1
|
Kanno H, Matsumoto S, Yoshizumi T, Nakahara K, Kubo A, Murata H, Shuin T, U HS. Role of SOCS and VHL Proteins in Neuronal Differentiation and Development. Int J Mol Sci 2023; 24:ijms24043880. [PMID: 36835292 PMCID: PMC9960776 DOI: 10.3390/ijms24043880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The basic helix-loop-helix factors play a central role in neuronal differentiation and nervous system development, which involve the Notch and signal transducer and activator of transcription (STAT)/small mother against decapentaplegic signaling pathways. Neural stem cells differentiate into three nervous system lineages, and the suppressor of cytokine signaling (SOCS) and von Hippel-Lindau (VHL) proteins are involved in this neuronal differentiation. The SOCS and VHL proteins both contain homologous structures comprising the BC-box motif. SOCSs recruit Elongin C, Elongin B, Cullin5(Cul5), and Rbx2, whereas VHL recruits Elongin C, Elongin B, Cul2, and Rbx1. SOCSs form SBC-Cul5/E3 complexes, and VHL forms a VBC-Cul2/E3 complex. These complexes degrade the target protein and suppress its downstream transduction pathway by acting as E3 ligases via the ubiquitin-proteasome system. The Janus kinase (JAK) is the main target protein of the E3 ligase SBC-Cul5, whereas hypoxia-inducible factor is the primary target protein of the E3 ligase VBC-Cul2; nonetheless, VBC-Cul2 also targets the JAK. SOCSs not only act on the ubiquitin-proteasome system but also act directly on JAKs to suppress the Janus kinase-signal transduction and activator of transcription (JAK-STAT) pathway. Both SOCS and VHL are expressed in the nervous system, predominantly in brain neurons in the embryonic stage. Both SOCS and VHL induce neuronal differentiation. SOCS is involved in differentiation into neurons, whereas VHL is involved in differentiation into neurons and oligodendrocytes; both proteins promote neurite outgrowth. It has also been suggested that the inactivation of these proteins may lead to the development of nervous system malignancies and that these proteins may function as tumor suppressors. The mechanism of action of SOCS and VHL involved in neuronal differentiation and nervous system development is thought to be mediated through the inhibition of downstream signaling pathways, JAK-STAT, and hypoxia-inducible factor-vascular endothelial growth factor pathways. In addition, because SOCS and VHL promote nerve regeneration, they are expected to be applied in neuronal regenerative medicine for traumatic brain injury and stroke.
Collapse
Affiliation(s)
- Hiroshi Kanno
- Department of Neurosurgery, School of Medicine, Yokohama City University, Yokohama 232-0024, Japan
- Department of Neurosurgery, Asahi Hospital, Tokyo 121-0078, Japan
- Correspondence: ; Tel.: +81-3-5242-5800
| | - Shutaro Matsumoto
- Department of Neurosurgery, School of Medicine, Yokohama City University, Yokohama 232-0024, Japan
- Department of Neurosurgery, Asahi Hospital, Tokyo 121-0078, Japan
| | - Tetsuya Yoshizumi
- Department of Neurosurgery, St. Mariannna Medical University, Kawasaki 216-8511, Japan
| | - Kimihiro Nakahara
- Department of Neurosurgery, International University of Health and Welfare, Atami 413-0012, Japan
| | | | - Hidetoshi Murata
- Department of Neurosurgery, St. Mariannna Medical University, Kawasaki 216-8511, Japan
| | - Taro Shuin
- Kochi Medical School Hospital, Nangoku 783-0043, Japan
| | - Hoi-Sang U
- Department of Electrical Engineering, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|
2
|
Hu Y, Li X, Huang G, Wang J, Lu W. Fasudil may induce the differentiation of bone marrow mesenchymal stem cells into neuron‑like cells via the Wnt/β‑catenin pathway. Mol Med Rep 2019; 19:3095-3104. [PMID: 30816472 PMCID: PMC6423592 DOI: 10.3892/mmr.2019.9978] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 02/18/2019] [Indexed: 01/27/2023] Open
Abstract
Bone mesenchymal stem cells (MSCs) are an excellent donor graft source due to their potential for self-renewal and multidirectional differentiation. However, it is difficult to obtain high quality MSCs and to induce them to differentiate into neuron-like cells. Fasudil, a Rho kinase inhibitor, exhibits therapeutic potential in spinal cord injuries and stroke. The present study investigated the effect of fasudil on the differentiation of MSCs into neuron-like cells. MSCs were obtained from rat femur marrow, expanded in culture medium, and used at the third passage for subsequent experiments. MSCs were pre-induced with 10 ng/ml basic fibroblast growth factor (bFGF) for 24 h, which was followed by induction with fasudil. A control untreated group and a group treated with fasudil + XAV939, a Wnt/β-catenin pathway inhibitor, were also used in the present study. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blot analysis and immunofluorescence staining were performed in order to detect neuron-specific markers, including neuron-specific enolase (NSE), nestin and neurofilament-M (NF-M). Following induction with fasudil, neuron-like cell morphology was observed. In the fasudil + XAV939 and control groups, no obvious changes in cell shape were observed. The results of RT-qPCR, western blot analysis and immunofluorescence staining indicated that expression of the neuron-specific markers NSE, nestin and NF-M was detected in the fasudil group. The differentiation of MSCs into neuron-like cells induced by fasudil was eliminated when the Wnt/β-catenin pathway was inhibited. The present study demonstrated that fasudil may induce MSCs to differentiate into neuron-like cells, however further studies are required to determine the specific mechanisms involved in the effect of fasudil on the Wnt/β-catenin pathway. In addition, further research is required to examine the functional characteristics of the induced neuron-like cells, in order to establish their suitability for clinical treatments in the future.
