1
|
Heij GJ, Penninx BWHJ, van Velzen LS, van Tol MJ, van der Wee NJA, Veltman DJ, Aghajani M. White matter architecture in major depression with anxious distress symptoms. Prog Neuropsychopharmacol Biol Psychiatry 2019; 94:109664. [PMID: 31158389 DOI: 10.1016/j.pnpbp.2019.109664] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/29/2019] [Accepted: 05/30/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Comorbid anxious distress is common in Major Depressive Disorder (MDD), and associated with significantly worse clinical course and treatment response. While DSM-5 recently introduced the Anxious Distress (AD) specifier as a potentially useful symptom-based subtyping scheme for MDD, its neurobiological underpinnings remain unclear. The current study hence uniquely probed whether MDD with co-occurring AD (MDD/AD+) relates to distinct perturbations in frontolimbic white matter (WM) pathways tentatively theorized in MDD/AD+ pathophysiology. METHODS Tract-based spatial statistics (TBSS) was therefore used to analyze diffusion tensor imaging data on WM microstructure, in MDD/AD+ patients (N = 20) relative to MDD patients without AD (MDD/AD-; N = 29) and healthy controls (HC; N = 39). Using TBSS, we probed fractional anisotropy and axial/radial/mean diffusivity as proxies for WM integrity. Categorical (between-groups) and dimensional (within-patients) analyses subsequently assessed how Anxious Distress in MDD impacts frontolimbic WM connectivity. Receiver-Operating Characteristics additionally assessed classification capabilities of between-groups WM effects. RESULTS Compared to MDD/AD- and HC participants, MDD/AD+ patients exhibited diminished integrity within the anterior thalamic radiation (ATR). Higher AD specifier scores within MDD patients additionally related to diminished integrity of the uncinate fasciculus and cingulum pathways. These effects were not confounded by key clinical (e.g., comorbid anxiety disorder) and sociodemographic (e.g., age/sex) factors, with altered ATR integrity moreover successfully classifying MDD/AD+ patients from MDD/AD- and HC participants (90% sensitivity | 73% specificity | 77% accuracy). CONCLUSIONS These findings collectively link MDD/AD+ to distinct WM anomalies in frontolimbic tracts important to adaptive emotional functioning, and may as such provide relevant, yet preliminary, clues on MDD/AD+ pathophysiology.
Collapse
Affiliation(s)
- Gijs J Heij
- VU University, Faculty of Earth and Life Sciences, the Netherlands; Amsterdam UMC, Location VUMC, Dept. of Psychiatry & Amsterdam Neuroscience, the Netherlands
| | - Brenda W H J Penninx
- Amsterdam UMC, Location VUMC, Dept. of Psychiatry & Amsterdam Neuroscience, the Netherlands; GGZ InGeest Specialized Mental Health Care, the Netherlands
| | - Laura S van Velzen
- Amsterdam UMC, Location VUMC, Dept. of Psychiatry & Amsterdam Neuroscience, the Netherlands; GGZ InGeest Specialized Mental Health Care, the Netherlands
| | - Marie-José van Tol
- University Medical Center Groningen, Dept. of Psychiatry, the Netherlands
| | | | - Dick J Veltman
- Amsterdam UMC, Location VUMC, Dept. of Psychiatry & Amsterdam Neuroscience, the Netherlands; GGZ InGeest Specialized Mental Health Care, the Netherlands
| | - Moji Aghajani
- Amsterdam UMC, Location VUMC, Dept. of Psychiatry & Amsterdam Neuroscience, the Netherlands; GGZ InGeest Specialized Mental Health Care, the Netherlands.
