1
|
Hutchison P, Maeda H, Formby C, Small BJ, Eddins DA, Eddins AC. Acoustic deprivation modulates central gain in human auditory brainstem and cortex. Hear Res 2023; 428:108683. [PMID: 36599259 PMCID: PMC9872081 DOI: 10.1016/j.heares.2022.108683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
Beyond reduced audibility, there is convincing evidence that the auditory system adapts according to the principles of homeostatic plasticity in response to a hearing loss. Such compensatory changes include modulation of central auditory gain mechanisms. Earplugging is a common experimental method that has been used to introduce a temporary, reversible hearing loss that induces changes consistent with central gain modulation. In the present study, young, normal-hearing adult participants wore a unilateral earplug for two weeks, during which we measured changes in the acoustic reflex threshold (ART), loudness perception, and cortically-evoked (40 Hz) auditory steady-state response (ASSR) to assess potential modulation in central gain with reduced peripheral input. The ART decreased on average by 8 to 10 dB during the treatment period, with modest increases in loudness perception after one week but not after two weeks of earplug use. Significant changes in both the magnitude and hemispheric laterality of source-localized cortical ASSR measures revealed asymmetrical changes in stimulus-driven cortical activity over time. The ART results following unilateral earplugging are consistent with the literature and suggest that homeostatic plasticity is evident in the brainstem. The novel findings from the cortical ASSR in the present study indicates that reduced peripheral input induces adaptive homeostatic plasticity reflected as both an increase in central gain in the auditory brainstem and reduced cortical activity ipsilateral to the deprived ear. Both the ART and the novel use of the 40-Hz ASSR provide sensitive measures of central gain modulation in the brainstem and cortex of young, normal hearing listeners, and thus may be useful in future studies with other clinical populations.
Collapse
Affiliation(s)
- Peter Hutchison
- Department of Communication Sciences and Disorders, University of South Florida, 4202 E. Fowler Ave., PCD 1017, Tampa, FL 33620, USA
| | - Hannah Maeda
- Department of Communication Sciences and Disorders, University of South Florida, 4202 E. Fowler Ave., PCD 1017, Tampa, FL 33620, USA
| | - Craig Formby
- Department of Communication Sciences and Disorders, University of South Florida, 4202 E. Fowler Ave., PCD 1017, Tampa, FL 33620, USA
| | - Brent J Small
- School of Aging Studies, University of South Florida, 4202 E. Fowler Ave., PCD 1017, Tampa, FL 33620, USA
| | - David A Eddins
- Department of Communication Sciences and Disorders, University of South Florida, 4202 E. Fowler Ave., PCD 1017, Tampa, FL 33620, USA; Department of Chemical and Biomedical Engineering, University of South Florida, 4202 E. Fowler Ave., PCD 1017, Tampa, FL 33620, USA
| | - Ann Clock Eddins
- Department of Communication Sciences and Disorders, University of South Florida, 4202 E. Fowler Ave., PCD 1017, Tampa, FL 33620, USA; School of Communication Sciences and Disorders, University of Central Florida, 4364 Scorpius Street, Orlando, FL 32816, USA.
| |
Collapse
|
2
|
Hyperacusis: Loudness Intolerance, Fear, Annoyance and Pain. Hear Res 2022; 426:108648. [DOI: 10.1016/j.heares.2022.108648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
|
3
|
Valderrama JT, de la Torre A, McAlpine D. The hunt for hidden hearing loss in humans: From preclinical studies to effective interventions. Front Neurosci 2022; 16:1000304. [PMID: 36188462 PMCID: PMC9519997 DOI: 10.3389/fnins.2022.1000304] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
Many individuals experience hearing problems that are hidden under a normal audiogram. This not only impacts on individual sufferers, but also on clinicians who can offer little in the way of support. Animal studies using invasive methodologies have developed solid evidence for a range of pathologies underlying this hidden hearing loss (HHL), including cochlear synaptopathy, auditory nerve demyelination, elevated central gain, and neural mal-adaptation. Despite progress in pre-clinical models, evidence supporting the existence of HHL in humans remains inconclusive, and clinicians lack any non-invasive biomarkers sensitive to HHL, as well as a standardized protocol to manage hearing problems in the absence of elevated hearing thresholds. Here, we review animal models of HHL as well as the ongoing research for tools with which to diagnose and manage hearing difficulties associated with HHL. We also discuss new research opportunities facilitated by recent methodological tools that may overcome a series of barriers that have hampered meaningful progress in diagnosing and treating of HHL.