Collapse
Affiliation(s)
- Yahui Hu
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Xin Li
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Guowei Huang
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Jizuo Wang
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Wei Lu
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| |
Collapse
|
3
|
BC-Box Motif-Mediated Neuronal Differentiation of Somatic Stem Cells. Int J Mol Sci 2018; 19:ijms19020466. [PMID: 29401731 PMCID: PMC5855688 DOI: 10.3390/ijms19020466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/29/2018] [Accepted: 02/02/2018] [Indexed: 11/17/2022] Open
Abstract
Von Hippel-Lindau tumor suppressor protein (pVHL) functions to induce neuronal differentiation of neural stem/progenitor cells (NSCs) and skin-derived precursors (SKPs). Here we identified a neuronal differentiation domain (NDD) in pVHL. Neuronal differentiation of SKPs was induced by intracellular delivery of a peptide composed of the amino-acid sequences encoded by the NDD. Neuronal differentiation mediated by the NDD was caused by the binding between it and elongin C followed by Janus kinase-2 (JAK2) ubiquitination of JAK2 and inhibition of the JAK2/the signal transducer and activator of transcription-3(STAT)3 pathway. The NDD in pVHL contained the BC-box motif ((A,P,S,T)LXXX (A,C) XXX(A,I,L,V)) corresponding to the binding site of elongin C. Therefore, we proposed that other BC-box proteins might also contain an NDD; and subsequently also identified in them an NDD containing the amino-acid sequence encoded by the BC-box motif in BC-box proteins. Furthermore, we showed that different NDD peptide-delivered cells differentiated into different kinds of neuron-like cells. That is, dopaminergic neuron-like cells, cholinergic neuron-like cells, GABAnergic neuron-like cells or rhodopsin-positive neuron-like cells were induced by different NDD peptides. These novel findings might contribute to the development of a new method for promoting neuronal differentiation and shed further light on the mechanism of neuronal differentiation of somatic stem cells.
Collapse
|
4
|
Kanno H. Regenerative therapy for neuronal diseases with transplantation of somatic stem cells. World J Stem Cells 2013; 5:163-171. [PMID: 24179604 PMCID: PMC3812520 DOI: 10.4252/wjsc.v5.i4.163] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 07/21/2013] [Accepted: 10/16/2013] [Indexed: 02/06/2023] Open
Abstract
Pluripotent stem cells, which are capable of differentiating in various species of cells, are hoped to be donor cells in transplantation in regenerative medicine. Embryonic stem (ES) cells and induced pluripotent stem cells have the potential to differentiate in approximately all species of cells. However, the proliferating ability of these cells is high and the cancer formation ability is also recognized. In addition, ethical problems exist in using ES cells. Somatic stem cells with the ability to differentiate in various species of cells have been used as donor cells for neuronal diseases, such as amyotrophic lateral sclerosis, spinal cord injury, Alzheimer disease, cerebral infarction and congenital neuronal diseases. Human mesenchymal stem cells derived from bone marrow, adipose tissue, dermal tissue, umbilical cord blood and placenta are usually used for intractable neuronal diseases as somatic stem cells, while neural progenitor/stem cells and retinal progenitor/stem cells are used for a few congenital neuronal diseases and retinal degenerative disease, respectively. However, non-treated somatic stem cells seldom differentiate to neural cells in recipient neural tissue. Therefore, the contribution to neuronal regeneration using non-treated somatic stem cells has been poor and various differential trials, such as the addition of neurotrophic factors, gene transfer, peptide transfer for neuronal differentiation of somatic stem cells, have been performed. Here, the recent progress of regenerative therapies using various somatic stem cells is described.
Collapse
|
5
|
Isolation of multipotent nestin-expressing stem cells derived from the epidermis of elderly humans and TAT-VHL peptide-mediated neuronal differentiation of these cells. Int J Mol Sci 2013; 14:9604-17. [PMID: 23644888 PMCID: PMC3676801 DOI: 10.3390/ijms14059604] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/17/2013] [Accepted: 04/23/2013] [Indexed: 02/07/2023] Open
Abstract
A specialized population of cells residing in the hair follicle is quiescent but shows pluripotency for differentiating into epithelial-mesenchymal lineage cells. Therefore, such cells are hoped to be useful as implantable donor cells for regenerative therapy. Recently, it was reported that intracellular delivery of TAT-VHL peptide induces neuronal differentiation of skin-derived precursors. In the present study, we successfully isolated multipotent stem cells derived from the epidermis of elderly humans, characterized these cells as being capable of sphere formation and strong expression of nestin, fibronectin, and CD34 but not of keratin 15, and identified the niche of these cells as being the outer root sheath of the hair follicles. In addition, we showed that TAT-VHL peptide induced their neuronal differentiation in vitro, and confirmed by fluorescence immunohistochemistry the neuronal differentiation of such peptide-treated cells implanted into rodent brains. These multipotent nestin-expressing stem cells derived from human epidermis are easily accessible and should be useful as donor cells for neuronal regenerative cell therapy.