| |
Collapse
|
2
|
Abstract
Ultrasound (US) is widely known for its utility as a biomedical imaging modality. An abundance of evidence has recently accumulated showing that US is also useful for non-invasively modulating brain circuit activity. Through a series of studies discussed in this short review, it has recently become recognized that transcranial focused ultrasound can exert mechanical (non-thermal) bioeffects on neurons and cells to produce focal changes in the activity of brain circuits. In addition to highlighting scientific breakthroughs and observations that have driven the development of the field of ultrasonic neuromodulation, this study also provides a discussion of mechanisms of action underlying the ability of ultrasound to physically stimulate and modulate brain circuit activity. Exemplifying some forward-looking tools that can be developed by integrating ultrasonic neuromodulation with other advanced acoustic technologies, some innovative acoustic imaging, beam forming, and focusing techniques are briefly reviewed. Finally, the future outlook for ultrasonic neuromodulation is discussed, specifically in the context of applications employing transcranial focused ultrasound for the investigation, diagnosis, and treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Maria Fini
- a School of Biological and Health Systems Engineering , Arizona State University , Tempe , AZ , USA
| | - William J Tyler
- a School of Biological and Health Systems Engineering , Arizona State University , Tempe , AZ , USA
| |
Collapse
|
3
|
Runyan JD, Steinke EG. Virtues, ecological momentary assessment/intervention and smartphone technology. Front Psychol 2015; 6:481. [PMID: 25999869 PMCID: PMC4422021 DOI: 10.3389/fpsyg.2015.00481] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 04/02/2015] [Indexed: 12/30/2022] Open
Abstract
Virtues, broadly understood as stable and robust dispositions for certain responses across morally relevant situations, have been a growing topic of interest in psychology. A central topic of discussion has been whether studies showing that situations can strongly influence our responses provide evidence against the existence of virtues (as a kind of stable and robust disposition). In this review, we examine reasons for thinking that the prevailing methods for examining situational influences are limited in their ability to test dispositional stability and robustness; or, then, whether virtues exist. We make the case that these limitations can be addressed by aggregating repeated, cross-situational assessments of environmental, psychological and physiological variables within everyday life-a form of assessment often called ecological momentary assessment (EMA, or experience sampling). We, then, examine how advances in smartphone application (app) technology, and their mass adoption, make these mobile devices an unprecedented vehicle for EMA and, thus, the psychological study of virtue. We, additionally, examine how smartphones might be used for virtue development by promoting changes in thought and behavior within daily life; a technique often called ecological momentary intervention (EMI). While EMA/I have become widely employed since the 1980s for the purposes of understanding and promoting change amongst clinical populations, few EMA/I studies have been devoted to understanding or promoting virtues within non-clinical populations. Further, most EMA/I studies have relied on journaling, PDAs, phone calls and/or text messaging systems. We explore how smartphone app technology provides a means of making EMA a more robust psychological method, EMI a more robust way of promoting positive change, and, as a result, opens up new possibilities for studying and promoting virtues.
Collapse
Affiliation(s)
- Jason D. Runyan
- Psychology Department, Indiana Wesleyan UniversityMarion, IN, USA
| | | |
Collapse
|
4
|
Oertel-Knöchel V, Reinke B, Matura S, Prvulovic D, Linden DEJ, van de Ven V. Functional connectivity pattern during rest within the episodic memory network in association with episodic memory performance in bipolar disorder. Psychiatry Res 2015; 231:141-50. [PMID: 25575881 DOI: 10.1016/j.pscychresns.2014.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 11/07/2014] [Accepted: 11/21/2014] [Indexed: 10/24/2022]
Abstract
In this study, we sought to examine the intrinsic functional organization of the episodic memory network during rest in bipolar disorder (BD). The previous work suggests that deficits in intrinsic functional connectivity may account for impaired memory performance. We hypothesized that regions involved in episodic memory processing would reveal aberrant functional connectivity in patients with bipolar disorder. We examined 21 patients with BD and 21 healthy matched controls who underwent functional magnetic resonance imaging (fMRI) during a resting condition. We did a seed-based functional connectivity analysis (SBA), using the regions of the episodic memory network that showed a significantly different activation pattern during task-related fMRI as seeds. The functional connectivity scores (FC) were further correlated with episodic memory task performance. Our results revealed decreased FC scores within frontal areas and between frontal and temporal/hippocampal/limbic regions in BD patients in comparison with controls. We observed higher FC in BD patients compared with controls between frontal and limbic regions. The decrease in fronto-frontal functional connectivity in BD patients showed a significant positive association with episodic memory performance. The association between task-independent dysfunctional frontal-limbic FC and episodic memory performance may be relevant for current pathophysiological models of the disease.