Collapse
Affiliation(s)
- Joaquin T. Valderrama
- National Acoustic Laboratories, Sydney, NSW, Australia
- Department of Linguistics, Macquarie University Hearing, Macquarie University, Sydney, NSW, Australia
| | - Angel de la Torre
- Department of Signal Theory, Telematics and Communications, University of Granada, Granada, Spain
- Research Centre for Information and Communications Technologies (CITIC-UGR), University of Granada, Granada, Spain
| | - David McAlpine
- Department of Linguistics, Macquarie University Hearing, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
4
|
Parry LV, Maslin MR, Schaette R, Moore DR, Munro KJ. Increased auditory cortex neural response amplitude in adults with chronic unilateral conductive hearing impairment. Hear Res 2019; 372:10-16. [DOI: 10.1016/j.heares.2018.01.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 01/18/2018] [Accepted: 01/30/2018] [Indexed: 10/18/2022]
|
5
|
Brotherton H, Plack CJ, Schaette R, Munro KJ. Using acoustic reflex threshold, auditory brainstem response and loudness judgments to investigate changes in neural gain following acute unilateral deprivation in normal hearing adults. Hear Res 2017; 345:88-95. [DOI: 10.1016/j.heares.2017.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 11/28/2022]
|
6
|
Plonek M, Nicpoń J, Kubiak K, Wrzosek M. A comparison of the brainstem auditory evoked response in healthy ears of unilaterally deaf dogs and bilaterally hearing dogs. Vet Res Commun 2017; 41:23-31. [PMID: 27896671 PMCID: PMC5306067 DOI: 10.1007/s11259-016-9668-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 11/09/2016] [Indexed: 10/31/2022]
Abstract
AIMS Auditory plasticity in response to unilateral deafness has been reported in various animal species. Subcortical changes occurring in unilaterally deaf young dogs using the brainstem auditory evoked response have not been evaluated yet. The aim of this study was to assess the brainstem auditory evoked response findings in dogs with unilateral hearing loss, and compare them with recordings obtained from healthy dogs. METHODS Brainstem auditory evoked responses (amplitudes and latencies of waves I, II, III, V, the V/I wave amplitude ratio, wave I-V, I-III and III-V interpeak intervals) were studied retrospectively in forty-six privately owned dogs, which were either unilaterally deaf or had bilateral hearing. The data obtained from the hearing ears in unilaterally deaf dogs were compared to values obtained from their healthy littermates. RESULTS Statistically significant differences in the amplitude of wave III and the V/I wave amplitude ratio at 75 dB nHL were found between the group of unilaterally deaf puppies and the control group. The recordings of dogs with single-sided deafness were compared, and the results showed no statistically significant differences in the latencies and amplitudes of the waves between left- (AL) and right-sided (AR) deafness. CONCLUSIONS The recordings of the brainstem auditory evoked response in canines with unilateral inborn deafness in this study varied compared to recordings from healthy dogs. Future studies looking into electrophysiological assessment of hearing in conjunction with imaging modalities to determine subcortical auditory plasticity and auditory lateralization in unilaterally deaf dogs are warranted.
