regulated kinase (ERK). However, the effect of phosphorylation on the functions of NeuroD1 by ERK has sparked controversy based on context-dependent differences across diverse species and cell types. Here, we evidenced that ERK-dependent phosphorylation controlled the stability of NeuroD1 and consequently, regulated proneural activity in neuronal cells. A null mutation at the ERK-dependent phosphorylation site, S274A, increased the half-life of NeuroD1 by blocking its ubiquitin-dependent proteasomal degradation. The S274A mutation did not interfere with either the nuclear translocation of NeuroD1 or its heterodimerization with E47, its ubiquitous partner and class A bHLH transcription factor. However, the S274A mutant increased transactivation of the E-box-mediated gene and neurite outgrowth in F11 neuroblastoma cells, compared to the wild-type NeuroD1. Transcriptome and Gene Ontology enrichment analyses indicated that genes involved in axonogenesis and dendrite development were downregulated in NeuroD1 knockout (KO) mice. Overexpression of the S274A mutant salvaged neurite outgrowth in NeuroD1-deficient mice, whereas neurite outgrowth was minimal with S274D, a phosphomimicking mutant. Our data indicated that a longer protein half-life enhanced the overall activity of NeuroD1 in stimulating downstream genes and neuronal differentiation. We propose that blocking ubiquitin-dependent proteasomal degradation may serve as a strategy to promote neuronal activity by stimulating the expression of neuron-specific genes in differentiating neurons.
Collapse
Affiliation(s)
- Tae-Young Lee
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon 16499, Korea.,Research Center, CelleBrain Ltd., Jeonju 54871, Korea
| | - In-Su Cho
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea
| | - Narayan Bashyal
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon 16499, Korea
| | - Francisco J Naya
- Department of Biology, Life Science and Engineering Building, Boston University, Boston, MA 00215, USA
| | - Ming-Jer Tsai
- Department of Medicine and Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeong Seon Yoon
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea
| | - Jung-Mi Choi
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea
| | - Chang-Hwan Park
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Sung-Soo Kim
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon 16499, Korea
| | - Haeyoung Suh-Kim
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon 16499, Korea.,Research Center, CelleBrain Ltd., Jeonju 54871, Korea
| |
Collapse
|
2
|
Zhang S, Moy W, Zhang H, Leites C, McGowan H, Shi J, Sanders AR, Pang ZP, Gejman PV, Duan J. Open chromatin dynamics reveals stage-specific transcriptional networks in hiPSC-based neurodevelopmental model. Stem Cell Res 2018; 29:88-98. [PMID: 29631039 PMCID: PMC6025752 DOI: 10.1016/j.scr.2018.03.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/26/2018] [Accepted: 03/27/2018] [Indexed: 02/06/2023] Open
Abstract
Chromatin accessibility to transcription factors (TFs) strongly influences gene transcription and cell differentiation. However, a mechanistic understanding of the transcriptional control during the neuronal differentiation of human induced pluripotent stem cells (hiPSCs), a promising cellular model for mental disorders, remains elusive. Here, we carried out additional analyses on our recently published open chromatin regions (OCRs) profiling at different stages of hiPSC neuronal differentiation. We found that the dynamic changes of OCR during neuronal differentiation highlighted cell stage-specific gene networks, and the chromatin accessibility at the core promoter region of a gene correlates with the corresponding transcript abundance. Within the cell stage-specific OCRs, we identified the binding of cell stage-specific TFs and observed a lag of a neuronal TF binding behind the mRNA expression of the corresponding TF. Interestingly, binding footprints of NEUROD1 and NEUROG2, both of which induce high efficient conversion of hiPSCs to glutamatergic neurons, were among those most enriched in the relatively mature neurons. Furthermore, TF network analysis showed that both NEUROD1 and NEUROG2 were present in the same core TF network specific to more mature neurons, suggesting a pivotal mechanism of epigenetic control of neuronal differentiation and maturation. Our study provides novel insights into the epigenetic control of glutamatergic neurogenesis in the context of TF networks, which may be instrumental to improving hiPSC modeling of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Siwei Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA; Department of Psychiatry and Behavioral Neuroscience, University of Chicago, IL 60637, USA
| | - Winton Moy
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Hanwen Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Catherine Leites
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Heather McGowan
- Department of Neuroscience and Cell Biology and Child Health Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA
| | - Jianxin Shi
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Alan R Sanders
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA; Department of Psychiatry and Behavioral Neuroscience, University of Chicago, IL 60637, USA
| | - Zhiping P Pang
- Department of Neuroscience and Cell Biology and Child Health Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA
| | - Pablo V Gejman
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA; Department of Psychiatry and Behavioral Neuroscience, University of Chicago, IL 60637, USA
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA; Department of Psychiatry and Behavioral Neuroscience, University of Chicago, IL 60637, USA.
| |
Collapse
|
3
|
Kelly GM, Gatie MI. Mechanisms Regulating Stemness and Differentiation in Embryonal Carcinoma Cells. Stem Cells Int 2017; 2017:3684178. [PMID: 28373885 PMCID: PMC5360977 DOI: 10.1155/2017/3684178] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/10/2017] [Accepted: 02/08/2017] [Indexed: 02/06/2023] Open
Abstract
Just over ten years have passed since the seminal Takahashi-Yamanaka paper, and while most attention nowadays is on induced, embryonic, and cancer stem cells, much of the pioneering work arose from studies with embryonal carcinoma cells (ECCs) derived from teratocarcinomas. This original work was broad in scope, but eventually led the way for us to focus on the components involved in the gene regulation of stemness and differentiation. As the name implies, ECCs are malignant in nature, yet maintain the ability to differentiate into the 3 germ layers and extraembryonic tissues, as well as behave normally when reintroduced into a healthy blastocyst. Retinoic acid signaling has been thoroughly interrogated in ECCs, especially in the F9 and P19 murine cell models, and while we have touched on this aspect, this review purposely highlights how some key transcription factors regulate pluripotency and cell stemness prior to this signaling. Another major focus is on the epigenetic regulation of ECCs and stem cells, and, towards that end, this review closes on what we see as a new frontier in combating aging and human disease, namely, how cellular metabolism shapes the epigenetic landscape and hence the pluripotency of all stem cells.