Collapse
Affiliation(s)
- Viola Oertel-Knöchel
- Laboratory of Neurophysiology und Neuroimaging, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University, Frankfurt/Main 60528, Germany; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | - Britta Reinke
- Laboratory of Neurophysiology und Neuroimaging, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University, Frankfurt/Main 60528, Germany; Brain Imaging Center Frankfurt, Germany; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Silke Matura
- Laboratory of Neurophysiology und Neuroimaging, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University, Frankfurt/Main 60528, Germany; Brain Imaging Center Frankfurt, Germany; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - David Prvulovic
- Laboratory of Neurophysiology und Neuroimaging, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University, Frankfurt/Main 60528, Germany; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - David E J Linden
- Brain Imaging Center Frankfurt, Germany; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Vincent van de Ven
- MRC Centre for Neuropsychiatric Genetics & Genomics, Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, United Kingdom; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
5
|
Oertel-Knöchel V, Reinke B, Feddern R, Knake A, Knöchel C, Prvulovic D, Pantel J, Linden DEJ. Episodic memory impairments in bipolar disorder are associated with functional and structural brain changes. Bipolar Disord 2014; 16:830-45. [PMID: 25164120 DOI: 10.1111/bdi.12241] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 12/20/2013] [Indexed: 01/30/2023]
Abstract
OBJECTIVES We combined multimodal functional magnetic resonance imaging (fMRI) and structural magnetic resonance imaging to probe abnormalities in brain circuits underpinning episodic memory performance deficits in patients with bipolar disorder (BD). METHODS We acquired whole-brain fMRI data in 21 patients with BD and a matched group of 20 healthy controls during a non-verbal episodic memory task, using abstract shapes. We also examined density of gray matter, using voxel-based morphometry (VBM), and integrity of connecting fiber tracts, using diffusion tensor imaging (DTI) and tract-based spatial statistics, for areas with significant activation differences. RESULTS Patients with BD remembered less well than controls which shapes they had seen and had lower activation levels during the encoding stage of the task in the anterior cingulate gyrus, the precuneus/cuneus bilaterally, and the left lingual gyrus, and higher activation levels during the retrieval stage in the left temporo-parietal junction. Patients with BD showed reduced gray matter volumes in the left anterior cingulate, the precuneus/cuneus bilaterally, and the left temporo-parietal region in comparison with controls. DTI revealed increased radial, axial, and mean diffusivity in the left superior longitudinal fascicle in patients with BD compared with controls. CONCLUSIONS Changes in task-related activation in frontal and parietal areas were associated with poorer episodic memory in patients with BD. Compared with data from single imaging modalities, integration of multimodal neuroimaging data enables the building of more complete neuropsychological models of mental disorders.
Collapse
Affiliation(s)
- Viola Oertel-Knöchel
- Laboratory of Neurophysiology and Neuroimaging, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Gonen T, Sharon H, Pearlson G, Hendler T. Moods as ups and downs of the motivation pendulum: revisiting reinforcement sensitivity theory (RST) in bipolar disorder. Front Behav Neurosci 2014; 8:378. [PMID: 25404902 PMCID: PMC4217503 DOI: 10.3389/fnbeh.2014.00378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 10/13/2014] [Indexed: 12/19/2022] Open
Abstract
Motivation is a key neurobehavioral concept underlying adaptive responses to environmental incentives and threats. As such, dysregulation of motivational processes may be critical in the formation of abnormal behavioral patterns/tendencies. According to the long standing model of the Reinforcement Sensitivity Theory (RST), motivation behaviors are driven by three neurobehavioral systems mediating the sensitivity to punishment, reward or goal-conflict. Corresponding to current neurobehavioral theories in psychiatry, this theory links abnormal motivational drives to abnormal behavior; viewing depression and mania as two abnormal extremes of reward driven processes leading to either under or over approach tendencies, respectively. We revisit the RST framework in the context of bipolar disorder (BD) and challenge this concept by suggesting that dysregulated interactions of both punishment and reward related processes better account for the psychological and neural abnormalities observed in BD. We further present an integrative model positing that the three parallel motivation systems currently proposed by the RST model, can be viewed as subsystems in a large-scale neurobehavioral network of motivational decision making.