Collapse
Affiliation(s)
- M. Plonek
- Department of Internal Diseases with Clinic for Horses, Dogs and Cats, The Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 47, 50-366 Wrocław, Poland
| | - J. Nicpoń
- Department of Internal Diseases with Clinic for Horses, Dogs and Cats, The Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 47, 50-366 Wrocław, Poland
- Centre for Experimental Diagnostics and Biomedical Innovations, Grunwaldzki sq. 47, 50-366 Wroclaw, Poland
| | - K. Kubiak
- Department of Internal Diseases with Clinic for Horses, Dogs and Cats, The Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 47, 50-366 Wrocław, Poland
| | - M. Wrzosek
- Department of Internal Diseases with Clinic for Horses, Dogs and Cats, The Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 47, 50-366 Wrocław, Poland
| |
Collapse
|
7
|
Brotherton H, Plack CJ, Schaette R, Munro KJ. No change in the acoustic reflex threshold and auditory brainstem response following short-term acoustic stimulation in normal hearing adults. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:2725. [PMID: 27794325 DOI: 10.1121/1.4964733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Unilateral auditory deprivation or stimulation can induce changes in loudness and modify the sound level required to elicit the acoustic reflex. This has been explained in terms of a change in neural response, or gain, for a given sound level. However, it is unclear if these changes are driven by the asymmetry in auditory input or if they will also occur following bilateral changes in auditory input. The present study used a cross-over trial of unilateral and bilateral amplification to investigate changes in the acoustic reflex thresholds (ARTs) and the auditory brainstem response (ABR) in normal hearing listeners. Each treatment lasted 7 days and there was a 7-day washout period between the treatments. There was no significant change in the ART or ABR with either treatment. This null finding may have occurred because the amplification was insufficient to induce experience-related changes to the ABR and ART. Based on the null findings from the present study, and evidence of a change in ART in previous unilateral hearing aid use in normal hearing listeners, the threshold to trigger adaptive changes appears to be around 5 days of amplification with real ear insertion gain greater than 13-17 dB.
Collapse
Affiliation(s)
- Hannah Brotherton
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, United Kingdom
| | - Christopher J Plack
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, United Kingdom
| | - Roland Schaette
- Ear Institute, University College London, London WC1X 8EE, United Kingdom
| | - Kevin J Munro
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, United Kingdom
| |
Collapse
|
8
|
Brotherton H, Plack CJ, Schaette R, Munro KJ. Time course and frequency specificity of sub-cortical plasticity in adults following acute unilateral deprivation. Hear Res 2016; 341:210-219. [PMID: 27620512 DOI: 10.1016/j.heares.2016.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 10/21/2022]
Abstract
Auditory deprivation and stimulation can change the threshold of the acoustic reflex, but the mechanisms underlying these changes remain largely unknown. In order to elucidate the mechanism, we sought to characterize the time-course as well as the frequency specificity of changes in acoustic reflex thresholds (ARTs). In addition, we compared ipsilateral and contralateral measurements because the pattern of findings may shed light on the anatomical location of the change in neural gain. Twenty-four normal-hearing adults wore an earplug continuously in one ear for six days. We measured ipsilateral and contralateral ARTs in both ears on six occasions (baseline, after 2, 4 and 6 days of earplug use, and 4 and 24 h after earplug removal), using pure tones at 0.5, 1, 2 and 4 kHz and a broadband noise stimulus, and an experimenter-blinded design. We found that ipsi- as well as contralateral ARTs were obtained at a lower sound pressure level after earplug use, but only when the reflex was elicited by stimulating the treatment ear. Changes in contralateral ARTs were not the same as changes in ipsilateral ARTs when the stimulus was presented to the control ear. Changes in ARTs were present after 2 days of earplug use, and reached statistical significance after 4 days, when the ipsilateral and contralateral ARTs were measured in the treatment ear. The greatest changes in ARTs occurred at 2 and 4 kHz, the frequencies most attenuated by the earplug. After removal of the earplug, ARTs started to return to baseline relatively quickly, and were not significantly different from baseline by 4-24 h. There was a trend for the recovery to occur quicker than the onset. The changes in ARTs are consistent with a frequency-specific gain control mechanism operating around the level of the ventral cochlear nucleus in the treatment ear, on a time scale of hours to days. These findings, specifically the time course of change, could be applicable to other sensory systems, which have also shown evidence of a neural gain control mechanism.