Collapse
Affiliation(s)
- Gregory M. Kelly
- Department of Biology, Molecular Genetics Unit, Western University, London, ON, Canada
- Collaborative Program in Developmental Biology, Western University, London, ON, Canada
- Department of Paediatrics and Department of Physiology and Pharmacology, Western University, London, ON, Canada
- Child Health Research Institute, London, ON, Canada
- Ontario Institute for Regenerative Medicine, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | - Mohamed I. Gatie
- Department of Biology, Molecular Genetics Unit, Western University, London, ON, Canada
- Collaborative Program in Developmental Biology, Western University, London, ON, Canada
| |
Collapse
|
4
|
Adhikary S, Sanyal S, Basu M, Sengupta I, Sen S, Srivastava DK, Roy S, Das C. Selective Recognition of H3.1K36 Dimethylation/H4K16 Acetylation Facilitates the Regulation of All-trans-retinoic Acid (ATRA)-responsive Genes by Putative Chromatin Reader ZMYND8. J Biol Chem 2015; 291:2664-81. [PMID: 26655721 DOI: 10.1074/jbc.m115.679985] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Indexed: 01/25/2023] Open
Abstract
ZMYND8 (zinc finger MYND (Myeloid, Nervy and DEAF-1)-type containing 8), a newly identified component of the transcriptional coregulator network, was found to interact with the Nucleosome Remodeling and Deacetylase (NuRD) complex. Previous reports have shown that ZMYND8 is instrumental in recruiting the NuRD complex to damaged chromatin for repressing transcription and promoting double strand break repair by homologous recombination. However, the mode of transcription regulation by ZMYND8 has remained elusive. Here, we report that through its specific key residues present in its conserved chromatin-binding modules, ZMYND8 interacts with the selective epigenetic marks H3.1K36Me2/H4K16Ac. Furthermore, ZMYND8 shows a clear preference for canonical histone H3.1 over variant H3.3. Interestingly, ZMYND8 was found to be recruited to several developmental genes, including the all-trans-retinoic acid (ATRA)-responsive ones, through its modified histone-binding ability. Being itself inducible by ATRA, this zinc finger transcription factor is involved in modulating other ATRA-inducible genes. We found that ZMYND8 interacts with transcription initiation-competent RNA polymerase II phosphorylated at Ser-5 in a DNA template-dependent manner and can alter the global gene transcription. Overall, our study identifies that ZMYND8 has CHD4-independent functions in regulating gene expression through its modified histone-binding ability.
Collapse
Affiliation(s)
- Santanu Adhikary
- From the Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 and the Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata-700032, India
| | - Sulagna Sanyal
- From the Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 and
| | - Moitri Basu
- From the Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 and
| | - Isha Sengupta
- From the Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 and
| | - Sabyasachi Sen
- From the Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 and
| | - Dushyant Kumar Srivastava
- the Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata-700032, India
| | - Siddhartha Roy
- the Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata-700032, India
| | - Chandrima Das
- From the Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 and
| |
Collapse
|
5
|
Zhang L, Yan L, Zhang Y, Wu NH, Shen YF. Role of acetylated p53 in regulating the expression of map2 in retinoic acid-induced P19 cells. ACTA ACUST UNITED AC 2010; 25:71-5. [PMID: 20598227 DOI: 10.1016/s1001-9294(10)60025-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To investigate the regulatory mechanisms of acetylated p53 in the expression of microtubule-associated protein-2 (MAP2) in neuronal differentiation of P19 cells induced by all-trans retinoic acid (RA). METHODS Neuronal differentiation of P19 cells was initiated with 4-day RA treatment. Immunofluorescence, real-time reverse transcription-polymerase chain reaction (RT-PCR) assay, and map2 promoter driven luciferase assay were performed to detect the expression and relative promoter activity of MAP2 in those RA-treated cells. Real-time PCR-based chromatin immunoprecipitation assay (ChIP) was carried out to reveal the specific recruitment of acetylated p53 onto its binding sites on map2 promoter. RESULTS The expression of MAP2 was markedly increased in RA-induced P19 cells. The map2 mRNA increased 34-fold after 4 days of RA treatment and 730-fold 2 days after the treatment, compared with the cells without RA treatment (control). p53 was recruited to the promoter of map2 gene in acetylated form and thereby enhanced its promoter activity. p300/CBP associated factor (PCAF) was found induced in RA-treated cells and enriched in the nucleus, which might contribute to the acetylation of p53 in the regulation of map2 gene. CONCLUSIONS Acetylated p53 may participate in regulating the expression of map2 in RA-induced differentiation of P19 cells. PCAF is possibly involved in this process by mediating the acetylation of p53.
Collapse
Affiliation(s)
- Li Zhang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | | | | | | | | |
Collapse
|