Collapse
Affiliation(s)
- Tal Gonen
- Functional Brain Center, Wohl Institute of Advanced Imaging, Tel Aviv Medical CenterTel Aviv, Israel
- School of Psychological Sciences, Tel Aviv UniversityTel Aviv, Israel
| | - Haggai Sharon
- Functional Brain Center, Wohl Institute of Advanced Imaging, Tel Aviv Medical CenterTel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv UniversityTel Aviv, Israel
| | - Godfrey Pearlson
- Psychiatry Department, Yale School of MedicineBaltimore, MD, USA
- Olin Neuropsychiatry Research Center, Hartford HospitalHartford, CT, USA
- Psychiatry Department, Johns Hopkins UniversityHartford, CT, USA
| | - Talma Hendler
- Functional Brain Center, Wohl Institute of Advanced Imaging, Tel Aviv Medical CenterTel Aviv, Israel
- School of Psychological Sciences, Tel Aviv UniversityTel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv UniversityTel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv UniversityTel Aviv, Israel
| |
Collapse
|
7
|
Tillisch K, Labus JS. Neuroimaging the microbiome-gut-brain axis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 817:405-16. [PMID: 24997044 DOI: 10.1007/978-1-4939-0897-4_18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The brain is the most complex organ in the human body, interacting with every other major organ system to continuously maintain homeostasis. Thus it is not surprising that the brain also interacts with our microbiota, the trillions of bacteria and other organisms inhabiting the ecosystem of the human being. As we gather knowledge about the way that our microbiota interact with their local environments, there is also increasing interest in their communication with the brain.
Collapse
Affiliation(s)
- Kirsten Tillisch
- Division of Digestive Diseases, Department of Medicine, Gail and Gerald Oppenheimer Family Center for Neurobiology of Stress, David Geffen School of Medicine at UCLA, 10833 LeConte Ave, CHS 42-210 MC737818, 957378, Los Angeles, CA, 90095-7378, USA,
| | | |
Collapse
|
8
|
Habes I, Krall SC, Johnston SJ, Yuen KSL, Healy D, Goebel R, Sorger B, Linden DEJ. Pattern classification of valence in depression. NEUROIMAGE-CLINICAL 2013; 2:675-83. [PMID: 24179819 PMCID: PMC3777671 DOI: 10.1016/j.nicl.2013.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 12/29/2022]
Abstract
Neuroimaging biomarkers of depression have potential to aid diagnosis, identify individuals at risk and predict treatment response or course of illness. Nevertheless none have been identified so far, potentially because no single brain parameter captures the complexity of the pathophysiology of depression. Multi-voxel pattern analysis (MVPA) may overcome this issue as it can identify patterns of voxels that are spatially distributed across the brain. Here we present the results of an MVPA to investigate the neuronal patterns underlying passive viewing of positive, negative and neutral pictures in depressed patients. A linear support vector machine (SVM) was trained to discriminate different valence conditions based on the functional magnetic resonance imaging (fMRI) data of nine unipolar depressed patients. A similar dataset obtained in nine healthy individuals was included to conduct a group classification analysis via linear discriminant analysis (LDA). Accuracy scores of 86% or higher were obtained for each valence contrast via patterns that included limbic areas such as the amygdala and frontal areas such as the ventrolateral prefrontal cortex. The LDA identified two areas (the dorsomedial prefrontal cortex and caudate nucleus) that allowed group classification with 72.2% accuracy. Our preliminary findings suggest that MVPA can identify stable valence patterns, with more sensitivity than univariate analysis, in depressed participants and that it may be possible to discriminate between healthy and depressed individuals based on differences in the brain's response to emotional cues.
Collapse
Affiliation(s)
- I Habes
- CUBRIC (Cardiff University Brain Research Imaging Centre), School of Psychology, Cardiff University, Cardiff, UK ; Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | | | | | | | | | | | | | | |
Collapse
|