Collapse
Affiliation(s)
- Hannah Brotherton
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL, United Kingdom.
| | - Christopher J Plack
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL, United Kingdom; Department of Psychology, Lancaster University, Lancaster, LA1 4YF, United Kingdom.
| | - Roland Schaette
- Ear Institute, University College London, London, WC1X 8EE, United Kingdom.
| | - Kevin J Munro
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL, United Kingdom; Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WK, United Kingdom.
| |
Collapse
|
9
|
Ghadban R, Liebermann L, Klaehn LD, Holmes JM, Brodsky MC. Relative roles of luminance and fixation in inducing dissociated vertical divergence. Invest Ophthalmol Vis Sci 2014; 56:1081-7. [PMID: 25537206 DOI: 10.1167/iovs.14-15843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE We evaluated the roles of luminance and fixation in the pathophysiology of dissociated vertical divergence (DVD). METHODS Vertical eye position was measured in 6 subjects with DVD (ages 11-47 years, 5 females) and 6 controls (ages 16-40 years, 5 females) using video-oculography (VOG) under conditions of change in fixation and luminance. RESULTS Subjects with DVD showed the following VOG responses. When fixation was precluded with a translucent filter and bright light was shone into one eye to produce a marked binocular luminance disparity, we found some subjects had a small induced vertical divergence causing the illuminated eye to be lower than the nonilluminated eye (mean -1.6° ± 1.5°, P = 0.06 compared to no vertical divergence using the signed rank test). When fixation was precluded with a translucent filter, while alternate occlusion produced a mild binocular luminance disparity, we found a smaller vertical divergence of the eyes that was not statistically significant (1.2° ± 2.1°, P = 0.3). When alternate occlusion produced reversal of monocular fixation in the dark (with essentially no change in peripheral luminance disparity), there was a significant vertical divergence movement causing the covered eye to be relatively higher than the uncovered eye (7.2° ± 3.1°, P = 0.03). The amplitude of this vertical divergence was similar to that measured under conditions of alternate occlusion in a lighted room (where there also was a significant average relative upward movement of the covered eye of 8.1° ± 2.9°, P = 0.03). Control subjects showed no vertical divergence under any testing conditions. CONCLUSIONS Dissociated vertical divergence is mediated primarily by changes in fixation and only to a minor degree by binocular luminance disparity.
Collapse
Affiliation(s)
- Rafif Ghadban
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States Department of Ophthalmology, St. Louis University Eye Institute, St. Louis, Missouri, United States
| | - Laura Liebermann
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States
| | - Lindsay D Klaehn
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States
| | - Jonathan M Holmes
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States
| | - Michael C Brodsky
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
10
|
Fournier P, Schönwiesner M, Hébert S. Loudness modulation after transient and permanent hearing loss: implications for tinnitus and hyperacusis. Neuroscience 2014; 283:64-77. [PMID: 25135356 DOI: 10.1016/j.neuroscience.2014.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 08/06/2014] [Accepted: 08/07/2014] [Indexed: 11/19/2022]
Abstract
Loudness is the primary perceptual correlate of sound intensity. The relationship between sound intensity and loudness is not fixed, and can be modified by short-term sound deprivation or stimulation. Deprivation increases sound sensitivity, whereas stimulation decreases it. We review the effects of short-term auditory deprivation and stimulation on the auditory central nervous system of humans and animals, and we extend the discussion to permanent auditory deprivation (hearing loss) and auditory pathologies of loudness perception. Although there is sufficient evidence to conclude that loudness can be modulated in normal hearing listeners by temporary sound deprivation and stimulation, evidence is scanter for the hearing-impaired listeners. In addition, cortical effects of sound deprivation and stimulation in humans, which may correlate with loudness coding, are still largely unknown and should be the target of future research.