Collapse
|
6
|
TATVHL peptide-grafted alginate/poly(γ-glutamic acid) scaffolds with inverted colloidal crystal topology for neuronal differentiation of iPS cells. Biomaterials 2012; 33:8955-66. [PMID: 22998813 DOI: 10.1016/j.biomaterials.2012.08.073] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 08/31/2012] [Indexed: 11/20/2022]
Abstract
The neuronal differentiation of induced pluripotent stem (iPS) cells in scaffolding biomaterials is an emerging issue in nervous regeneration and repair. This study presents the production of neuron-lineage cells from iPS cells in inverted colloidal crystal (ICC) scaffolds comprising alginate, poly(γ-glutamic acid) (γ-PGA), and TATVHL peptide. The ability of iPS cells to differentiate toward neurons in the constructs was demonstrated by flow-cytometeric sorting and immunochemical staining. The results revealed that hexagonally arrayed microspheres molded alginate/γ-PGA hydrogel into ICC topology with adequate interconnected pores. An increase in the quantity of surface TATVHL peptide enhanced the atomic ratio of nitrogen and the adhesion efficiency of iPS cells in constructs. However, the effect of TATVHL peptide on the viability of iPS cells was insignificant. The adhesion and viability of iPS cells in ICC constructs was higher than those in freeform ones. TATVHL peptide raised the percentage of β III tubulin-identified cells differentiating from iPS cells, indicating that TATVHL peptide stimulated the neuronal development in alginate/γ-PGA ICC constructs. TATVHL peptide-grafted alginate/γ-PGA ICC scaffolds can be promising for establishing nerve tissue from iPS cells.
Collapse
|
7
|
Kuo YC, Wang CC. Cartilage regeneration by culturing chondrocytes in scaffolds grafted with TATVHL peptide. Colloids Surf B Biointerfaces 2012; 93:235-40. [PMID: 22305121 DOI: 10.1016/j.colsurfb.2012.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 01/10/2012] [Accepted: 01/11/2012] [Indexed: 10/14/2022]
Abstract
Formation of neocartilage is a critical issue in contemporary regenerative medicine. This study presents the generation of tissue engineering cartilage in TATVHL peptide-grafted scaffolds. Bovine knee chondrocytes were seeded in TATVHL peptide-grafted scaffolds and cultured in a spinner bioreactor. The results revealed that surface TATVHL peptide enhanced the adhesion of bovine knee chondrocytes in scaffolds. However, an increase in the concentration of TATVHL peptide in scaffolds (up to 20 μg/mL) did not cause an evident variation in the cell viability. Surface TATVHL peptide was effective in promoting the quantity of cartilaginous components in constructs after dynamic cultivation. Biochemical assay, scanning electron microscope images, and histological staining demonstrated that surface TATVHL peptide accelerated the proliferation of bovine knee chondrocytes in constructs. In addition, the secretion of glycosaminoglycans and production of collagen in TATVHL peptide-grafted constructs were faster than those in TATVHL peptide-free constructs. TATVHL peptide can be a promising bioactive molecule to improve chondrogenesis in porous biomaterials.
Collapse
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering National Chung Cheng University Chia-Yi, Taiwan, Republic of China.
| | | |
Collapse
|
8
|
Lin J, Xiang D, Zhang JL, Allickson J, Xiang C. Plasticity of human menstrual blood stem cells derived from the endometrium. J Zhejiang Univ Sci B 2011; 12:372-80. [PMID: 21528491 DOI: 10.1631/jzus.b1100015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Stem cells can be obtained from women's menstrual blood derived from the endometrium. The cells display stem cell markers such as Oct-4, SSEA-4, Nanog, and c-kit (CD117), and have the potent ability to differentiate into various cell types, including the heart, nerve, bone, cartilage, and fat. There has been no evidence of teratoma, ectopic formation, or any immune response after transplantation into an animal model. These cells quickly regenerate after menstruation and secrete many growth factors to display recurrent angiogenesis. The plasticity and safety of the acquired cells have been demonstrated in many studies. Menstrual blood-derived stem cells (MenSCs) provide an alternative source of adult stem cells for research and application in regenerative medicine. Here we summarize the multipotent properties and the plasticities of MenSCs and other endometrial stem cells from recent studies conducted both in vitro and in vivo.
Collapse
Affiliation(s)
- Jian Lin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | |
Collapse
|