Collapse
Affiliation(s)
- P Fournier
- School of Speech Pathology and Audiology, Université de Montréal, Montréal, Québec, Canada; International Laboratory for Research on Brain, Music, and Sound (BRAMS), Université de Montréal, Montréal, Québec, Canada; Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, Québec, Canada
| | - M Schönwiesner
- International Laboratory for Research on Brain, Music, and Sound (BRAMS), Université de Montréal, Montréal, Québec, Canada; Department of Psychology, Université de Montréal, Montréal, Québec, Canada
| | - S Hébert
- School of Speech Pathology and Audiology, Université de Montréal, Montréal, Québec, Canada; International Laboratory for Research on Brain, Music, and Sound (BRAMS), Université de Montréal, Montréal, Québec, Canada; Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, Québec, Canada.
| |
Collapse
|
11
|
Munro KJ, Turtle C, Schaette R. Plasticity and modified loudness following short-term unilateral deprivation: evidence of multiple gain mechanisms within the auditory system. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2014; 135:315-22. [PMID: 24437771 DOI: 10.1121/1.4835715] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Auditory deprivation and stimulation can change the threshold of the acoustic middle ear reflex as well as loudness in adult listeners. However, it has remained unclear whether changes in these measures are due to the same mechanism. In this study, deprivation was achieved using a monaural earplug that was worn by listeners for 7 days. Acoustic reflex thresholds (ARTs) and categorical loudness ratings were measured using a blinded design in which the experimenter was unaware of which ear had been plugged. Immediately after terminating unilateral deprivation, ARTs were obtained at a lower sound pressure level in the ear that had been fitted with an earplug and at a higher sound pressure level in the control ear. In contrast, categorical judgments of loudness changed in the same direction in both ears with a given stimulus level reported as louder after unilateral deprivation. The relationship between changes to the ART and loudness judgments was not statistically significant. For both the ARTs and the categorical loudness judgments, most of the changes had disappeared within 24 h after earplug removal. The changes in ARTs, as a consequence of unilateral sound deprivation, are consistent with a gain control mechanism; however, the lack of relationship with the categorical loudness judgments, and the different pattern of findings for each measure, suggests the possibility of multiple gain mechanisms.
Collapse
Affiliation(s)
- Kevin J Munro
- School of Psychological Sciences, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Charlotte Turtle
- School of Psychological Sciences, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Roland Schaette
- Ear Institute, University College London, London WC1X 8EE, United Kingdom
| |
Collapse
|
12
|
Amitay S, Zhang YX, Jones PR, Moore DR. Perceptual learning: top to bottom. Vision Res 2013; 99:69-77. [PMID: 24296314 DOI: 10.1016/j.visres.2013.11.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 11/18/2013] [Accepted: 11/20/2013] [Indexed: 11/30/2022]
Abstract
Perceptual learning has traditionally been portrayed as a bottom-up phenomenon that improves encoding or decoding of the trained stimulus. Cognitive skills such as attention and memory are thought to drive, guide and modulate learning but are, with notable exceptions, not generally considered to undergo changes themselves as a result of training with simple perceptual tasks. Moreover, shifts in threshold are interpreted as shifts in perceptual sensitivity, with no consideration for non-sensory factors (such as response bias) that may contribute to these changes. Accumulating evidence from our own research and others shows that perceptual learning is a conglomeration of effects, with training-induced changes ranging from the lowest (noise reduction in the phase locking of auditory signals) to the highest (working memory capacity) level of processing, and includes contributions from non-sensory factors that affect decision making even on a "simple" auditory task such as frequency discrimination. We discuss our emerging view of learning as a process that increases the signal-to-noise ratio associated with perceptual tasks by tackling noise sources and inefficiencies that cause performance bottlenecks, and present some implications for training populations other than young, smart, attentive and highly-motivated college students.
Collapse
Affiliation(s)
- Sygal Amitay
- Medical Research Council Institute of Hearing Research, University Park, Nottingham NG7 2RD, United Kingdom.
| | - Yu-Xuan Zhang
- Medical Research Council Institute of Hearing Research, University Park, Nottingham NG7 2RD, United Kingdom.
| | - Pete R Jones
- Medical Research Council Institute of Hearing Research, University Park, Nottingham NG7 2RD, United Kingdom.
| | - David R Moore
- Medical Research Council Institute of Hearing Research, University Park, Nottingham NG7 2RD, United Kingdom.
| |
Collapse
|